Skip to main content

2012 | OriginalPaper | Buchkapitel

3. Some Questions of Control in Fluid Mechanics

verfasst von : Olivier Glass

Erschienen in: Control of Partial Differential Equations

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of these lecture notes is to present some techniques of non-linear control of PDEs, in the context of fluid mechanics. We will consider the problem of controllability of two different models, namely the Euler equation for perfect incompressible fluids, and the one-dimensional isentropic Euler equation for compressible fluids. The standard techniques used to deal with the Cauchy problem for these two models are of rather different nature, despite the fact that the models are close. As we will see, this difference will also appear when constructing solutions of the controllability problem; however a common technique (or point of view) will be used in both cases. This technique, introduced by J.-M. Coron as the return method, is a way to exploit the nonlinearity of the equation for control purposes. Hence we will see its application in two rather different types of PDEs. The plan of these notes is the following. In a first part, we recall in a very basic way some types of questions that can be raised in PDE control (in a non-exhaustive way). In a second part, we expose results concerning the controllability of the incompressible Euler equation. In a third part, we show how the techniques used to prove the controllability of the incompressible Euler equation can be used to prove some other controllability properties for this equation, namely the so-called Lagrangian controllability. In a fourth and last part, we consider the controllability of the isentropic Euler equation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.A. Agrachev, A.V. Sarychev, Navier–Stokes equations: Controllability by means of low modes forcing. J. Math. Fluid Mech. 7(1), 108–152 (2005)MathSciNetMATHCrossRef A.A. Agrachev, A.V. Sarychev, Navier–Stokes equations: Controllability by means of low modes forcing. J. Math. Fluid Mech. 7(1), 108–152 (2005)MathSciNetMATHCrossRef
2.
Zurück zum Zitat A.A. Agrachev, A.V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing. Comm. Math. Phys. 265(3), 673–697 (2006)MathSciNetMATHCrossRef A.A. Agrachev, A.V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing. Comm. Math. Phys. 265(3), 673–697 (2006)MathSciNetMATHCrossRef
3.
Zurück zum Zitat H.D. Alber, Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190(2), 249–276 (1985)MathSciNetMATHCrossRef H.D. Alber, Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190(2), 249–276 (1985)MathSciNetMATHCrossRef
4.
Zurück zum Zitat D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws. NoDEA Nonlinear Differ. Equat. Appl. 4(1), 1–42 (1997)MathSciNetMATHCrossRef D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws. NoDEA Nonlinear Differ. Equat. Appl. 4(1), 1–42 (1997)MathSciNetMATHCrossRef
5.
Zurück zum Zitat D. Amadori, R.M. Colombo, Continuous dependence for 2 ×2 conservation laws with boundary. J. Differ. Equat. 138(2), 229–266 (1997)MathSciNetMATHCrossRef D. Amadori, R.M. Colombo, Continuous dependence for 2 ×2 conservation laws with boundary. J. Differ. Equat. 138(2), 229–266 (1997)MathSciNetMATHCrossRef
6.
Zurück zum Zitat F. Ancona, G.M. Coclite, On the attainable set for Temple class systems with boundary controls. SIAM J. Contr. Optim. 43(6), 2166–2190 (2005)MathSciNetMATHCrossRef F. Ancona, G.M. Coclite, On the attainable set for Temple class systems with boundary controls. SIAM J. Contr. Optim. 43(6), 2166–2190 (2005)MathSciNetMATHCrossRef
7.
Zurück zum Zitat F. Ancona, A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Contr. Optim. 36(1), 290–312 (1998)MathSciNetMATHCrossRef F. Ancona, A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Contr. Optim. 36(1), 290–312 (1998)MathSciNetMATHCrossRef
8.
Zurück zum Zitat F. Ancona, A. Marson, Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point. Control methods in PDE-dynamical systems. Contemp. Math. 426, 1–43 (2007)MathSciNetCrossRef F. Ancona, A. Marson, Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point. Control methods in PDE-dynamical systems. Contemp. Math. 426, 1–43 (2007)MathSciNetCrossRef
9.
Zurück zum Zitat F. Ancona, A. Marson, Existence theory by front tracking for general nonlinear hyperbolic systems. Arch. Ration. Mech. Anal. 185, 287–340 (2007)MathSciNetMATHCrossRef F. Ancona, A. Marson, Existence theory by front tracking for general nonlinear hyperbolic systems. Arch. Ration. Mech. Anal. 185, 287–340 (2007)MathSciNetMATHCrossRef
11.
