Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials

verfasst von: Won Joo Kim, Dae San Kim, Han Young Kim, Taekyun Kim

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In this paper, we investigate some properties and identities for degenerate Euler polynomials in connection with degenerate Bernstein polynomials by means of fermionic p-adic integrals on \(\mathbb{Z}_{p}\) and generating functions. In addition, we study two variable degenerate Bernstein polynomials and the degenerate Bernstein operators.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let p be a fixed odd prime number. Throughout this paper, \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\) and \(\mathbb{C}_{p}\), will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \(\mathbb{Q}_{p}\), respectively. Let \(\nu _{p}\) be the normalized exponential valuation of \(\mathbb{C}_{p}\) with \(|p |_{p}=p^{-\nu _{p} (p)}=\frac{1}{p}\). For \(\lambda \in \mathbb{C}_{p}\) with \(|\lambda |_{p} < p^{-\frac{1}{p-1}}\), the degenerate Euler polynomials are defined by the generating function
$$ \begin{aligned} \frac{2}{(1+\lambda t)^{\frac{1}{\lambda }}+1}(1+\lambda t)^{\frac{x}{ \lambda }}=\sum_{n=0}^{\infty }{ \mathcal{E}}_{n,\lambda }(x)\frac{t ^{n}}{n!} \quad (\text{see [1, 2]}). \end{aligned} $$
(1)
When \(x=0\), \({\mathcal{E}}_{n,\lambda }={\mathcal{E}}_{n,\lambda }(0)\) are called the degenerate Euler numbers. The degenerate exponential function is defined by
$$ \begin{aligned} e_{\lambda }^{x}(t)=(1+ \lambda t)^{\frac{x}{\lambda }}=\sum_{n=0}^{ \infty }(x)_{n,\lambda } \frac{t^{n}}{n!} \quad (\text{see [6]}), \end{aligned} $$
(2)
where
$$ \begin{aligned} (x)_{0,\lambda }=1,\qquad (x)_{n,\lambda }=x(x- \lambda ) (x-2\lambda ) \cdots \bigl(x-(n-1)\lambda \bigr),\quad \text{for } n\geq 1. \end{aligned} $$
(3)
From (1), we note that
$$ \begin{aligned} {\mathcal{E}}_{n,\lambda }(x)=\sum _{l=0}^{n}\binom{n}{l}{\mathcal{E}} _{l,\lambda }(x)_{n-l,\lambda }\quad (n\geq 0). \end{aligned} $$
(4)
Recently, Kim–Kim introduced the degenerate Bernstein polynomials given by
$$ \begin{aligned} \frac{(x)_{k,\lambda }}{k!}t^{k} (1+ \lambda t)^{\frac{1-x}{\lambda }}= \sum_{n=k}^{\infty }B_{k,n}(x| \lambda )\frac{t^{n}}{n!} \quad (\text{see [8--10]}). \end{aligned} $$
(5)
Thus, by (5), we get
$$ \begin{aligned} B_{k,n}(x|\lambda )=\textstyle\begin{cases} \binom{n}{k}(x)_{k,\lambda }(1-x)_{n-k,\lambda }, & \text{if } n\geq k, \\ 0, & \text{if }n< k, \end{cases}\displaystyle \end{aligned} $$
(6)
where n, k are nonnegative integers.
