Skip to main content
Erschienen in: Optical and Quantum Electronics 11/2017

01.11.2017

Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method

verfasst von: Elsayed M. E. Zayed, Abdul-Ghani Al-Nowehy

Erschienen in: Optical and Quantum Electronics | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, the authors of the article (Zahran and khater in Appl Math Model 40:1769–1775, 2016) have applied the modified extended tanh-function method to the nonlinear Bogoyavlenskii equations and found very few special solutions. In our article, we generalize this work by showing that the modified extended tanh-function method is just a special case of the generalized Riccati equation mapping method. Many families of exact solutions of the nonlinear Bogoyavlenskii equations have been found using the generalized Riccati equation mapping method. Bright–dark–singular soliton solutions and other solutions are obtained. Comparing our results with the well-known results are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdou, M.A.: The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190, 988–996 (2007)MATHMathSciNet Abdou, M.A.: The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190, 988–996 (2007)MATHMathSciNet
Zurück zum Zitat Biswas, A.: 1-Soliton solution of Benjamin–Bona–Mahoney equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2744–2746 (2010)ADSCrossRefMATHMathSciNet Biswas, A.: 1-Soliton solution of Benjamin–Bona–Mahoney equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2744–2746 (2010)ADSCrossRefMATHMathSciNet
Zurück zum Zitat Bogoyavlenskii, O.I.: Breaking solitons in 2+1-dimensional integrable equations. Russ. Math. Surv. 45, 1–86 (1990)CrossRef Bogoyavlenskii, O.I.: Breaking solitons in 2+1-dimensional integrable equations. Russ. Math. Surv. 45, 1–86 (1990)CrossRef
Zurück zum Zitat Clarkson, P.A., Gordoa, P.R., Pickering, A.: Multi-component equations associated to non-isospectral scattering problems. Inverse Prob. 13, 1463–1476 (1997)ADSCrossRefMATH Clarkson, P.A., Gordoa, P.R., Pickering, A.: Multi-component equations associated to non-isospectral scattering problems. Inverse Prob. 13, 1463–1476 (1997)ADSCrossRefMATH
Zurück zum Zitat El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani: Integral methods to solve the variable coefficient NLSE. Z. Naturforsch. 68a, 255–260 (2013)CrossRef El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani: Integral methods to solve the variable coefficient NLSE. Z. Naturforsch. 68a, 255–260 (2013)CrossRef
Zurück zum Zitat Estévez, P.G., Prada, J.: A generalization of the sine-Gordon equation to (2+1)-dimensions. J. Nonlinear Math. Phys. 11, 164–179 (2004)ADSCrossRefMATHMathSciNet Estévez, P.G., Prada, J.: A generalization of the sine-Gordon equation to (2+1)-dimensions. J. Nonlinear Math. Phys. 11, 164–179 (2004)ADSCrossRefMATHMathSciNet
Zurück zum Zitat Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)ADSCrossRefMATH Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)ADSCrossRefMATH
Zurück zum Zitat Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)MATHMathSciNet Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)MATHMathSciNet
Zurück zum Zitat Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSCrossRefMATHMathSciNet Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSCrossRefMATHMathSciNet
Zurück zum Zitat Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)ADSCrossRefMATH Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)ADSCrossRefMATH
Zurück zum Zitat Miura, M.: Bäcklund Transformation. Springer, Berlin (1978) Miura, M.: Bäcklund Transformation. Springer, Berlin (1978)
Zurück zum Zitat Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani A.A.H.: New exact solutions for the variable coefficient two-dimensional Burger equation without restrictions on the variable coefficient. Nonlinear Sci. Lett. A 4, 1–7 (2013) Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani A.A.H.: New exact solutions for the variable coefficient two-dimensional Burger equation without restrictions on the variable coefficient. Nonlinear Sci. Lett. A 4, 1–7 (2013)
Zurück zum Zitat Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani A.A.H.: Exact solutions for Calogero–Bogoyavlenskii–Schiff equation using symmetry method. Appl. Math. Comput. 220, 455–462 (2013)MATHMathSciNet Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani A.A.H.: Exact solutions for Calogero–Bogoyavlenskii–Schiff equation using symmetry method. Appl. Math. Comput. 220, 455–462 (2013)MATHMathSciNet
Zurück zum Zitat Moussa, M.H.M., El-Shiekh, R.M.: Similarity reduction and similarity solutions of Zabolotskay–Khoklov equation with dissipative term via symmetry method. Phys. A 371, 325–335 (2006)CrossRef Moussa, M.H.M., El-Shiekh, R.M.: Similarity reduction and similarity solutions of Zabolotskay–Khoklov equation with dissipative term via symmetry method. Phys. A 371, 325–335 (2006)CrossRef