12.
Zurück zum Zitat A. Bressan, Global solutions of systems of conservation laws by wave front tracking. J. Math. Anal. Appl. 170, 414–432 (1992)MathSciNetMATHCrossRef A. Bressan, Global solutions of systems of conservation laws by wave front tracking. J. Math. Anal. Appl. 170, 414–432 (1992)MathSciNetMATHCrossRef
13.
Zurück zum Zitat A. Bressan, Hyperbolic Systems of Conservation Laws, the One-Dimensional Problem, Oxford Lecture Series in Mathematics and its Applications 20, (Oxford University Press, Oxford, 2000) A. Bressan, Hyperbolic Systems of Conservation Laws, the One-Dimensional Problem, Oxford Lecture Series in Mathematics and its Applications 20, (Oxford University Press, Oxford, 2000)
14.
Zurück zum Zitat A. Bressan, G.M. Coclite, On the boundary control of systems of conservation laws. SIAM J. Contr. Optim. 41(2), 607–622 (2002)MathSciNetMATHCrossRef A. Bressan, G.M. Coclite, On the boundary control of systems of conservation laws. SIAM J. Contr. Optim. 41(2), 607–622 (2002)MathSciNetMATHCrossRef
15.
Zurück zum Zitat A. Bressan, R.M. Colombo, Decay of positive waves in nonlinear systems of conservation laws. Ann. Sc. Norm. Sup. Pisa IV-26, 133–160 (1998) A. Bressan, R.M. Colombo, Decay of positive waves in nonlinear systems of conservation laws. Ann. Sc. Norm. Sup. Pisa IV-26, 133–160 (1998)
16.
Zurück zum Zitat A. Bressan, R.M. Colombo, Unique solutions of 2 ×2 conservation laws with large data. Indiana Univ. Math. J. 44(3), 677–725 (1995)MathSciNetMATHCrossRef A. Bressan, R.M. Colombo, Unique solutions of 2 ×2 conservation laws with large data. Indiana Univ. Math. J. 44(3), 677–725 (1995)MathSciNetMATHCrossRef
17.
Zurück zum Zitat M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations. SIAM J. Contr. Optim. 48(3), 1567–1599 (2009)MathSciNetMATHCrossRef M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations. SIAM J. Contr. Optim. 48(3), 1567–1599 (2009)MathSciNetMATHCrossRef
18.
Zurück zum Zitat M. Chapouly, On the global null controllability of a Navier–Stokes system with Navier slip boundary conditions. J. Differ. Equat. 247(7), 2094–2123 (2009)MathSciNetMATHCrossRef M. Chapouly, On the global null controllability of a Navier–Stokes system with Navier slip boundary conditions. J. Differ. Equat. 247(7), 2094–2123 (2009)MathSciNetMATHCrossRef
19.
Zurück zum Zitat J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. 26(4), 517–542 (1993)MathSciNetMATH J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. 26(4), 517–542 (1993)MathSciNetMATH
20.
Zurück zum Zitat J.-Y. Chemin, Fluides Parfaits Incompressibles, (Astérisque 230, 1995). J.-Y. Chemin, Fluides Parfaits Incompressibles, (Astérisque 230, 1995).
21.
Zurück zum Zitat I-L. Chern, Stability theorem and truncation error analysis for the Glimm scheme and for a front tracking method for flows with strong discontinuities. Comm. Pure Appl. Math. 42, 815–844 (1989) I-L. Chern, Stability theorem and truncation error analysis for the Glimm scheme and for a front tracking method for flows with strong discontinuities. Comm. Pure Appl. Math. 42, 815–844 (1989)
22.
Zurück zum Zitat A. Corli, M. Sablé-Tougeron, Perturbations of bounded variation of a strong shock wave. J. Differ. Equat. 138(2), 195–228 (1997)MATHCrossRef A. Corli, M. Sablé-Tougeron, Perturbations of bounded variation of a strong shock wave. J. Differ. Equat. 138(2), 195–228 (1997)MATHCrossRef
23.
Zurück zum Zitat J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift. Math. Contr. Signal Syst. 5, 295–312 (1992)MathSciNetMATHCrossRef J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift. Math. Contr. Signal Syst. 5, 295–312 (1992)MathSciNetMATHCrossRef
24.