Let f be a continuous function on \(\mathbb{Z}_{p}\). Then the degenerate Bernstein operator of order n is given by
$$ \begin{aligned}[b] \mathbb{B}_{n,\lambda }(f|\lambda ) &= \sum_{k=0}^{n}f \biggl(\frac{k}{n} \biggr) \binom{n}{k}(x)_{k,\lambda }(1-x)_{n-k,\lambda } \\ &=\sum_{k=0}^{n}f \biggl(\frac{k}{n} \biggr)B_{k,n}(x|\lambda ) \quad (\text{see [8, 9, 12--15, 17--19]}). \end{aligned} $$
(7)
The fermionic p-adic integral on \(\mathbb{Z}_{p}\) is defined by Kim as
$$ \begin{aligned} \int _{\mathbb{Z}_{p} } f(x)\,d\mu _{-1} (x)= \lim _{N \rightarrow \infty } \sum_{x=0}^{p^{N}-1} f(x) (-1)^{x} \quad (\text{see [3, 9]}). \end{aligned} $$
(8)
By (8), we get
$$ \begin{aligned} \int _{\mathbb{Z}_{p} } f(x+1)\,d\mu _{-1} (x)+ \int _{\mathbb{Z}_{p} } f(x)\,d\mu _{-1} (x)=2f(0) \quad ( \text{see [3, 7, 10, 11, 16]}). \end{aligned} $$
(9)
From (8), we note that
$$ \begin{aligned} \int _{\mathbb{Z}_{p} }(1+\lambda t)^{\frac{x+y}{\lambda }}\,d\mu _{-1}(y)= \frac{2}{(1+ \lambda t)^{\frac{1}{\lambda }}+1}(1+\lambda t)^{\frac{x}{\lambda }}= \sum_{n=0}^{\infty }{ \mathcal{E}}_{n,\lambda }(x)\frac{t^{n}}{n!}. \end{aligned} $$
(10)
On the other hand,
$$ \begin{aligned} \int _{\mathbb{Z}_{p} }(1+\lambda t)^{\frac{x+y}{\lambda }}\,d\mu _{-1}(y)= \sum_{n=0}^{\infty } \int _{\mathbb{Z}_{p} }(x+y)_{n,\lambda }\,d\mu _{-1}(y) \frac{t ^{n}}{n!}. \end{aligned} $$
(11)
By (10) and (11), we get
$$ \begin{aligned} \int _{\mathbb{Z}_{p} }(x+y)_{n,\lambda }\,d\mu _{-1}(y)={ \mathcal{E}}_{n, \lambda }(x) \quad (n\geq 0) \quad (\text{see [8, 9]}). \end{aligned} $$
(12)
The study of degenerate versions of some special polynomials and numbers began with the work of Carlitz on the degenerate Bernoulli and Euler polynomials and numbers in [1, 2]. As a continuation of this initiative of Carlitz, Kim and his colleagues have been introducing various degenerate special polynomials and numbers and investigating their properties, some identities related to them and their applications. This research has been carried out by means of generating functions, combinatorial methods, umbral calculus, p-adic analysis and differential equations (see [8, 9] and the references therein). Here, along the same line and by virtue of fermionic p-adic integrals on \(\mathbb{Z}_{p}\) and generating functions, we investigate some properties and identities for degenerate Euler polynomials related to degenerate Bernstein polynomials. In addition, we study two variable degenerate Bernstein polynomials and the degenerate Bernstein operators.

2 Degenerate Euler and Bernstein polynomials

From (1), we note that
$$ \begin{aligned}[b] 2 &=\sum _{n=0}^{\infty } \Biggl(\sum_{m=0}^{n} \binom{n}{m}{\mathcal{E}} _{m,\lambda }(1)_{n-m,\lambda }+{ \mathcal{E}}_{n,\lambda } \Biggr)\frac{t ^{n}}{n!} \\ &=\sum_{n=0}^{\infty } \bigl({ \mathcal{E}}_{n,\lambda }(1)+{\mathcal{E}} _{n,\lambda } \bigr) \frac{t^{n}}{n!}. \end{aligned} $$
(13)
Comparing the coefficients on both sides of (13), we have
$$ \begin{aligned} {\mathcal{E}}_{n,\lambda }(1)+{ \mathcal{E}}_{n,\lambda }=2\delta _{0,n}\quad (n,k\geq 0), \end{aligned} $$
(14)
where \(\delta _{n,k}\) is the Kronecker symbol.
By (1), we easily get
$$ \begin{aligned} {\mathcal{E}}_{n,\lambda }(1-x)=(-1)^{n} {\mathcal{E}}_{n,-\lambda }(x) \quad (n\geq 0). \end{aligned} $$
(15)
From (1), (4) and (14), we note that
$$ \begin{aligned}[b] {\mathcal{E}}_{n,\lambda }(2) &= \sum_{l=0}^{n}\binom{n}{l}{\mathcal{E}} _{l,\lambda }(1) (1)_{n-l,\lambda } \\ &=(1)_{n,\lambda }+\sum_{l=1}^{n} \binom{n}{l}{\mathcal{E}}_{l,\lambda }(1) (1)_{n-l,\lambda } \\ &=2(1)_{n,\lambda }-\sum_{l=0}^{n} \binom{n}{l}(1)_{n-l,\lambda } {\mathcal{E}}_{l,\lambda } \\ &=2(1)_{n,\lambda }+{\mathcal{E}}_{n,\lambda }, \end{aligned} $$
(16)
where n is a positive integer.
Therefore, by (16), we obtain the following theorem.