Zurück zum Zitat Najafi, M., Arbabi, S., Najafi, M.: New exact solutions of (2+1)-dimensional Bogoyavlenskii equation by the sine–cosine method. Int. J. Basic Appl. Sci. 1, 490–497 (2012) Najafi, M., Arbabi, S., Najafi, M.: New exact solutions of (2+1)-dimensional Bogoyavlenskii equation by the sine–cosine method. Int. J. Basic Appl. Sci. 1, 490–497 (2012)
Zurück zum Zitat Parkes, E., Duffy, B.: An automated tanh-function method for finding solitary wave solution to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)ADSCrossRefMATH Parkes, E., Duffy, B.: An automated tanh-function method for finding solitary wave solution to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)ADSCrossRefMATH
Zurück zum Zitat Peng, Y.Z., Shen, M.: On exact solutions of Bogoyavlenskii equation. Pramana J. Phys. 67, 449–456 (2006)ADSCrossRef Peng, Y.Z., Shen, M.: On exact solutions of Bogoyavlenskii equation. Pramana J. Phys. 67, 449–456 (2006)ADSCrossRef
Zurück zum Zitat Sarma, A.K., Saha, M., Biswas, A.: Optical solitons with power law nonlinearity and Hamiltonian perturbations: an exact solution. J. Infrared Millim. Terahz Waves 31, 1048–1056 (2010)CrossRef Sarma, A.K., Saha, M., Biswas, A.: Optical solitons with power law nonlinearity and Hamiltonian perturbations: an exact solution. J. Infrared Millim. Terahz Waves 31, 1048–1056 (2010)CrossRef
Zurück zum Zitat Wang, M., Li, X., Zhang, J.: The \(\left( G^{\prime }/G\right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)ADSCrossRefMathSciNet Wang, M., Li, X., Zhang, J.: The \(\left( G^{\prime }/G\right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)ADSCrossRefMathSciNet
Zurück zum Zitat Wazwaz, A.M.: The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada–Kotera–Ito seventh-order equation. Appl. Math. Comput. 199, 133–183 (2008)MATHMathSciNet Wazwaz, A.M.: The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada–Kotera–Ito seventh-order equation. Appl. Math. Comput. 199, 133–183 (2008)MATHMathSciNet
Zurück zum Zitat Yusufoğlu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using sine–cosine method. Chaos Solitons Fractals 37, 1193–1197 (2008)ADSCrossRefMATHMathSciNet Yusufoğlu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using sine–cosine method. Chaos Solitons Fractals 37, 1193–1197 (2008)ADSCrossRefMATHMathSciNet
Zurück zum Zitat Zahran, E.H.M., khater, M.M.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40, 1769–1775 (2016)CrossRefMathSciNet Zahran, E.H.M., khater, M.M.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40, 1769–1775 (2016)CrossRefMathSciNet
Zurück zum Zitat Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl. Math. Comput. 218, 3962–3964 (2011)MATHMathSciNet Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl. Math. Comput. 218, 3962–3964 (2011)MATHMathSciNet
Zurück zum Zitat Zayed, E.M.E.: Abdul-Ghani Al-Nowehy, Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schr ödinger equation. Optik 127, 4970–4983 (2016)ADSCrossRef Zayed, E.M.E.: Abdul-Ghani Al-Nowehy, Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schr ödinger equation. Optik 127, 4970–4983 (2016)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: The multiple exp-function method and the linear superposition principle for solving the (2+1)-Dimensional Calogero–Bogoyavlenskii–Schiff equation. Z. Naturforsch. 70a, 775–779 (2015) Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: The multiple exp-function method and the linear superposition principle for solving the (2+1)-Dimensional Calogero–Bogoyavlenskii–Schiff equation. Z. Naturforsch. 70a, 775–779 (2015)
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: The modified simple equation method, the exp-function method and the method of soliton ansatz for solving the long–short wave resonance equations. Z. Naturforsch. 71a, 103–112 (2016) Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: The modified simple equation method, the exp-function method and the method of soliton ansatz for solving the long–short wave resonance equations. Z. Naturforsch. 71a, 103–112 (2016)
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact solutions of the Biswas–Milovic equation, the ZK (m, n, k) equation and the K (m, n) equation using the generalized Kudryashov method. Open Phys. 14, 129–139 (2016)CrossRef Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact solutions of the Biswas–Milovic equation, the ZK (m, n, k) equation and the K (m, n) equation using the generalized Kudryashov method. Open Phys. 14, 129–139 (2016)CrossRef
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact traveling wave solutions for nonlinear PDEs in mathematical physics using the generalized Kudryashov method. Serbian J. Electr. Eng. 13, 203–227 (2016)CrossRef Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact traveling wave solutions for nonlinear PDEs in mathematical physics using the generalized Kudryashov method. Serbian J. Electr. Eng. 13, 203–227 (2016)CrossRef
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Solitons and other solutions for the generalized KdV–mKdV equation with higher-order nonlinear terms. J. Part. Differ. Equ. 29, 218–245 (2016)MATHMathSciNet Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Solitons and other solutions for the generalized KdV–mKdV equation with higher-order nonlinear terms. J. Part. Differ. Equ. 29, 218–245 (2016)MATHMathSciNet