Zurück zum Zitat J.-M. Coron, Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317(3), 271–276 (1993)MathSciNetMATH J.-M. Coron, Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317(3), 271–276 (1993)MathSciNetMATH
25.
Zurück zum Zitat J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75, 155–188 (1996)MathSciNetMATH J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75, 155–188 (1996)MathSciNetMATH
26.
Zurück zum Zitat J.-M. Coron, Sur la stabilization des fluides parfaits incompressibles bidimensionnels, séminaire : équations aux dérivées partielles, 1998–1999, Exp. No. VII, (École Polytechnique, Palaiseau, 1999) J.-M. Coron, Sur la stabilization des fluides parfaits incompressibles bidimensionnels, séminaire : équations aux dérivées partielles, 1998–1999, Exp. No. VII, (École Polytechnique, Palaiseau, 1999)
27.
Zurück zum Zitat J.-M. Coron, On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain. SIAM J. Control Optim. 37(6), 1874–1896 (1999)MathSciNetMATHCrossRef J.-M. Coron, On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain. SIAM J. Control Optim. 37(6), 1874–1896 (1999)MathSciNetMATHCrossRef
28.
Zurück zum Zitat J.-M. Coron, On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions. ESAIM Contrôle Optim. Calc. Var. 1, 35–75 (1995/1996) J.-M. Coron, On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions. ESAIM Contrôle Optim. Calc. Var. 1, 35–75 (1995/1996)
29.
Zurück zum Zitat J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136, (American Mathematical Society, Providence, RI, 2007) J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136, (American Mathematical Society, Providence, RI, 2007)
30.
Zurück zum Zitat J.-M. Coron, A.V. Fursikov, Global exact controllability of the 2D Navier–Stokes equations on a manifold without boundary. Russ. J. Math. Phys. 4(4), 429–448 (1996)MathSciNetMATH J.-M. Coron, A.V. Fursikov, Global exact controllability of the 2D Navier–Stokes equations on a manifold without boundary. Russ. J. Math. Phys. 4(4), 429–448 (1996)MathSciNetMATH
31.
Zurück zum Zitat C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)MathSciNetMATHCrossRef C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)MathSciNetMATHCrossRef
32.
Zurück zum Zitat C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol 325 Grundlehren Math. Wissenschaften Series, (Springer, Berlin, 2000) C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol 325 Grundlehren Math. Wissenschaften Series, (Springer, Berlin, 2000)
33.
Zurück zum Zitat R. Danchin, Évolution d’une singularité de type cusp dans une poche de tourbillon. Rev. Mat. Iberoamericana 16(2), 281–329 (2000)MathSciNetMATHCrossRef R. Danchin, Évolution d’une singularité de type cusp dans une poche de tourbillon. Rev. Mat. Iberoamericana 16(2), 281–329 (2000)MathSciNetMATHCrossRef
34.
Zurück zum Zitat N. Depauw, Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. 78(3), 313–351 (1999)MathSciNetMATH N. Depauw, Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. 78(3), 313–351 (1999)MathSciNetMATH
35.
Zurück zum Zitat R.J. DiPerna, Global solutions to a class of nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 26, 1–28 (1973)MathSciNetMATHCrossRef R.J. DiPerna, Global solutions to a class of nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 26, 1–28 (1973)MathSciNetMATHCrossRef
36.
Zurück zum Zitat R.J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differ. Equat. 20(1), 187–212 (1976)MathSciNetMATHCrossRef R.J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differ. Equat. 20(1), 187–212 (1976)MathSciNetMATHCrossRef
37.
Zurück zum Zitat F. Dubois, P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equat. 71(1), 93–122 (1988)MathSciNetMATHCrossRef F. Dubois, P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equat. 71(1), 93–122 (1988)MathSciNetMATHCrossRef
39.
40.
Zurück zum Zitat E. Fernàndez-Cara, S. Guerrero, O.Y. Imanuvilov, J.-P. Puel, Some controllability results for the N-dimensional Navier–Stokes and Boussinesq systems with N − 1 scalar controls. SIAM J. Contr. Optim. 45(1), 146–173 (2006)MATHCrossRef E. Fernàndez-Cara, S. Guerrero, O.Y. Imanuvilov, J.-P. Puel, Some controllability results for the N-dimensional Navier–Stokes and Boussinesq systems with N − 1 scalar controls. SIAM J. Contr. Optim. 45(1), 146–173 (2006)MATHCrossRef
41.