Theorem 2.1
For \(n\in \mathbb{N}\), we have
$$ \begin{aligned} {\mathcal{E}}_{n,\lambda }(2)=2(1)_{n,\lambda }+{ \mathcal{E}}_{n, \lambda }. \end{aligned} $$
Note that
$$ \begin{aligned} (1-x)_{n,\lambda }=(-1)^{n} (x-1)_{n,-\lambda } \quad (n \geq 0). \end{aligned} $$
(17)
Therefore, by (12), (15) and (17), we easily get
$$ \begin{aligned}[b] \int _{\mathbb{Z}_{p} }(1-x)_{n,\lambda }\,d\mu _{-1}(x) &=(-1)^{n} \int _{\mathbb{Z}_{p} }(x-1)_{n,-\lambda }\,d\mu _{-1}(x) \\ &= \int _{\mathbb{Z}_{p} }(x+2)_{n,\lambda }\,d\mu _{-1}(x). \end{aligned} $$
(18)
Therefore, by (18) and Theorem 2.1, we obtain the following theorem.
Theorem 2.2
For \(n\in \mathbb{N}\), we have
$$ \begin{aligned} \int _{\mathbb{Z}_{p} }(1-x)_{n,\lambda }\,d\mu _{-1}(x)= \int _{\mathbb{Z}_{p} }(x+2)_{n, \lambda }\,d\mu _{-1}(x)=2(1)_{n,\lambda }+ \int _{\mathbb{Z}_{p} }(x)_{n, \lambda }\,d\mu _{-1}(x). \end{aligned} $$
Corollary 2.3
For \(n\in \mathbb{N}\), we have
$$ \begin{aligned} (-1)^{n} { \mathcal{E}}_{n,-\lambda }(-1)=2(1)_{n,\lambda }+{\mathcal{E}} _{n,\lambda }={\mathcal{E}}_{n,\lambda }(2). \end{aligned} $$
By (4), we get
$$ \begin{aligned} {\mathcal{E}}_{n,\lambda }(1-x) &=\sum _{l=0}^{n}\binom{n}{l}(1-x)_{n-l, \lambda }{ \mathcal{E}}_{l,\lambda } \\ &=\sum_{l=0}^{n}\binom{n}{l}(x)_{l,\lambda }(1-x)_{n-l,\lambda } \frac{ {\mathcal{E}}_{l,\lambda }}{(x)_{l,\lambda }} \\ &=\sum_{l=0}^{n}B_{l,n}(x|\lambda ){\mathcal{E}}_{l,\lambda }\frac{1}{(x)_{l, \lambda }}. \end{aligned} $$
(19)
Let
$$ \begin{aligned} \frac{1}{(x)_{l,\lambda }}=\frac{1}{x(x-\lambda )(x-2\lambda )\cdots (x-(l-1)\lambda )}= \sum_{k=0}^{l-1}\frac{A_{k}}{x-k\lambda }\quad (l \in \mathbb{N}). \end{aligned} $$
(20)
Then we have
$$ \begin{aligned} A_{k}=\lambda ^{1-l} \prod^{l-1}_{\substack{i=0,\\i\neq k}} \biggl(\frac{1}{k-i} \biggr)= \lambda ^{1-l}\frac{(-1)^{k-l-1}}{k!(l-1-k)!}= \frac{\lambda ^{1-l}}{(l-1)!} \binom{l-1}{k}(-1)^{k-l-1}. \end{aligned} $$
(21)
By (20) and (21), we get
$$ \begin{aligned} A_{k}=\frac{(-\lambda )^{1-l}}{(l-1)!} \binom{l-1}{k}(-1)^{k}. \end{aligned} $$
(22)
From (20) and (22), we have
$$ \begin{aligned} \frac{1}{(x)_{l,\lambda }}=\sum _{k=0}^{l-1}\frac{(-1)^{k}}{(l-1)!} \binom{l-1}{k} \frac{(-\lambda )^{1-l}}{x-k\lambda }\quad (l\in \mathbb{N}). \end{aligned} $$
(23)
By (19) and (20), we get
$$ \begin{aligned} [b] {\mathcal{E}}_{n,\lambda }(1-x) &=\sum _{l=0}^{n}B_{l,n}(x|\lambda ) { \mathcal{E}}_{l,\lambda }\frac{1}{(x)_{l,\lambda }} \\ &=(1-x)_{n,\lambda }+\sum_{l=1}^{n}B_{l,n}(x| \lambda ){\mathcal{E}} _{l,\lambda }\frac{1}{(x)_{l,\lambda }} \\ &=(1-x)_{n,\lambda }+\sum_{l=1}^{n}B_{l,n}(x| \lambda ){\mathcal{E}} _{l,\lambda }\frac{(-\lambda )^{1-l}}{(l-1)!}\sum _{k=0}^{l-1}(-1)^{k} \binom{l-1}{k} \frac{1}{x-k\lambda }. \end{aligned} $$
(24)
Therefore, by (24), we obtain the following theorem.
