Skip to main content
Erschienen in: Journal of Materials Science 7/2016

28.12.2015 | Original Paper

Soft mechanochemical synthesis and electrochemical behavior of LiVMoO6 for all-solid-state lithium batteries

verfasst von: M. Milanova, R. Iordanova, M. Tatsumisago, A. Hayashi, P. Tzvetkov, D. Nihtianova, P. Markov, Y. Dimitriev

Erschienen in: Journal of Materials Science | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we report a novel route to obtain LiVMoO6 nanocrystals using a soft mechanochemical synthesis method. Powder X-ray diffraction, infrared, and Raman data indicated the formation of a single-phase LiVMoO6 with brannerite-type structure after 60-min milling time. The average particles size of the obtained LiVMoO6, derived from transmission electron microscopy data is about 46 nm. From UV–Vis diffuse reflectance spectrum, the direct band gap value (2.77 eV) of the material was estimated. The electrochemical characterization of the LiVMoO6 obtained was performed for the first time by assembling an all-solid-state cell, employing LiVMoO6 as a cathode active material. Discharge–charge measurements for 10 cycles were performed in the potential range from 1.8 to 3.7 V under a current density of 0.1 mA cm−2 at room temperature. The assembled all-solid-state Li-In/80Li2S·20P2S5 glass–ceramics/LiVMoO6 battery presents a sustainable reversible capacity of 35 mAh g−1 and a coulombic efficiency close to 100 % after the second to the 10th cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reddy MA, Kishore MS, Pralong V, Caignaert V, Varadaraju UV, Raveau B (2007) Electrochemical performance of VOMoO4 as negative electrode material for Li ion batteries. Power Sources 168:509–512CrossRef Reddy MA, Kishore MS, Pralong V, Caignaert V, Varadaraju UV, Raveau B (2007) Electrochemical performance of VOMoO4 as negative electrode material for Li ion batteries. Power Sources 168:509–512CrossRef
2.
Zurück zum Zitat Mikhailova D, Sarapulova A, Voss A, Thomas A, Oswald S, Gruner W, Trots DM, Bramnik NN, Ehrenberg H (2010) Li3V(MoO4)3: a new material for both Li extraction and insertion. Chem Mater 22:3165–3173CrossRef Mikhailova D, Sarapulova A, Voss A, Thomas A, Oswald S, Gruner W, Trots DM, Bramnik NN, Ehrenberg H (2010) Li3V(MoO4)3: a new material for both Li extraction and insertion. Chem Mater 22:3165–3173CrossRef
3.
Zurück zum Zitat Kazakopoulos A, Kalogirou O (2008) Impedance spectroscopy study of LiCuVO4. Solid State Ionics 179:936–940CrossRef Kazakopoulos A, Kalogirou O (2008) Impedance spectroscopy study of LiCuVO4. Solid State Ionics 179:936–940CrossRef
4.
Zurück zum Zitat Julien CM (2003) Lithium intercalated compounds: charge transfer and related properties. Mater Sci Eng R 40:47–102CrossRef Julien CM (2003) Lithium intercalated compounds: charge transfer and related properties. Mater Sci Eng R 40:47–102CrossRef
5.
Zurück zum Zitat Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
6.
Zurück zum Zitat Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenym oxides: batteries and electrochromics. J Mater Chem 19:2526–2552CrossRef Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenym oxides: batteries and electrochromics. J Mater Chem 19:2526–2552CrossRef
7.
Zurück zum Zitat Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef
8.
Zurück zum Zitat Michael M, Fauzi A, Prabaharan SRS (2000) Soft-combustion (wet chemical) synthesis of a new 4-V class cathode-active material, LiVMoO6, for Li-ion batteries. Int J Inorg Mater 2:261–267CrossRef Michael M, Fauzi A, Prabaharan SRS (2000) Soft-combustion (wet chemical) synthesis of a new 4-V class cathode-active material, LiVMoO6, for Li-ion batteries. Int J Inorg Mater 2:261–267CrossRef
9.