Zurück zum Zitat A.V. Fursikov, O.Y. Imanuvilov, Exact local controllability of two-dimensional Navier–Stokes equations. Russ. Mat. Sb. 187(9), 103–138 (1996); translation in Sb. Math. 187(9), 1355–1390 (1996) A.V. Fursikov, O.Y. Imanuvilov, Exact local controllability of two-dimensional Navier–Stokes equations. Russ. Mat. Sb. 187(9), 103–138 (1996); translation in Sb. Math. 187(9), 1355–1390 (1996)
42.
Zurück zum Zitat P. Gamblin, X. Saint Raymond, On three-dimensional vortex patches. Bull. Soc. Math. France 123(3), 375–424 (1995)MathSciNetMATH P. Gamblin, X. Saint Raymond, On three-dimensional vortex patches. Bull. Soc. Math. France 123(3), 375–424 (1995)MathSciNetMATH
43.
Zurück zum Zitat S.J. Gardiner, Harmonic approximation, London Mathematical Society Lecture Note Series, 221 (Cambridge University Press, Cambridge, 1995) S.J. Gardiner, Harmonic approximation, London Mathematical Society Lecture Note Series, 221 (Cambridge University Press, Cambridge, 1995)
45.
Zurück zum Zitat O. Glass, An addendum to a J.-M. Coron theorem concerning the controllability of the Euler system for 2D incompressible inviscid fluids. J. Math. Pures Appl. 80(8), 845–877 (2001) O. Glass, An addendum to a J.-M. Coron theorem concerning the controllability of the Euler system for 2D incompressible inviscid fluids. J. Math. Pures Appl. 80(8), 845–877 (2001)
46.
Zurück zum Zitat O. Glass, Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equation: The multiconnected case. SIAM J. Contr. Optim. 44(3), 1105–1147 (2005)MathSciNetMATHCrossRef O. Glass, Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equation: The multiconnected case. SIAM J. Contr. Optim. 44(3), 1105–1147 (2005)MathSciNetMATHCrossRef
48.
Zurück zum Zitat O. Glass, T. Horsin, Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches. J. Math. Pures Appl. 93(1), 61–90 (2010)MathSciNetMATH O. Glass, T. Horsin, Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches. J. Math. Pures Appl. 93(1), 61–90 (2010)MathSciNetMATH
49.
Zurück zum Zitat O. Glass, P.G. LeFloch, Nonlinear Hyperbolic Systems: Nondegenerate Flux, Inner Speed Variation, and Graph Solutions. Arch. Ration. Mech. Anal. 185, 409–480 (2007)MathSciNetMATHCrossRef O. Glass, P.G. LeFloch, Nonlinear Hyperbolic Systems: Nondegenerate Flux, Inner Speed Variation, and Graph Solutions. Arch. Ration. Mech. Anal. 185, 409–480 (2007)MathSciNetMATHCrossRef
50.
51.
Zurück zum Zitat J. Glimm, P.D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws. Amer. Math. Soc., Providence, RI. 101, (1970) J. Glimm, P.D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws. Amer. Math. Soc., Providence, RI. 101, (1970)
52.
Zurück zum Zitat H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Applied Mathematical Sciences, 152, (Springer, New York, 2002) H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Applied Mathematical Sciences, 152, (Springer, New York, 2002)
54.
Zurück zum Zitat T. Horsin, Local exact Lagrangian controllability of the Burgers viscous equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(2), 219–230 (2008)MathSciNetMATHCrossRef T. Horsin, Local exact Lagrangian controllability of the Burgers viscous equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(2), 219–230 (2008)MathSciNetMATHCrossRef
55.
Zurück zum Zitat O.Y. Imanuvilov, Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 6, 39–72 (2001)MathSciNetMATHCrossRef O.Y. Imanuvilov, Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 6, 39–72 (2001)MathSciNetMATHCrossRef
56.
Zurück zum Zitat T. Kato, Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972)MATHCrossRef T. Kato, Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972)MATHCrossRef
57.
Zurück zum Zitat T. Kato, On the Smoothness of Trajectories in Incompressible Perfect Fluids, Nonlinear wave equations, (Providence, RI, 1998); Contemp. Math. 263, 109–130. (2000), Amer. Math. Soc., Providence, RI. T. Kato, On the Smoothness of Trajectories in Incompressible Perfect Fluids, Nonlinear wave equations, (Providence, RI, 1998); Contemp. Math. 263, 109–130. (2000), Amer. Math. Soc., Providence, RI.