Theorem 2.4
For \(n\geq 0\), we have
$$ \begin{aligned} {\mathcal{E}}_{n,\lambda }(1-x)=(1-x)_{n,\lambda }+ \sum_{l=1}^{n}B _{l,n}(x|\lambda ){ \mathcal{E}}_{l,\lambda } \frac{(-\lambda )^{1-l}}{(l-1)!}\sum_{k=0}^{l-1}(-1)^{k} \binom{l-1}{k}\frac{1}{x-k\lambda }. \end{aligned} $$
Corollary 2.5
For \(n\geq 0\), we have
$$ \begin{aligned} {\mathcal{E}}_{n,\lambda }(2)=(2)_{n,\lambda }- \sum_{l=1}^{n}B_{l,n}(-1| \lambda ){\mathcal{E}}_{l,\lambda }\frac{(-\lambda )^{1-l}}{(l-1)!} \sum _{k=0}^{l-1}(-1)^{k}\binom{l-1}{k} \frac{1}{1+k\lambda }. \end{aligned} $$
For \(k\in \mathbb{N}\), the higher order degenerate Euler polynomials are given by the generating function
$$ \begin{aligned} \biggl(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda }}+1} \biggr)^{k}(1+ \lambda t)^{\frac{x}{\lambda }}=\sum _{n=0}^{\infty }{\mathcal{E}}_{n, \lambda }^{(k)}(x) \frac{t^{n}}{n!} \quad (\text{see [4, 5]}). \end{aligned} $$
(25)
From (5) and (25), we note that
$$ \begin{aligned}[b] \sum_{n=0}^{\infty } \frac{1}{\binom{n+k}{n}}B_{k,n+k}(x|\lambda )\frac{t ^{n}}{n!} &=(x)_{k,\lambda }(1+\lambda t)^{\frac{1-x}{\lambda }} \\ &=\frac{(x)_{k,\lambda }}{2^{k}}\sum_{l=0}^{k} \binom{k}{l} \biggl(\frac{2}{(1+ \lambda t)^{\frac{1}{\lambda }}+1} \biggr)^{k}(1+\lambda t)^{\frac{1-x+l}{ \lambda }} \\ &=\frac{(x)_{k,\lambda }}{2^{k}}\sum_{n=0}^{\infty } \Biggl( \sum_{l=0} ^{k}\binom{k}{l}{ \mathcal{E}}_{n,\lambda }^{(k)}(1-x+l) \Biggr)\frac{t ^{n}}{n!}. \end{aligned} $$
(26)
Therefore, by comparing the coefficients on both sides of (26), we obtain the following theorem.
Theorem 2.6
For \(n,k\in \mathbb{N}\), we have
$$ \begin{aligned} \frac{2^{k}}{\binom{n+k}{n}}B_{k,n+k}(x| \lambda )=(x)_{k,\lambda } \sum_{l=0}^{k} \binom{k}{l}{\mathcal{E}}_{n,\lambda }^{(k)}(1-x+l). \end{aligned} $$
Let f be a continuous function on \(\mathbb{Z}_{p}\). For \(x_{1},x_{2} \in \mathbb{Z}_{p}\), we consider the degenerate Bernstein operator of order n given by
$$ \begin{aligned} [b] \mathbb{B}_{n,\lambda }(f|x_{1},x_{2}) &=\sum_{k=0}^{n}f \biggl(\frac{k}{n} \biggr) \binom{n}{k}(x_{1})_{k,\lambda }(1-x_{2})_{n-k,\lambda } \\ &=\sum_{k=0}^{n}f \biggl(\frac{k}{n} \biggr)B_{k,n}(x_{1},x_{2}| \lambda ), \end{aligned} $$
(27)
where
$$ \begin{aligned} B_{k,n}(x_{1},x_{2}| \lambda )=\binom{n}{k}(x_{1})_{k,\lambda }(1-x _{2})_{n-k,\lambda }, \end{aligned} $$
(28)
where n, k are nonnegative integers.
Here, \(B_{k,n}(x_{1},x_{2}|\lambda )\) are called two variable degenerate Bernstein polynomials of degree n.
