Skip to main content

2019 | OriginalPaper | Buchkapitel

Solutions of Traveling Wave Type for Korteweg-de Vries-Type System with Polynomial Potential

verfasst von : Levon A. Beklaryan, Armen L. Beklaryan, Alexander Yu. Gornov

Erschienen in: Optimization and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the implementation of numerical methods for searching for traveling waves for Korteweg-de Vries-type equations with time delay. Based upon the group approach, the existence of traveling wave solution and its boundedness are shown for some values of parameters. Meanwhile, solutions constructed with the help of the proposed constructive method essentially extend the class of systems, possessing solutions of this type, guaranteed by theory. The proposed method for finding solutions is based on solving a multiparameter extremal problem. Several numerical solutions are demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Beklaryan, L.: A method for the regularization of boundary value problems for differential equations with deviating argument. Soviet Math. Dokl. 43, 567–571 (1991)MathSciNetMATH Beklaryan, L.: A method for the regularization of boundary value problems for differential equations with deviating argument. Soviet Math. Dokl. 43, 567–571 (1991)MathSciNetMATH
4.
Zurück zum Zitat Beklaryan, L.: Introduction to the Theory of Functional Differential Equations. Group Approach. Factorial Press, Moscow (2007) Beklaryan, L.: Introduction to the Theory of Functional Differential Equations. Group Approach. Factorial Press, Moscow (2007)
6.
Zurück zum Zitat Beklaryan, L.: Quasi-travelling waves as natural extension of class of traveling waves. Tambov Univ. Reports. Ser. Nat. Tech. Sci. 19(2), 331–340 (2014) Beklaryan, L.: Quasi-travelling waves as natural extension of class of traveling waves. Tambov Univ. Reports. Ser. Nat. Tech. Sci. 19(2), 331–340 (2014)
7.
Zurück zum Zitat Beklaryan, L., Beklaryan, A.: Traveling waves and functional differential equations of pointwise type. what is common? In: Proceedings of the VIII International Conference on Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, October 2–7. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1987/paper13.pdf Beklaryan, L., Beklaryan, A.: Traveling waves and functional differential equations of pointwise type. what is common? In: Proceedings of the VIII International Conference on Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, October 2–7. CEUR-WS.org (2017). http://​ceur-ws.​org/​Vol-1987/​paper13.​pdf
8.
Zurück zum Zitat Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, USA (2003)CrossRef Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, USA (2003)CrossRef
9.
Zurück zum Zitat Bellman, R., Cooke, K.: Differential-Difference Equations. Academic Press, New York (1963)MATH Bellman, R., Cooke, K.: Differential-Difference Equations. Academic Press, New York (1963)MATH
10.
Zurück zum Zitat El’sgol’ts, L., Norkin, S.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Academic Press, New York (1973)MATH El’sgol’ts, L., Norkin, S.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Academic Press, New York (1973)MATH
12.
Zurück zum Zitat Frenkel, Y., Contorova, T.: On the theory of plastic deformation and twinning. J. Exp. Theor. Phys. 8(1), 89–95 (1938) Frenkel, Y., Contorova, T.: On the theory of plastic deformation and twinning. J. Exp. Theor. Phys. 8(1), 89–95 (1938)
15.
Zurück zum Zitat Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)CrossRef Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)CrossRef
17.
Zurück zum Zitat Kortweg, D., De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5(39), 422–443 (1895)MathSciNetCrossRef Kortweg, D., De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5(39), 422–443 (1895)MathSciNetCrossRef
22.
Zurück zum Zitat Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)MATH Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)MATH
23.
Zurück zum Zitat Myshkis, A.: Linear Differential Equations with Retarded Arguments. Nauka, Moscow (1972) Myshkis, A.: Linear Differential Equations with Retarded Arguments. Nauka, Moscow (1972)
29.
Zurück zum Zitat Zarodnyuk, T., Anikin, A., Finkelshtein, E., Beklaryan, A., Belousov, F.: The technology for solving the boundary value problems for nonlinear systems of functional differential equations of pointwise type. Mod. Technol. Syst. Anal. Model. 49(1), 19–26 (2016) Zarodnyuk, T., Anikin, A., Finkelshtein, E., Beklaryan, A., Belousov, F.: The technology for solving the boundary value problems for nonlinear systems of functional differential equations of pointwise type. Mod. Technol. Syst. Anal. Model. 49(1), 19–26 (2016)
30.
Zurück zum Zitat Zarodnyuk, T., Gornov, A., Anikin, A., Finkelstein, E.: Computational technique for investigating boundary value problems for functional-differential equations of pointwise type. In: Proceedings of the VIII International Conference on Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, October 2–7. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1987/paper82.pdf Zarodnyuk, T., Gornov, A., Anikin, A., Finkelstein, E.: Computational technique for investigating boundary value problems for functional-differential equations of pointwise type. In: Proceedings of the VIII International Conference on Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, October 2–7. CEUR-WS.org (2017). http://​ceur-ws.​org/​Vol-1987/​paper82.​pdf
Metadaten
Titel
Solutions of Traveling Wave Type for Korteweg-de Vries-Type System with Polynomial Potential
verfasst von
Levon A. Beklaryan
Armen L. Beklaryan
Alexander Yu. Gornov
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-10934-9_21