58.
Zurück zum Zitat A.V. Kazhikov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. PMM USSR, 44, 672–674 (1981) A.V. Kazhikov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. PMM USSR, 44, 672–674 (1981)
59.
Zurück zum Zitat S.G. Krantz, H.R. Parks, A primer of Real Analytic Functions, 2nd edn. Basler Lehrbücher, (Birkhäuser, Basel, 1992) S.G. Krantz, H.R. Parks, A primer of Real Analytic Functions, 2nd edn. Basler Lehrbücher, (Birkhäuser, Basel, 1992)
61.
Zurück zum Zitat P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, (ETH Zürich, Birkäuser, 2002)MATHCrossRef P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, (ETH Zürich, Birkäuser, 2002)MATHCrossRef
62.
Zurück zum Zitat M. Lewicka, K. Trivisa, On the L 1 well posedness of systems of conservation laws near solutions containing two large shocks. J. Differ. Equat. 179(1), 133–177 (2002)MathSciNetMATHCrossRef M. Lewicka, K. Trivisa, On the L 1 well posedness of systems of conservation laws near solutions containing two large shocks. J. Differ. Equat. 179(1), 133–177 (2002)MathSciNetMATHCrossRef
63.
Zurück zum Zitat T.-T. Li, B.-P. Rao, Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Contr. Optim. 41(6), 1748–1755 (2003)MathSciNetMATHCrossRef T.-T. Li, B.-P. Rao, Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Contr. Optim. 41(6), 1748–1755 (2003)MathSciNetMATHCrossRef
64.
Zurück zum Zitat T.-T. Li, Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3. American Institute of Mathematical Sciences (AIMS), (Springfield, MO, Higher Education Press, Beijing, 2010) T.-T. Li, Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3. American Institute of Mathematical Sciences (AIMS), (Springfield, MO, Higher Education Press, Beijing, 2010)
66.
Zurück zum Zitat J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tomes 1 & 2. (Masson, RMA 8 & 9, Paris, 1988) J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tomes 1 & 2. (Masson, RMA 8 & 9, Paris, 1988)
67.
Zurück zum Zitat J.-L. Lions, in Are There Connections Between Turbulence and Controllability?, Analysis and Optimization of Systems, ed. by A. Bensoussan, J.-L. Lions (Springer, Berlin, 1990); Lecture Notes Control and Inform. Sci. 144 J.-L. Lions, in Are There Connections Between Turbulence and Controllability?, Analysis and Optimization of Systems, ed. by A. Bensoussan, J.-L. Lions (Springer, Berlin, 1990); Lecture Notes Control and Inform. Sci. 144
68.
Zurück zum Zitat P.-L. Lions, B. Perthame, P.E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49(6), 599–638 (1996)MathSciNetMATHCrossRef P.-L. Lions, B. Perthame, P.E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49(6), 599–638 (1996)MathSciNetMATHCrossRef
69.
Zurück zum Zitat P.-L. Lions, B. Perthame, E. Tadmor, Existence and stability of entropy solutions to isentropic gas dynamics in Eulerian and Lagrangian variables. Comm. Math. Phys. 163, 415–431 (1994)MathSciNetMATHCrossRef P.-L. Lions, B. Perthame, E. Tadmor, Existence and stability of entropy solutions to isentropic gas dynamics in Eulerian and Lagrangian variables. Comm. Math. Phys. 163, 415–431 (1994)MathSciNetMATHCrossRef
70.
Zurück zum Zitat A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, (Springer, New York, 1984)MATHCrossRef A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, (Springer, New York, 1984)MATHCrossRef
71.
Zurück zum Zitat C.B. Morrey, Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, (Springer, New York, 1966) C.B. Morrey, Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, (Springer, New York, 1966)
72.
Zurück zum Zitat H. Nersisyan, Controllability of the 3D compressible Euler system. Comm. Partial Differential Equations 36(9), 1544–1564 (2011)MathSciNetMATHCrossRef H. Nersisyan, Controllability of the 3D compressible Euler system. Comm. Partial Differential Equations 36(9), 1544–1564 (2011)MathSciNetMATHCrossRef
73.
Zurück zum Zitat V. Perrollaz, Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions, Preprint (2010) V. Perrollaz, Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions, Preprint (2010)
74.