From (28), we note that
$$ \begin{aligned}[b] \sum_{n=k}^{\infty }B_{k,n}(x_{1},x_{2}| \lambda )\frac{t^{n}}{n!} &= \sum_{n=k}^{\infty } \binom{n}{k}(x_{1})_{k,\lambda }(1-x_{2})_{n-k, \lambda } \frac{t^{n}}{n!} \\ &=\sum_{n=k}^{\infty }\frac{(x_{1})_{k,\lambda }(1-x_{2})_{n-k, \lambda }}{k!(n-k)!}t^{n} \\ &=\frac{(x_{1})_{k,\lambda }}{k!}t^{k}\sum_{n=0}^{\infty } \frac{(1-x _{2})_{n,\lambda }}{n!}t^{n} \\ &=\frac{(x_{1})_{k,\lambda }}{k!}t^{k}(1+\lambda t)^{\frac{1-x_{2}}{ \lambda }} \\ &=\frac{(x_{1})_{k,\lambda }}{k!}t^{k}e_{\lambda }^{1-x_{2}}(t). \end{aligned} $$
(29)
Thus, by (29), we get
$$ \begin{aligned} \frac{(x_{1})_{k,\lambda }}{k!}t^{k}(1+ \lambda t)^{\frac{1-x_{2}}{ \lambda }}=\sum_{n=k}^{\infty }B_{k,n}(x_{1},x_{2} |\lambda )\frac{t ^{n}}{n!}, \end{aligned} $$
(30)
where k is a nonnegative integer. By (28), we easily get
$$ \begin{aligned}[b] B_{k,n}(x_{1},x_{2}| \lambda ) &=\binom{n}{k}\bigl(1-(1-x_{1})\bigr)_{n-(n-k), \lambda }(1-x_{2})_{n-k,\lambda } \\ &=B_{n-k,n}(1-x_{2},1-x_{1} |\lambda ). \end{aligned} $$
(31)
Now, we observe that
$$ \begin{aligned}[b] &\bigl(1-x_{2}-(n-k-1)\lambda \bigr)B_{k,n-1}(x_{1},x_{2}|\lambda )+ \bigl(x_{1}-(k-1) \lambda \bigr)B_{k-1,n-1 }(x_{1},x_{2} |\lambda ) \\ &\quad =\bigl(1-x_{2}-(n-k-1)\lambda \bigr)\binom{n-1}{k}(x_{1})_{k,\lambda }(1-x _{2})_{n-1-k,\lambda } \\ &\qquad {}+\bigl(x_{1}-(k-1)\lambda \bigr)\binom{n-1}{k-1}(x_{1})_{k-1,\lambda }(1-x_{2})_{n-k, \lambda } \\ &\quad =\binom{n}{k}(x_{1})_{k,\lambda }(1-x_{2})_{n-k,\lambda } =B_{k,n}(x _{1},x_{2}|\lambda ) \quad (n,k\in \mathbb{N}). \end{aligned} $$
(32)
Therefore, by (32), we obtain the following theorem.
Theorem 2.7
For \(n,k\in \mathbb{N}\), we have
$$ \begin{aligned} &\bigl(1-x_{2}-(n-k-1)\lambda \bigr)B_{k,n-1}(x_{1},x_{2}|\lambda )+ \bigl(x_{1}-(k-1) \lambda \bigr)B_{k-1,n-1 }(x_{1},x_{2} |\lambda ) \\ &\quad =B_{k,n}(x_{1},x_{2}|\lambda ). \end{aligned} $$
If \(f=1\), then we have, from (27),
$$ \begin{aligned}[b] \mathbb{B}_{n,\lambda }(1|x_{1},x_{2}) &=\sum_{k=0}^{n}B_{k,n}(x_{1},x _{2}|\lambda ) =\sum_{k=0}^{n} \binom{n}{k}(x_{1})_{k,\lambda }(1-x _{2})_{n-k,\lambda } \\ &=(1+x_{1}-x_{2})_{n,\lambda }. \end{aligned} $$
(33)
If \(f(t)=t\), then we also get from (27) that, for \(n\in \mathbb{N}\) and \(x_{1},x_{2}\in \mathbb{Z}_{p}\),
$$ \begin{aligned}[b] \mathbb{B}_{n,\lambda }(t|x_{1},x_{2}) &=\sum_{k=0}^{n}\frac{k}{n} \binom{n}{k}(x_{1})_{k,\lambda }(1-x_{2})_{n-k,\lambda } \\ &=(x_{1})_{1,\lambda }(x_{1}+1-\lambda -x_{2})_{n-1,\lambda }. \end{aligned} $$