Zurück zum Zitat Julien C (2000) 4-Volt cathode materials for rechargeable lithium batteries wet chemistry synthesis, structure and electrochemistry. Ionics 6:30–46CrossRef Julien C (2000) 4-Volt cathode materials for rechargeable lithium batteries wet chemistry synthesis, structure and electrochemistry. Ionics 6:30–46CrossRef
10.
Zurück zum Zitat Liu R, Wang C, Jang L, Lee J (2002) A new anode material LiVMoO6 for use in rechargeable Li-ion batteries. Tamkang J Sci Eng 5:107–112 Liu R, Wang C, Jang L, Lee J (2002) A new anode material LiVMoO6 for use in rechargeable Li-ion batteries. Tamkang J Sci Eng 5:107–112
11.
Zurück zum Zitat Amdouni N, Zarrouk H, Soulette F, Julien C (2003) Synthesis, structure and lithium intercalation reaction in LiVMoO6 brannerite-type materials. J Mater Chem 13:2374–2380CrossRef Amdouni N, Zarrouk H, Soulette F, Julien C (2003) Synthesis, structure and lithium intercalation reaction in LiVMoO6 brannerite-type materials. J Mater Chem 13:2374–2380CrossRef
12.
Zurück zum Zitat Liu R, Wang Y, Drozd V, Hu S, Sheu H (2005) A novel anode material LiVMoO6 for rechargeable lithium-ion batteries. Electrochem Solid State Lett 8:A650–A653CrossRef Liu R, Wang Y, Drozd V, Hu S, Sheu H (2005) A novel anode material LiVMoO6 for rechargeable lithium-ion batteries. Electrochem Solid State Lett 8:A650–A653CrossRef
13.
Zurück zum Zitat Liang Y, Yang S, Yi Z, Li M, Sun J, Zhou Y (2005) Rheological phase synthesis and electrochemical performances of LiVMoO6 as a high-capacity anode material for lithium ion batteries. J Mater Sci 40:5553–5555. doi:10.1007/s10853-005-4549-0 CrossRef Liang Y, Yang S, Yi Z, Li M, Sun J, Zhou Y (2005) Rheological phase synthesis and electrochemical performances of LiVMoO6 as a high-capacity anode material for lithium ion batteries. J Mater Sci 40:5553–5555. doi:10.​1007/​s10853-005-4549-0 CrossRef
14.
Zurück zum Zitat Liang Y, Han X, Cong C, Yi Z, Zhou L, Sun J, Zhang K, Zhou Y (2007) Controlled synthesis of rod-like LiVMoO6 nanocrystals for application in lithium-ion batteries. Nanotechnology 18:135607–135613CrossRef Liang Y, Han X, Cong C, Yi Z, Zhou L, Sun J, Zhang K, Zhou Y (2007) Controlled synthesis of rod-like LiVMoO6 nanocrystals for application in lithium-ion batteries. Nanotechnology 18:135607–135613CrossRef
15.
Zurück zum Zitat Zhou L, Liang Y, Hu L, Han X, Yi Z, Sun J, Yang S (2008) Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries. J Alloys Comp 457:389–393CrossRef Zhou L, Liang Y, Hu L, Han X, Yi Z, Sun J, Yang S (2008) Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries. J Alloys Comp 457:389–393CrossRef
16.
Zurück zum Zitat Chen N, Wang C, Hu F, Bie X, Wei Y, Chen G, Du F (2015) Brannerite-type vanadium–molybdenum oxide LiVMoO6 as a promising anode material for lithium-ion batteries with high capacity and rate capability. ACS Appl Mater Interfaces 7:16117–16123CrossRef Chen N, Wang C, Hu F, Bie X, Wei Y, Chen G, Du F (2015) Brannerite-type vanadium–molybdenum oxide LiVMoO6 as a promising anode material for lithium-ion batteries with high capacity and rate capability. ACS Appl Mater Interfaces 7:16117–16123CrossRef
17.
Zurück zum Zitat Cushing BL, Kang SH, Goodenough JB (2001) Instability of brannerite cathode materials upon lithium insertion. Int J Inorg Mater 3:875–879CrossRef Cushing BL, Kang SH, Goodenough JB (2001) Instability of brannerite cathode materials upon lithium insertion. Int J Inorg Mater 3:875–879CrossRef
19.
Zurück zum Zitat Senna M (1993) Incipient chemical interaction between fine particles under mechanical stress – a feasibility of producing advanced materials via mechanochemical routes. Solid State Ionics 63–65:3–9CrossRef Senna M (1993) Incipient chemical interaction between fine particles under mechanical stress – a feasibility of producing advanced materials via mechanochemical routes. Solid State Ionics 63–65:3–9CrossRef
20.
Zurück zum Zitat Avakumov E, Senna M, Kosova N (2001) Soft mechanochemical synthesis: a basis for new chemical technologies. Kluwer Academic Publisher, Boston Avakumov E, Senna M, Kosova N (2001) Soft mechanochemical synthesis: a basis for new chemical technologies. Kluwer Academic Publisher, Boston
21.
22.
Zurück zum Zitat Pawley G (1981) Unit-cell refinement from powder diffraction scans. J Appl Cryst 14:357–361CrossRef Pawley G (1981) Unit-cell refinement from powder diffraction scans. J Appl Cryst 14:357–361CrossRef
23.
Zurück zum Zitat Bruker AXS (2008): TOPAS V4: General profile and structure analysis software for powder diffraction data. - User’s Manual, Bruker AXS, Karlsruhe, Germany Bruker AXS (2008): TOPAS V4: General profile and structure analysis software for powder diffraction data. - User’s Manual, Bruker AXS, Karlsruhe, Germany
24.
Zurück zum Zitat Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Physica Status Solidi b 15:627–637CrossRef Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Physica Status Solidi b 15:627–637CrossRef
25.
Zurück zum Zitat Run R, Wadsley A (1966) The crystal structure of ThTi2O6 (brannerite). Acta Cryst 21:974–978CrossRef Run R, Wadsley A (1966) The crystal structure of ThTi2O6 (brannerite). Acta Cryst 21:974–978CrossRef
26.
Zurück zum Zitat Hurtado L, Torres-García E, Romero R, Ramírez-Serrano A, Wood J, Natividad R (2013) Photocatalytic performance of Li1-xAgxVMoO6 (0 ≤ x ≤ 1) compounds. Chem Eng J 234:327–337CrossRef Hurtado L, Torres-García E, Romero R, Ramírez-Serrano A, Wood J, Natividad R (2013) Photocatalytic performance of Li1-xAgxVMoO6 (0 ≤ x ≤ 1) compounds. Chem Eng J 234:327–337CrossRef
27.
Zurück zum Zitat Baran EJ, Cabello CI, Nord AG (1987) Raman spectra of some MIIV2O6 brannerite- type metavanadates. J Raman Spectrosc 18:405–407CrossRef Baran EJ, Cabello CI, Nord AG (1987) Raman spectra of some MIIV2O6 brannerite- type metavanadates. J Raman Spectrosc 18:405–407CrossRef
28.
Zurück zum Zitat Thielemann JP, Resler T, Walter A, Tzolova-Müler G, Hess C (2011) Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV-vis and X-ray absorption spectroscopy. Appl Catal A 399:28–34CrossRef Thielemann JP, Resler T, Walter A, Tzolova-Müler G, Hess C (2011) Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV-vis and X-ray absorption spectroscopy. Appl Catal A 399:28–34CrossRef
29.
Zurück zum Zitat Zǎvoianu R, Bîrjega R, Pavel OD, Cruceanu A, Alifanti M (2005) Hydrotalcite like compounds with low Mo-loading active catalysts for selective oxidation of cyclohexene with hydrogen peroxide. Appl Catal A 286:211–220CrossRef Zǎvoianu R, Bîrjega R, Pavel OD, Cruceanu A, Alifanti M (2005) Hydrotalcite like compounds with low Mo-loading active catalysts for selective oxidation of cyclohexene with hydrogen peroxide. Appl Catal A 286:211–220CrossRef
30.
Zurück zum Zitat Centi G, Perathoner S, Trifiro F, Aboukais A, Aissi CF, Guelton M (1992) Physicochemical characterization of V-silicalite. J Phys Chem 96:2617–2629CrossRef Centi G, Perathoner S, Trifiro F, Aboukais A, Aissi CF, Guelton M (1992) Physicochemical characterization of V-silicalite. J Phys Chem 96:2617–2629CrossRef
31.
Zurück zum Zitat Porter VR, White WB, Roy R (1972) Optical spectra of the intermediate oxides of titanium, vanadium, molybdenum and tungsten. J Solid State Chem 4:250–254CrossRef Porter VR, White WB, Roy R (1972) Optical spectra of the intermediate oxides of titanium, vanadium, molybdenum and tungsten. J Solid State Chem 4:250–254CrossRef
32.
Zurück zum Zitat Aleksandrov L, Komatsu T, Iordanova R, Dimitriev Y (2011) Study of molybdenum coordination state and crystalization behaviour in MoO3-La2O3-B2O3 glasses by Raman spectroscopy. J Phys Chem Solids 72:263–268CrossRef Aleksandrov L, Komatsu T, Iordanova R, Dimitriev Y (2011) Study of molybdenum coordination state and crystalization behaviour in MoO3-La2O3-B2O3 glasses by Raman spectroscopy. J Phys Chem Solids 72:263–268CrossRef
33.
Zurück zum Zitat Mestl G, Verbruggen NFD, Knözinger H (1995) Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir 11:3035–3041CrossRef Mestl G, Verbruggen NFD, Knözinger H (1995) Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir 11:3035–3041CrossRef
34.
Zurück zum Zitat Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II-IV semiconductor nanocrystals. Phys Rev B 69:125304–125310CrossRef Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II-IV semiconductor nanocrystals. Phys Rev B 69:125304–125310CrossRef
35.
Zurück zum Zitat Navas I, Vinodkumar R, Mahadevan Pillali VP (2011) Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Appl Phys A 103:373–380CrossRef Navas I, Vinodkumar R, Mahadevan Pillali VP (2011) Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Appl Phys A 103:373–380CrossRef
36.
Zurück zum Zitat Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Source 195:7904–7929CrossRef Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Source 195:7904–7929CrossRef
37.
Zurück zum Zitat Rao MC (2010) Optical absorption studies of LiCoO2 thin films grown by pulsed laser depositions. Int J Pure Apll Phys 6:365–370 Rao MC (2010) Optical absorption studies of LiCoO2 thin films grown by pulsed laser depositions. Int J Pure Apll Phys 6:365–370
38.
Zurück zum Zitat Takada K, Aotani N, Iwamoto K, Kondo S (1996) Solid state lithium battery with oxysulfide glass. Solid State Ionics 86–88:877–882CrossRef Takada K, Aotani N, Iwamoto K, Kondo S (1996) Solid state lithium battery with oxysulfide glass. Solid State Ionics 86–88:877–882CrossRef
39.
Zurück zum Zitat Doi T, Iriyama Y, Abe T, Ogumi Z (2005) Pulse voltammetric and ac impedance spectroscopic studies on lithium ion transfer at an electrolyte/Li4/3Ti5/4O4 electrode interface. Anal Chem 77:1696–1700CrossRef Doi T, Iriyama Y, Abe T, Ogumi Z (2005) Pulse voltammetric and ac impedance spectroscopic studies on lithium ion transfer at an electrolyte/Li4/3Ti5/4O4 electrode interface. Anal Chem 77:1696–1700CrossRef
40.
Zurück zum Zitat Kanno R, Murayama M (2001) Lithium ionic conductor thio-LISICON. J Electrochem Soc 148:A742–A746CrossRef Kanno R, Murayama M (2001) Lithium ionic conductor thio-LISICON. J Electrochem Soc 148:A742–A746CrossRef
41.
Zurück zum Zitat Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses. Electrochem Commun 5:111–114CrossRef Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses. Electrochem Commun 5:111–114CrossRef
42.
Zurück zum Zitat Muramatsu H, Hayashi A, Ohmoto T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182:116–119CrossRef Muramatsu H, Hayashi A, Ohmoto T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182:116–119CrossRef
43.
Zurück zum Zitat Ooura Y, Machida N, Uehara T, Kinoshita S, Naito M, Shigematsu T, Kondo S (2014) A new lithium-ion conducting glass ceramics in the composition of 75Li2S·5P5S3·20P2S5 (mol%). Solid State Ionics 262:733–737CrossRef Ooura Y, Machida N, Uehara T, Kinoshita S, Naito M, Shigematsu T, Kondo S (2014) A new lithium-ion conducting glass ceramics in the composition of 75Li2S·5P5S3·20P2S5 (mol%). Solid State Ionics 262:733–737CrossRef
44.
Zurück zum Zitat Hakari T, Nagao M, Hayashi A, Tatsumisago M (2014) Preparation of composite electrode with Li2S-P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics 262:147–150CrossRef Hakari T, Nagao M, Hayashi A, Tatsumisago M (2014) Preparation of composite electrode with Li2S-P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics 262:147–150CrossRef
45.
Zurück zum Zitat Kim J, Yoon Y, Eom M, Shin D (2012) Characterization of amorphous and crystalline Li2S-P2S5-P2Se5 solid electrolytes for all-solid-state lithium ion batteries. Solid State Ionics 225:626–630CrossRef Kim J, Yoon Y, Eom M, Shin D (2012) Characterization of amorphous and crystalline Li2S-P2S5-P2Se5 solid electrolytes for all-solid-state lithium ion batteries. Solid State Ionics 225:626–630CrossRef
46.
Zurück zum Zitat Nagao M, Hayashi A, Tatsumisago M (2013) Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol 1:186–192CrossRef Nagao M, Hayashi A, Tatsumisago M (2013) Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol 1:186–192CrossRef
47.
Zurück zum Zitat Kostecki R, Lei J, McLarnon F, Shim J, Striebel K (2006) Diagnostic evaluation of detrimental phenomena in high-power lithium - ion batteries. J Electrochem Soc 153:A669–A672CrossRef Kostecki R, Lei J, McLarnon F, Shim J, Striebel K (2006) Diagnostic evaluation of detrimental phenomena in high-power lithium - ion batteries. J Electrochem Soc 153:A669–A672CrossRef
48.
Zurück zum Zitat Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209CrossRef Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209CrossRef
49.
Zurück zum Zitat Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2006) High rate performances of all-solid-state In/LiCoO2 cells with the Li2S-P2S5 glass-ceramics electrolyte. Solid State Ionics 177:2731–2735CrossRef Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2006) High rate performances of all-solid-state In/LiCoO2 cells with the Li2S-P2S5 glass-ceramics electrolyte. Solid State Ionics 177:2731–2735CrossRef
50.
Zurück zum Zitat Tatsumisago M, Nagao M, Hayashi A (2013) Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J Asian Ceram Soc 1:17–25CrossRef Tatsumisago M, Nagao M, Hayashi A (2013) Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J Asian Ceram Soc 1:17–25CrossRef
51.
Zurück zum Zitat Nagao M, Hayashi A, Tatsumisago M, Ichinose T, Ozaki T, Togawa Y, Mori S (2015) Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries. J Power Sources 274:471–476CrossRef Nagao M, Hayashi A, Tatsumisago M, Ichinose T, Ozaki T, Togawa Y, Mori S (2015) Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries. J Power Sources 274:471–476CrossRef
Metadaten
Titel
Soft mechanochemical synthesis and electrochemical behavior of LiVMoO6 for all-solid-state lithium batteries
verfasst von
M. Milanova
R. Iordanova
M. Tatsumisago
A. Hayashi
P. Tzvetkov
D. Nihtianova
P. Markov
Y. Dimitriev
Publikationsdatum
28.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9677-6

Weitere Artikel der Ausgabe 7/2016

Journal of Materials Science 7/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.