Zurück zum Zitat Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299. (Springer, Berlin, 1992) Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299. (Springer, Berlin, 1992)
75.
76.
Zurück zum Zitat D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20, 639–739 (1978)MATH D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20, 639–739 (1978)MATH
77.
Zurück zum Zitat S. Schochet, Sufficient conditions for local existence via Glimm’s scheme for large BV data.J. Differ. Equat. 89(2), 317–354 (1991) S. Schochet, Sufficient conditions for local existence via Glimm’s scheme for large BV data.J. Differ. Equat. 89(2), 317–354 (1991)
78.
Zurück zum Zitat P. Serfati, Une preuve directe d’existence globale des vortex patches 2D. C. R. Acad. Sci. Paris Sér. I Math. 318(6), 515–518 (1994)MathSciNetMATH P. Serfati, Une preuve directe d’existence globale des vortex patches 2D. C. R. Acad. Sci. Paris Sér. I Math. 318(6), 515–518 (1994)MathSciNetMATH
79.
Zurück zum Zitat D. Serre, Systèmes de lois de conservation. I. Hyperbolicité, entropies, ondes de choc, & II. Structures géométriques, oscillation et problèmes mixtes. Fondations. (Diderot Editeur, Paris, 1996) D. Serre, Systèmes de lois de conservation. I. Hyperbolicité, entropies, ondes de choc, & II. Structures géométriques, oscillation et problèmes mixtes. Fondations. (Diderot Editeur, Paris, 1996)
80.
Zurück zum Zitat A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations. Comm. Math. Phys. 266(1), 123–151 (2006)MathSciNetMATHCrossRef A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations. Comm. Math. Phys. 266(1), 123–151 (2006)MathSciNetMATHCrossRef
81.
Zurück zum Zitat F. Sueur, Vorticity internal transition layers for the Navier–Stokes equations, preprint, arXiv:0812.2145 (2008) F. Sueur, Vorticity internal transition layers for the Navier–Stokes equations, preprint, arXiv:0812.2145 (2008)
82.
Zurück zum Zitat J. L. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Amer. Math. Soc. 35 (1929), no. 4, 499-544MathSciNetMATHCrossRef J. L. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Amer. Math. Soc. 35 (1929), no. 4, 499-544MathSciNetMATHCrossRef
83.
Zurück zum Zitat H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36(1), 63–89 (1934)MathSciNetCrossRef H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36(1), 63–89 (1934)MathSciNetCrossRef
84.
Zurück zum Zitat H. Whitney, The imbedding of manifolds in families of analytic manifolds. Ann. of Math. (2) 37(4), 865–878 (1936) H. Whitney, The imbedding of manifolds in families of analytic manifolds. Ann. of Math. (2) 37(4), 865–878 (1936)
85.
Zurück zum Zitat W. Wolibner, Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37, 698–726 (1933)MathSciNetCrossRef W. Wolibner, Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37, 698–726 (1933)MathSciNetCrossRef
86.
Zurück zum Zitat V.I. Yudovich, Non-stationary flows of an ideal incompressible fluid. Z̆. Vy čisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963); (Russian). English translation in USSR Comput. Math. Math. Physics 3, 1407–1456 (1963) V.I. Yudovich, Non-stationary flows of an ideal incompressible fluid. Z̆. Vy čisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963); (Russian). English translation in USSR Comput. Math. Math. Physics 3, 1407–1456 (1963)
87.
Zurück zum Zitat V.I. Yudovich, The flow of a perfect, incompressible liquid through a given region. Dokl. Akad. Nauk SSSR 146, 561–564 (1962); (Russian). English translation in Soviet Physics Dokl. 7, 789–791 (1962) V.I. Yudovich, The flow of a perfect, incompressible liquid through a given region. Dokl. Akad. Nauk SSSR 146, 561–564 (1962); (Russian). English translation in Soviet Physics Dokl. 7, 789–791 (1962)
88.
Zurück zum Zitat E. Zuazua, Exact controllability for the semilinear wave equation. J. Math. Pures Appl. (9) 69(1), 1–31 (1990) E. Zuazua, Exact controllability for the semilinear wave equation. J. Math. Pures Appl. (9) 69(1), 1–31 (1990)
Metadaten
Titel
Some Questions of Control in Fluid Mechanics
verfasst von
Olivier Glass
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-27893-8_3

Neuer Inhalt