(34)
Hence,
$$ \begin{aligned} (x_{1})_{1,\lambda }= \frac{1}{(x_{1}+1-\lambda -x_{2})_{n-1,\lambda }}\mathbb{B}_{n,\lambda }(t|x _{1},x_{2}). \end{aligned} $$
(35)
By the same method, we get
$$ \begin{aligned}[b] &\mathbb{B}_{n,\lambda } \bigl(t^{2}|x_{1},x_{2}\bigr) \\ &\quad =\frac{1}{n}(x_{1})_{1,\lambda }(1+x_{1}-\lambda -x_{2})_{n-1, \lambda }+\frac{n-1}{n}(x_{1})_{2,\lambda }(1+x_{1}-2 \lambda -x_{2})_{n-2, \lambda }. \end{aligned} $$
(36)
Note that
$$ \begin{aligned} \lim_{n\rightarrow \infty } \Bigl(\lim _{\lambda \rightarrow 0}\mathbb{B} _{n,\lambda }\bigl(t^{2}|x,x\bigr) \Bigr) = \lim_{n\rightarrow \infty } \biggl(\frac{x}{n}+ \frac{n-1}{n}x^{2} \biggr)=x^{2}. \end{aligned} $$
Now, we observe that
$$ \begin{aligned}[b] \sum_{k=1}^{n} \frac{\binom{k}{1}}{\binom{n}{1}}B_{k,n}(x_{1},x_{2}| \lambda ) &= \sum_{k=1}^{n}\binom{n-1}{k-1}(x_{1})_{k,\lambda }(1-x_{2})_{n-k, \lambda } \\ &=\sum_{k=0}^{n-1}\binom{n-1}{k}(x_{1})_{k+1,\lambda }(1-x_{2})_{n-1-k, \lambda } \\ &=(x_{1})_{1,\lambda }(x_{1}+1-\lambda -x_{2})_{n-1,\lambda }. \end{aligned} $$
(37)
Thus, by (37), we get
$$ \begin{aligned} (x_{1})_{1,\lambda }=\frac{1}{(1+x_{1}-x_{2}-\lambda )}_{n-1,\lambda } \sum_{k=1}^{n}\frac{\binom{k}{1}}{\binom{n}{1}}B_{k,n}(x_{1},x_{2}| \lambda ). \end{aligned} $$
By the same method, we get
$$ \begin{aligned} (x_{1})_{2,\lambda }=\frac{1}{(1+x_{1}-x_{2}-2\lambda )}_{n-2,\lambda } \sum_{k=2}^{n}\frac{\binom{k}{2}}{\binom{n}{2}}B_{k,n}(x_{1},x_{2}| \lambda ). \end{aligned} $$
Continuing this process, we have
$$ \begin{aligned} (x_{1})_{i,\lambda }= \frac{1}{(1+x_{1}-x_{2}-i\lambda )}_{n-i,\lambda }\sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}}B_{k,n}(x_{1},x_{2}| \lambda ) \quad (i\in \mathbb{N}). \end{aligned} $$
(38)
Theorem 2.8
For \(i\in \mathbb{N}\), we have
$$ \begin{aligned} (x)_{i,\lambda }=\frac{1}{(1+x_{1}-x_{2}-i\lambda )}_{n-i,\lambda } \sum_{k=i}^{n}\frac{\binom{k}{i}}{\binom{n}{i}}B_{k,n}(x_{1},x_{2}| \lambda ) \quad (i\in \mathbb{N}). \end{aligned} $$
Taking the double fermionic p-adic integral on \(\mathbb{Z}_{p}\), we get the following equation:
$$ \begin{aligned} & \int _{\mathbb{Z}_{p} } \int _{\mathbb{Z}_{p} } B_{k,n}(x_{1},x_{2}| \lambda )\,d\mu _{-1}(x_{1})\,d\mu _{-1}(x_{2}) \\ &\quad =\binom{n}{k} \int _{\mathbb{Z}_{p} }(x_{1})_{k,\lambda }\,d\mu _{-1}(x_{1}) \int _{\mathbb{Z}_{p} }(1-x_{2})_{n-k,\lambda }\,d\mu _{-1}(x_{2}). \end{aligned} $$
(39)
Therefore, by (39) and Theorem 2.2, we obtain the following theorem.