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact solutions for the perturbed nonlinear Schrödinger equation with power law nonlinearity and Hamiltonian perturbed terms. Optik 139, 123–144 (2017)ADSCrossRef Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact solutions for the perturbed nonlinear Schrödinger equation with power law nonlinearity and Hamiltonian perturbed terms. Optik 139, 123–144 (2017)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Amer, Y.A.: The modified simple equation method for solving nonlinear diffusive predator-prey system and Bogoyavlenskii equations. Int. J. Phys. Sci. 10, 133–141 (2015)CrossRef Zayed, E.M.E., Amer, Y.A.: The modified simple equation method for solving nonlinear diffusive predator-prey system and Bogoyavlenskii equations. Int. J. Phys. Sci. 10, 133–141 (2015)CrossRef
Zurück zum Zitat Zayed, E.M.E., Arnous, A.H.: DNA dynamics studied using the homogeneous balance method. Chin. Phys. Lett. 29, 080203–080205 (2012)CrossRef Zayed, E.M.E., Arnous, A.H.: DNA dynamics studied using the homogeneous balance method. Chin. Phys. Lett. 29, 080203–080205 (2012)CrossRef
Zurück zum Zitat Zayed, E.M.E., Arnous, A.H.: Many exact solutions for nonlinear dynamics of DNA model using the generalized Riccati equation mapping method. Sci. Res. Essay 8, 340–346 (2013) Zayed, E.M.E., Arnous, A.H.: Many exact solutions for nonlinear dynamics of DNA model using the generalized Riccati equation mapping method. Sci. Res. Essay 8, 340–346 (2013)
Zurück zum Zitat Zayed, E.M.E., Gepreel, K.A.: The \(\left( G^{\prime }/G\right)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502–013513 (2009)ADSCrossRefMathSciNet Zayed, E.M.E., Gepreel, K.A.: The \(\left( G^{\prime }/G\right)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502–013513 (2009)ADSCrossRefMathSciNet
Zurück zum Zitat Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The improved Riccati equation mapping method for constructing many families of exact solutions for a nonlinear partial differential equation of nanobiosciences. Int. J. Phys. Sci. 8, 1246–1255 (2013) Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The improved Riccati equation mapping method for constructing many families of exact solutions for a nonlinear partial differential equation of nanobiosciences. Int. J. Phys. Sci. 8, 1246–1255 (2013)
Zurück zum Zitat Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The Jacobi elliptic function expansion method and its applications for solving the higher order dispersive nonlinear Schrödinger equation. Sci. J. Math. Res. 4, 53–72 (2014) Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The Jacobi elliptic function expansion method and its applications for solving the higher order dispersive nonlinear Schrödinger equation. Sci. J. Math. Res. 4, 53–72 (2014)
Zurück zum Zitat Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The improved generalized Riccati equation mapping method and its application for solving a nonlinear partial differential equation (PDE) describing the dynamics of ionic currents along microtubules. Sci. Res. Essay 9, 238–248 (2014)CrossRef Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The improved generalized Riccati equation mapping method and its application for solving a nonlinear partial differential equation (PDE) describing the dynamics of ionic currents along microtubules. Sci. Res. Essay 9, 238–248 (2014)CrossRef
Zurück zum Zitat Zayed, E.M.E., Moatimid, G.M., Al-Nowehy, A.G.: The generalized Kudryashov method and its applications for solving nonlinear PDEs in mathematical physics. Sci. J. Math. Res. 5, 19–39 (2015) Zayed, E.M.E., Moatimid, G.M., Al-Nowehy, A.G.: The generalized Kudryashov method and its applications for solving nonlinear PDEs in mathematical physics. Sci. J. Math. Res. 5, 19–39 (2015)
Zurück zum Zitat Zhang, J.L., Wang, M.L., Li, X.Z.: The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrödinger equation. Phys. Lett. A 357, 188–195 (2006)ADSCrossRefMATH Zhang, J.L., Wang, M.L., Li, X.Z.: The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrödinger equation. Phys. Lett. A 357, 188–195 (2006)ADSCrossRefMATH
Zurück zum Zitat Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Romanian Acad. Ser. A 16, 152–159 (2015)MathSciNet Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Romanian Acad. Ser. A 16, 152–159 (2015)MathSciNet
Zurück zum Zitat Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)ADSCrossRefMATHMathSciNet Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)ADSCrossRefMATHMathSciNet
Metadaten
Titel
Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method
verfasst von
Elsayed M. E. Zayed
Abdul-Ghani Al-Nowehy
Publikationsdatum
01.11.2017
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 11/2017
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-017-1195-0

Weitere Artikel der Ausgabe 11/2017

Optical and Quantum Electronics 11/2017 Zur Ausgabe

Neuer Inhalt