Theorem 2.9
For \(n,k\geq 0\), we have
$$ \begin{aligned} & \int _{\mathbb{Z}_{p} } \int _{\mathbb{Z}_{p} } B_{k,n}(x_{1},x_{2}| \lambda )\,d\mu _{-1}(x_{1})\,d\mu _{-1}(x_{2}) \\ &\quad =\textstyle\begin{cases} \binom{n}{k}\mathcal{E}_{k,\lambda } (2(1)_{n-k,\lambda }+ \mathcal{E}_{n-k,\lambda } ), & \textit{if }n> k, \\ \mathcal{E}_{n,\lambda }, & \textit{if }n=k. \end{cases}\displaystyle \end{aligned} $$
We see from the symmetric properties of two variable degenerate Bernstein polynomials that, for \(n,k\in \mathbb{N}\) with \(n>k\),
$$ \begin{aligned}[b] & \int _{\mathbb{Z}_{p} } \int _{\mathbb{Z}_{p} }B_{k,n}(x_{1},x_{2}| \lambda )\,d\mu _{-1}(x_{1})\,d\mu _{-1}(x_{2}) \\ &\quad =\sum_{l=0}^{k}\binom{n}{k} \binom{k}{l}(-1)^{k+l}(1)_{l,\lambda } \\ & \qquad {}\times \int _{\mathbb{Z}_{p}} \int _{\mathbb{Z}_{p} }(1-x_{1})_{k-l,-\lambda }(1-x_{2})_{n-k,\lambda }\,d\mu _{-1}(x_{1})\,d\mu _{-1}(x_{2}) \\ &\quad =\binom{n}{k} \int _{\mathbb{Z}_{p} }(1-x_{2})_{n-k,\lambda }\,d\mu _{-1}(x _{2}) \Biggl\{ (1)_{k,\lambda }+\sum _{l=0}^{k-1}\binom{k}{l}(-1)^{k+l}(1)_{l, \lambda } \mathcal{E}_{k-l,-\lambda } (2) \Biggr\} \\ &\quad =\binom{n}{k}\mathcal{E}_{n-k,\lambda }(2) \Biggl\{ (1)_{k,\lambda }+ \sum_{l=0}^{k-1}\binom{k}{l}(-1)^{k+l}(1)_{l,\lambda } \mathcal{E}_{k-l,- \lambda }(2) \Biggr\} . \end{aligned} $$
(40)
Therefore, by Theorem 2.9 and (40), we obtain the following theorem.
Theorem 2.10
For \(k\in \mathbb{N}\), we have
$$ \begin{aligned} \mathcal{E}_{k,\lambda }=(1)_{k,\lambda }+ \sum_{l=0}^{k-1} \binom{k}{l}(-1)^{k+l}(1)_{l,\lambda } \bigl(\mathcal{E}_{k-l,-\lambda }+2(1)_{k-l,-\lambda } \bigr). \end{aligned} $$
Note that
$$ \begin{aligned}[b] &\sum_{l=0}^{k-1} \binom{k}{l}(-1)^{k+l}(1)_{l,\lambda }(1)_{k-l,- \lambda } \\ &\quad =(-1)^{k} \Biggl(\sum_{l=0}^{k} \binom{k}{l}(-1)_{l,-\lambda }(1)_{k-l,- \lambda }-(-1)_{k,-\lambda } \Biggr) \\ &\quad =(-1)^{k} \bigl((0)_{k,-\lambda }-(-1)_{k,-\lambda } \bigr) \\ &\quad =-(1)_{k,\lambda }. \end{aligned} $$
Corollary 2.11
For \(k\in \mathbb{N}\), we have
$$ \begin{aligned} \mathcal{E}_{k,\lambda }=-(1)_{k,\lambda }+ \sum_{l=0}^{k-1} \binom{k}{l}(-1)^{k+l}(1)_{l,\lambda } \mathcal{E}_{k-l,-\lambda }. \end{aligned} $$

3 Conclusions

In [1, 2], Carlitz initiated the study of degenerate versions of some special polynomials and numbers, namely the degenerate Bernoulli and Euler polynomials and numbers. Here we would like to draw the attention of the reader to the fact that Kim et al. have introduced various degenerate polynomials and numbers and investigating their properties, some identities related to them and their applications by means of generating functions, combinatorial methods, umbral calculus, p-adic analysis and differential equations (see [8, 9] and the references therein). It is amusing that this line of study led them even to the introduction of degenerate gamma functions and degenerate Laplace transforms (see [7]). These already demonstrate that studying various degenerate versions of known special numbers and polynomials can be very promising and rewarding. Furthermore, we can hope that many applications will be found not only in mathematics but also in sciences and engineering.
In this paper, we investigated some properties and identities for degenerate Euler polynomials in connection with degenerate Bernstein polynomials and operators which were recently introduced as degenerate versions of the classical Bernstein polynomials and operators. This has been done by means of fermionic p-adic integrals on \(\mathbb{Z}_{p}\) and generating functions. In addition, we studied two variable degenerate Bernstein polynomials and the degenerate Bernstein operators.

Acknowledgements

The fourth author’s work in this paper was conducted during the sabbatical year of Kwangwoon University in 2018.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979) MathSciNetMATH Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979) MathSciNetMATH
3.
Zurück zum Zitat Choi, J.: A note on p-adic integrals associated with Bernstein and q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 21(2), 133–138 (2011) MathSciNetMATH Choi, J.: A note on p-adic integrals associated with Bernstein and q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 21(2), 133–138 (2011) MathSciNetMATH
4.
Zurück zum Zitat Kim, D.S., Kim, T.: Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \(\mathbb{Z}_{p}\). Integral Transforms Spec. Funct. 26, 295–302 (2015) MathSciNetCrossRef Kim, D.S., Kim, T.: Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \(\mathbb{Z}_{p}\). Integral Transforms Spec. Funct. 26, 295–302 (2015) MathSciNetCrossRef
5.
Zurück zum Zitat Kim, D.S., Kim, T.: Higher-order degenerate Euler polynomials. Appl. Math. Sci. 9(2), 57–73 (2015) MathSciNet Kim, D.S., Kim, T.: Higher-order degenerate Euler polynomials. Appl. Math. Sci. 9(2), 57–73 (2015) MathSciNet
6.
Zurück zum Zitat Kim, T., Kim, D.S.: Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \(\mathbb{Z}_{p}\). Russ. J. Math. Phys. 16(1), 93–96 (2009) MathSciNetCrossRef Kim, T., Kim, D.S.: Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \(\mathbb{Z}_{p}\). Russ. J. Math. Phys. 16(1), 93–96 (2009) MathSciNetCrossRef
7.
Zurück zum Zitat Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma functions. Russ. J. Math. Phys. 24(2), 241–248 (2017) MathSciNetCrossRef Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma functions. Russ. J. Math. Phys. 24(2), 241–248 (2017) MathSciNetCrossRef
10.
Zurück zum Zitat Kim, T., Kim, D.S., Jang, G.-W., Kwon, J.: A note on degenerate Bernstein polynomials. J. Inequal. Appl. 2019(2019), 129 (2019) MathSciNetCrossRef Kim, T., Kim, D.S., Jang, G.-W., Kwon, J.: A note on degenerate Bernstein polynomials. J. Inequal. Appl. 2019(2019), 129 (2019) MathSciNetCrossRef
11.
Zurück zum Zitat Kurt, V.: Some relation between the Bernstein polynomials and second kind Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 23(1), 43–48 (2013) MathSciNetMATH Kurt, V.: Some relation between the Bernstein polynomials and second kind Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 23(1), 43–48 (2013) MathSciNetMATH
12.
Zurück zum Zitat Ostrovska, S.: On the q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 11(2), 193–204 (2005) MathSciNetMATH Ostrovska, S.: On the q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 11(2), 193–204 (2005) MathSciNetMATH
13.
Zurück zum Zitat Siddiqui, M.A., Agrawal, R.R., Gupta, N.: On a class of modified new Bernstein operators. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 97–107 (2014) MathSciNetMATH Siddiqui, M.A., Agrawal, R.R., Gupta, N.: On a class of modified new Bernstein operators. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 97–107 (2014) MathSciNetMATH
14.
15.
Zurück zum Zitat Simsek, Y.: A new class of polynomials associated with Bernstein and beta polynomials. Math. Methods Appl. Sci. 37(5), 676–685 (2014) MathSciNetCrossRef Simsek, Y.: A new class of polynomials associated with Bernstein and beta polynomials. Math. Methods Appl. Sci. 37(5), 676–685 (2014) MathSciNetCrossRef
16.
Zurück zum Zitat Simsek, Y.: Analysis of the Bernstein basis functions; an approach to combinatorial sums involving binomial coefficients and Catalan numbers. Math. Methods Appl. Sci. 38(14), 3007–3021 (2015) MathSciNetCrossRef Simsek, Y.: Analysis of the Bernstein basis functions; an approach to combinatorial sums involving binomial coefficients and Catalan numbers. Math. Methods Appl. Sci. 38(14), 3007–3021 (2015) MathSciNetCrossRef
17.
Zurück zum Zitat Simsek, Y.: Combinatorial identities associated with Bernstein type basis functions. Filomat 30(7), 1683–1689 (2016) MathSciNetCrossRef Simsek, Y.: Combinatorial identities associated with Bernstein type basis functions. Filomat 30(7), 1683–1689 (2016) MathSciNetCrossRef
18.
Zurück zum Zitat Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(2), 199–212 (2017) MathSciNetMATH Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(2), 199–212 (2017) MathSciNetMATH
19.
Zurück zum Zitat Simsek, Y.: Combinatorial inequalities and sums involving Bernstein polynomials and basis functions. J. Inequal. Spec. Funct. 8(3), 15–24 (2017) MathSciNet Simsek, Y.: Combinatorial inequalities and sums involving Bernstein polynomials and basis functions. J. Inequal. Spec. Funct. 8(3), 15–24 (2017) MathSciNet
Metadaten
Titel
Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials
verfasst von
Won Joo Kim
Dae San Kim
Han Young Kim
Taekyun Kim
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2110-y

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe