Skip to main content

2008 | OriginalPaper | Buchkapitel

21. Sonar Sensing

verfasst von : Lindsay Kleeman, Prof, Roman Kuc, Dr.

Erschienen in: Springer Handbook of Robotics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.
Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
21.1.
Zurück zum Zitat L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders: Fundamentals of Acoustics (Wiley, New York 1982) L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders: Fundamentals of Acoustics (Wiley, New York 1982)
21.2.
Zurück zum Zitat R.C. Weast, M.J. Astle (Eds.): CRC Handbook of Chemistry and Physics, 59th edn. (CRC, Boca Raton 1978) R.C. Weast, M.J. Astle (Eds.): CRC Handbook of Chemistry and Physics, 59th edn. (CRC, Boca Raton 1978)
21.3.
Zurück zum Zitat J. Borenstein, H.R. Everett, L. Feng: Navigating Mobile Robots (Peters, Wellesley 1996)MATH J. Borenstein, H.R. Everett, L. Feng: Navigating Mobile Robots (Peters, Wellesley 1996)MATH
21.4.
Zurück zum Zitat R. Kuc, M.W. Siegel: Physically-based simulation model for acoustic sensor robot navigation, IEEE Trans. Pattern Anal. Mach. Intell. 9(6), 766–778 (1987)CrossRef R. Kuc, M.W. Siegel: Physically-based simulation model for acoustic sensor robot navigation, IEEE Trans. Pattern Anal. Mach. Intell. 9(6), 766–778 (1987)CrossRef
21.6.
Zurück zum Zitat H.H. Poole: Fundamentals of Robotics Engineering (Van Nostrand, New York 1989) H.H. Poole: Fundamentals of Robotics Engineering (Van Nostrand, New York 1989)
21.7.
Zurück zum Zitat J.E. Piercy: American National Standard: Method for Calculation of the Absorption of Sound by the Atmosphere ANSI SI-26-1978 (Acoust. Soc. Am., Washington 1978) J.E. Piercy: American National Standard: Method for Calculation of the Absorption of Sound by the Atmosphere ANSI SI-26-1978 (Acoust. Soc. Am., Washington 1978)
21.8.
Zurück zum Zitat B. Barshan, R. Kuc: A bat-like sonar system for obstacle localization, IEEE Trans. Syst. Man Cybern. 22(4), 636–646 (1992)CrossRef B. Barshan, R. Kuc: A bat-like sonar system for obstacle localization, IEEE Trans. Syst. Man Cybern. 22(4), 636–646 (1992)CrossRef
21.9.
Zurück zum Zitat R. Kuc: Three dimensional docking using qualitative sonar. In: Intelligent Autonomous Systems IAS-3, ed. by F.C.A. Groen, S. Hirose, C.E. Thorpe (IOS, Washington 1993) pp. 480–488 R. Kuc: Three dimensional docking using qualitative sonar. In: Intelligent Autonomous Systems IAS-3, ed. by F.C.A. Groen, S. Hirose, C.E. Thorpe (IOS, Washington 1993) pp. 480–488
21.10.
Zurück zum Zitat R. Kuc: Biomimetic sonar locates and recognizes objects, J. Ocean. Eng. 22(4), 616–624 (1997)CrossRef R. Kuc: Biomimetic sonar locates and recognizes objects, J. Ocean. Eng. 22(4), 616–624 (1997)CrossRef
21.11.
Zurück zum Zitat L. Kleeman, R. Kuc: Mobile robot sonar for target localization and classification, Int. J. Robot. Res. 14(4), 295–318 (1995)CrossRef L. Kleeman, R. Kuc: Mobile robot sonar for target localization and classification, Int. J. Robot. Res. 14(4), 295–318 (1995)CrossRef
21.13.
Zurück zum Zitat F.L. Degertekin, S. Calmes, B.T. Khuri-Yakub, X. Jin, I. Ladabaum: Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers, J. Microelectromech. Syst. 8(1), 100–114 (1999)CrossRef F.L. Degertekin, S. Calmes, B.T. Khuri-Yakub, X. Jin, I. Ladabaum: Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers, J. Microelectromech. Syst. 8(1), 100–114 (1999)CrossRef
21.14.
Zurück zum Zitat B. Barshan, R. Kuc: Differentiating sonar reflections from corners and planes by employing an intelligent sensor, IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 560–569 (1990)CrossRef B. Barshan, R. Kuc: Differentiating sonar reflections from corners and planes by employing an intelligent sensor, IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 560–569 (1990)CrossRef
21.15.
21.16.
Zurück zum Zitat A. Freedman: The high frequency echo structure of somae simple body shapes, Acustica 12, 61–70 (1962)MATH A. Freedman: The high frequency echo structure of somae simple body shapes, Acustica 12, 61–70 (1962)MATH
21.17.
Zurück zum Zitat Ö. Bozma, R. Kuc: A physical model-based analysis of heterogeneous environments using sonar – ENDURA method, IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 497–506 (1994)CrossRef Ö. Bozma, R. Kuc: A physical model-based analysis of heterogeneous environments using sonar – ENDURA method, IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 497–506 (1994)CrossRef
21.18.
Zurück zum Zitat Ö. Bozma, R. Kuc: Characterizing pulses reflected from rough surfaces using ultrasound, J. Acoust. Soc. Am. 89(6), 2519–2531 (1991)CrossRef Ö. Bozma, R. Kuc: Characterizing pulses reflected from rough surfaces using ultrasound, J. Acoust. Soc. Am. 89(6), 2519–2531 (1991)CrossRef
21.19.
Zurück zum Zitat P.J. McKerrow: Echolocation – from range to outline segments. In: Intelligent Autonomous Systems IAS-3, ed. by F.C.A. Groen, S. Hirose, C.E. Thorpe (IOS, Washington 1993) pp. 238–247 P.J. McKerrow: Echolocation – from range to outline segments. In: Intelligent Autonomous Systems IAS-3, ed. by F.C.A. Groen, S. Hirose, C.E. Thorpe (IOS, Washington 1993) pp. 238–247
21.20.
Zurück zum Zitat J. Thomas, C. Moss, M. Vater (Eds.): Echolocation in Bats and Dolphins (University of Chicago Press, Chicago 2004) J. Thomas, C. Moss, M. Vater (Eds.): Echolocation in Bats and Dolphins (University of Chicago Press, Chicago 2004)
21.21.
Zurück zum Zitat J. Borenstein, Y. Koren: Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance, IEEE Trans. Robot. Autom. 11(1), 132–138 (1995)CrossRef J. Borenstein, Y. Koren: Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance, IEEE Trans. Robot. Autom. 11(1), 132–138 (1995)CrossRef
21.22.
Zurück zum Zitat L. Kleeman: Fast and accurate sonar trackers using double pulse coding, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1999) pp. 1185–1190 L. Kleeman: Fast and accurate sonar trackers using double pulse coding, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1999) pp. 1185–1190
21.23.
Zurück zum Zitat R. Kuc: Pseudo-amplitude sonar maps, IEEE Trans. Robot. Autom. 17(5), 767–770 (2001)CrossRef R. Kuc: Pseudo-amplitude sonar maps, IEEE Trans. Robot. Autom. 17(5), 767–770 (2001)CrossRef
21.24.
Zurück zum Zitat H. Peremans, K. Audenaert, J.M. Van Campenhout: A high-resolution sensor based on tri-aural perception, IEEE Trans. Robot. Autom. 9(1), 36–48 (1993)CrossRef H. Peremans, K. Audenaert, J.M. Van Campenhout: A high-resolution sensor based on tri-aural perception, IEEE Trans. Robot. Autom. 9(1), 36–48 (1993)CrossRef
21.25.
Zurück zum Zitat A. Sabatini, O. Di Benedetto: Towards a robust methodology for mobile robot localization using sonar, IEEE Int. Conf. Robot. Autom. (1994) pp. 3136–3141 A. Sabatini, O. Di Benedetto: Towards a robust methodology for mobile robot localization using sonar, IEEE Int. Conf. Robot. Autom. (1994) pp. 3136–3141
21.26.
Zurück zum Zitat L. Kleeman: Advanced sonar with velocity compenstation, Int. J. Robot. Res. 23(2), 111–126 (2004)CrossRef L. Kleeman: Advanced sonar with velocity compenstation, Int. J. Robot. Res. 23(2), 111–126 (2004)CrossRef
21.27.
Zurück zum Zitat A. Elfes: Sonar-based real world mapping and navigation, IEEE Trans. Robot. Autom. 3, 249–265 (1987)CrossRef A. Elfes: Sonar-based real world mapping and navigation, IEEE Trans. Robot. Autom. 3, 249–265 (1987)CrossRef
21.28.
Zurück zum Zitat S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, D. Schulz: MINERVA: A second geration mobile tour-guide robot, IEEE Int. Conf. Robot. Autom. (1999) pp. 3136–3141 S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, D. Schulz: MINERVA: A second geration mobile tour-guide robot, IEEE Int. Conf. Robot. Autom. (1999) pp. 3136–3141
21.29.
Zurück zum Zitat K. Konolige: Improved occupancy grids for map building, Auton. Robot. 4, 351–367 (1997)CrossRef K. Konolige: Improved occupancy grids for map building, Auton. Robot. 4, 351–367 (1997)CrossRef
21.30.
Zurück zum Zitat R. Grabowski, P. Khosla, H. Choset: An enhanced occupancy map for exploration via pose separation, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003) pp. 705–710 R. Grabowski, P. Khosla, H. Choset: An enhanced occupancy map for exploration via pose separation, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003) pp. 705–710
21.31.
Zurück zum Zitat J.D. Tardos, J. Neira, P.M. Newman, J.J. Leonard: Robust mapping and localization in indoor environments using sonar data, Int. J. Robot. Res. 21(6), 311–330 (2002)CrossRef J.D. Tardos, J. Neira, P.M. Newman, J.J. Leonard: Robust mapping and localization in indoor environments using sonar data, Int. J. Robot. Res. 21(6), 311–330 (2002)CrossRef
21.32.
Zurück zum Zitat O. Aycard, P. Larouche, F. Charpillet: Mobile robot localization in dynamic environments using places recognition, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 3135–3140 O. Aycard, P. Larouche, F. Charpillet: Mobile robot localization in dynamic environments using places recognition, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 3135–3140
21.33.
Zurück zum Zitat B. Kuipers, P. Beeson: Bootstrap learning for place recognition, Proc. 18-th Nat. Conf. Artif. Intell. (AAAI-02) (2002) B. Kuipers, P. Beeson: Bootstrap learning for place recognition, Proc. 18-th Nat. Conf. Artif. Intell. (AAAI-02) (2002)
21.34.
Zurück zum Zitat A. Bandera, C. Urdiales, F. Sandoval: Autonomous global localization using Markov chains and optimized sonar landmarks, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2000) pp. 288–293 A. Bandera, C. Urdiales, F. Sandoval: Autonomous global localization using Markov chains and optimized sonar landmarks, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2000) pp. 288–293
21.35.
Zurück zum Zitat R. Kuc: Biomimetic sonar and neuromorphic processing eliminate reverberation artifacts, IEEE Sens. J. 7(3), 361–369 (2007)CrossRef R. Kuc: Biomimetic sonar and neuromorphic processing eliminate reverberation artifacts, IEEE Sens. J. 7(3), 361–369 (2007)CrossRef
21.36.
Zurück zum Zitat A.M. Sabatini: A stochastic model of the time-of-flight noise in airborne sonar ranging systems, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(3), 606–614 (1997)CrossRef A.M. Sabatini: A stochastic model of the time-of-flight noise in airborne sonar ranging systems, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(3), 606–614 (1997)CrossRef
21.37.
Zurück zum Zitat C. Biber, S. Ellin, E. Sheck, J. Stempeck: The Polaroid ultrasonic ranging system, Proc. 67th Audio Eng. Soc. Convention (1990) C. Biber, S. Ellin, E. Sheck, J. Stempeck: The Polaroid ultrasonic ranging system, Proc. 67th Audio Eng. Soc. Convention (1990)
21.38.
Zurück zum Zitat R. Kuc: Forward model for sonar maps produced with the Polaroid ranging module, IEEE Trans. Robot. Autom. 19(2), 358–362 (2003)CrossRef R. Kuc: Forward model for sonar maps produced with the Polaroid ranging module, IEEE Trans. Robot. Autom. 19(2), 358–362 (2003)CrossRef
21.39.
Zurück zum Zitat M.K. Brown: Feature extraction techniques for recognizing solid objects with an ultrasonic range sensor, IEEE J. Robot. Autom. RA-1(4), 191–205 (1985)CrossRef M.K. Brown: Feature extraction techniques for recognizing solid objects with an ultrasonic range sensor, IEEE J. Robot. Autom. RA-1(4), 191–205 (1985)CrossRef
21.40.
Zurück zum Zitat N.L. Harper, P.J. McKerrow: Classification of plant species from CTFM ultrasonic range data using a neural network, Proc. IEEE Int. Conf. Neural Netw. (1995) pp. 2348–2352 N.L. Harper, P.J. McKerrow: Classification of plant species from CTFM ultrasonic range data using a neural network, Proc. IEEE Int. Conf. Neural Netw. (1995) pp. 2348–2352
21.41.
Zurück zum Zitat Z. Politis, P.J. Probert: Target localization and identification using CTFM sonar imaging: The AURBIT method, Proc. IEEE Int. Symp. CIRA (1999) pp. 256–261 Z. Politis, P.J. Probert: Target localization and identification using CTFM sonar imaging: The AURBIT method, Proc. IEEE Int. Symp. CIRA (1999) pp. 256–261
21.42.
Zurück zum Zitat R. Mueller, R. Kuc: Foliage echoes: A probe into the ecological acoustics of bat echolocation, J. Acoust. Soc. Am. 108(2), 836–845 (2000)CrossRef R. Mueller, R. Kuc: Foliage echoes: A probe into the ecological acoustics of bat echolocation, J. Acoust. Soc. Am. 108(2), 836–845 (2000)CrossRef
21.43.
Zurück zum Zitat P.N.T. Wells: Biomedical Ultrasonics (Academic, New York 1977) P.N.T. Wells: Biomedical Ultrasonics (Academic, New York 1977)
21.44.
Zurück zum Zitat J.L. Prince, J.M. Links: Medical Imaging Signals and Systems (Pearson Prentice Hall, Upper Saddle River 2006) J.L. Prince, J.M. Links: Medical Imaging Signals and Systems (Pearson Prentice Hall, Upper Saddle River 2006)
21.45.
Zurück zum Zitat J.J. Leonard, H.F. Durrant-Whyte: Mobile robot localization by tracking geometric beacons, IEEE Trans. Robot. Autom. 7(3), 376–382 (1991)CrossRef J.J. Leonard, H.F. Durrant-Whyte: Mobile robot localization by tracking geometric beacons, IEEE Trans. Robot. Autom. 7(3), 376–382 (1991)CrossRef
21.46.
Zurück zum Zitat P.M. Woodward: Probability and Information Theory with Applications to Radar, 2nd edn. (Pergamon, Oxford 1964)MATH P.M. Woodward: Probability and Information Theory with Applications to Radar, 2nd edn. (Pergamon, Oxford 1964)MATH
21.47.
Zurück zum Zitat A. Heale, L. Kleeman: Fast target classification using sonar, IEEE/RSJ Int. Conf. Robot. Syst. (2001) pp. 1446–1451 A. Heale, L. Kleeman: Fast target classification using sonar, IEEE/RSJ Int. Conf. Robot. Syst. (2001) pp. 1446–1451
21.48.
Zurück zum Zitat S. Fazli, L. Kleeman: A real time advanced sonar ring with simultaneous firing, Proc. IEEE/RSJ Intern. Conf. Intell. Robot. Syst. (2004) pp. 1872–1877 S. Fazli, L. Kleeman: A real time advanced sonar ring with simultaneous firing, Proc. IEEE/RSJ Intern. Conf. Intell. Robot. Syst. (2004) pp. 1872–1877
21.49.
Zurück zum Zitat T. Yata, A. Ohya, S. Yuta: A fast and accurate sonar-ring sensor for a mobile robot, Proc. IEEE Int. Conf. Robot. Autom. (1999) pp. 630–636 T. Yata, A. Ohya, S. Yuta: A fast and accurate sonar-ring sensor for a mobile robot, Proc. IEEE Int. Conf. Robot. Autom. (1999) pp. 630–636
21.50.
Zurück zum Zitat L. Kleeman: Scanned monocular sonar and the doorway problem, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1996) pp. 96–103 L. Kleeman: Scanned monocular sonar and the doorway problem, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1996) pp. 96–103
21.51.
Zurück zum Zitat G. Kao, P. Probert: Feature extraction from a broadband sonar sensor for mapping structured environments efficiently, Int. J. Robot. Res. 19(10), 895–913 (2000)CrossRef G. Kao, P. Probert: Feature extraction from a broadband sonar sensor for mapping structured environments efficiently, Int. J. Robot. Res. 19(10), 895–913 (2000)CrossRef
21.52.
Zurück zum Zitat B. Stanley, P. McKerrow: Measuring range and bearing with a binaural ultrasonic sensor, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1997) pp. 565–571 B. Stanley, P. McKerrow: Measuring range and bearing with a binaural ultrasonic sensor, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (1997) pp. 565–571
21.53.
Zurück zum Zitat P.T. Gough, A. de Roos, M.J. Cusdin: Continuous transmission FM sonar with one octave bandwidth and no blind time. In: Autonomous Robot Vehicles, ed. by I.J. Cox, G.T. Wilfong (Springer-Verlag, Berlin, Heidelberg 1990) pp. 117–122 P.T. Gough, A. de Roos, M.J. Cusdin: Continuous transmission FM sonar with one octave bandwidth and no blind time. In: Autonomous Robot Vehicles, ed. by I.J. Cox, G.T. Wilfong (Springer-Verlag, Berlin, Heidelberg 1990) pp. 117–122
21.54.
Zurück zum Zitat L. Kay: A CTFM acoustic spatial sensing technology: its use by blind persons and robots, Sens. Rev. 19(3), 195–201 (1999)CrossRefMathSciNet L. Kay: A CTFM acoustic spatial sensing technology: its use by blind persons and robots, Sens. Rev. 19(3), 195–201 (1999)CrossRefMathSciNet
21.55.
Zurück zum Zitat L. Kay: Auditory perception and its relation to ultrasonic blind guidance aids, J. Br. Inst. Radio Eng. 24, 309–319 (1962) L. Kay: Auditory perception and its relation to ultrasonic blind guidance aids, J. Br. Inst. Radio Eng. 24, 309–319 (1962)
21.56.
Zurück zum Zitat P.J. McKerrow, N.L. Harper: Recognizing leafy plants with in-air sonar, IEEE Sens. 1(4), 245–255 (2001)CrossRef P.J. McKerrow, N.L. Harper: Recognizing leafy plants with in-air sonar, IEEE Sens. 1(4), 245–255 (2001)CrossRef
21.57.
Zurück zum Zitat K. Audenaert, H. Peremans, Y. Kawahara, J. Van Campenhout: Accurate ranging of multiple objects using ultrasonic sensors, Proc. IEEE Int. Conf. Robot. Autom. (1992) pp. 1733–1738 K. Audenaert, H. Peremans, Y. Kawahara, J. Van Campenhout: Accurate ranging of multiple objects using ultrasonic sensors, Proc. IEEE Int. Conf. Robot. Autom. (1992) pp. 1733–1738
21.58.
Zurück zum Zitat J. Borenstein, Y. Koren: Noise rejection for ultrasonic sensors in mobile robot applications, Proc. IEEE Int. Conf. Robot. Autom. (1992) pp. 1727–1732 J. Borenstein, Y. Koren: Noise rejection for ultrasonic sensors in mobile robot applications, Proc. IEEE Int. Conf. Robot. Autom. (1992) pp. 1727–1732
21.59.
Zurück zum Zitat K.W. Jorg, M. Berg: Mobile robot sonar sensing with pseudo-random codes, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 2807–2812 K.W. Jorg, M. Berg: Mobile robot sonar sensing with pseudo-random codes, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 2807–2812
21.60.
Zurück zum Zitat S. Shoval, J. Borenstein: Using coded signals to benefit from ultrasonic sensor crosstalk in mobile robot obstacle avoidance, Proc. IEEE Int. Conf. Robot. Autom. (2001) pp. 2879–2884 S. Shoval, J. Borenstein: Using coded signals to benefit from ultrasonic sensor crosstalk in mobile robot obstacle avoidance, Proc. IEEE Int. Conf. Robot. Autom. (2001) pp. 2879–2884
21.61.
Zurück zum Zitat K. Nakahira, T. Kodama, T. Furuhashi, H. Maeda: Design of digital polarity correlators in a multiple-user sonar ranging system, IEEE Trans. Instrum. Meas. 54(1), 305–310 (2005)CrossRef K. Nakahira, T. Kodama, T. Furuhashi, H. Maeda: Design of digital polarity correlators in a multiple-user sonar ranging system, IEEE Trans. Instrum. Meas. 54(1), 305–310 (2005)CrossRef
21.62.
Zurück zum Zitat A. Heale, L. Kleeman: A sonar sensor with random double pulse coding, Aust. Conf. Robot. Autom. (2000) pp. 81–86 A. Heale, L. Kleeman: A sonar sensor with random double pulse coding, Aust. Conf. Robot. Autom. (2000) pp. 81–86
21.63.
Zurück zum Zitat A. Diosi, G. Taylor, L. Kleeman: Interactive SLAM using Laser and Advanced Sonar, Proc. IEEE Int. Conf. Robot. Autom. (2005) pp. 1115–1120 A. Diosi, G. Taylor, L. Kleeman: Interactive SLAM using Laser and Advanced Sonar, Proc. IEEE Int. Conf. Robot. Autom. (2005) pp. 1115–1120
21.64.
Zurück zum Zitat S.A. Walter: The sonar ring: obstacle detection for a mobile robot, Proc. IEEE Int. Conf. Robot. Autom. (1987) pp. 1574–1578 S.A. Walter: The sonar ring: obstacle detection for a mobile robot, Proc. IEEE Int. Conf. Robot. Autom. (1987) pp. 1574–1578
21.65.
Zurück zum Zitat S. Fazli, L. Kleeman: Wall following and obstacle avoidance results from a multi-DSP sonar ring on a mobile robot, Proc. IEEE Int. Conf. Mechatron. Autom. (2005) pp. 432–436 S. Fazli, L. Kleeman: Wall following and obstacle avoidance results from a multi-DSP sonar ring on a mobile robot, Proc. IEEE Int. Conf. Mechatron. Autom. (2005) pp. 432–436
21.66.
Zurück zum Zitat S. Fazli, L. Kleeman: Sensor design and signal processing for an advanced sonar ring, Robotica 24(4), 433–446 (2006)CrossRef S. Fazli, L. Kleeman: Sensor design and signal processing for an advanced sonar ring, Robotica 24(4), 433–446 (2006)CrossRef
21.67.
Zurück zum Zitat W.W.L. Au: The Sonar of Dolphins (Springer-Verlag, Berlin, Heidelberg 1993) W.W.L. Au: The Sonar of Dolphins (Springer-Verlag, Berlin, Heidelberg 1993)
21.68.
Zurück zum Zitat B. Barshan, R. Kuc: Bat-like sonar system strategies for mobile robots, Proc. IEEE Int. Conf. Syst. Man Cybern. (1991) B. Barshan, R. Kuc: Bat-like sonar system strategies for mobile robots, Proc. IEEE Int. Conf. Syst. Man Cybern. (1991)
21.69.
Zurück zum Zitat R. Kuc: Biologically motivated adaptive sonar, J. Acoust. Soc. Am. 100(3), 1849–1854 (1996)CrossRef R. Kuc: Biologically motivated adaptive sonar, J. Acoust. Soc. Am. 100(3), 1849–1854 (1996)CrossRef
21.70.
Zurück zum Zitat V.A. Walker, H. Peremans, J.C.T. Hallam: One tone, two ears, three dimensions: A robotic investigation of pinnae movements used by rhinolophid and hipposiderid bats, J. Acoust. Soc. Am. 104, 569–579 (1998)CrossRef V.A. Walker, H. Peremans, J.C.T. Hallam: One tone, two ears, three dimensions: A robotic investigation of pinnae movements used by rhinolophid and hipposiderid bats, J. Acoust. Soc. Am. 104, 569–579 (1998)CrossRef
21.71.
Zurück zum Zitat R. Kuc: Biomimetic sonar system recognizes objects using binaural information, J. Acoust. Soc. Am. 102(2), 689–696 (1997)CrossRef R. Kuc: Biomimetic sonar system recognizes objects using binaural information, J. Acoust. Soc. Am. 102(2), 689–696 (1997)CrossRef
21.72.
Zurück zum Zitat R. Kuc: Recognizing retro-reflectors with an obliquely-oriented multi-point sonar and acoustic flow, Int. J. Robot. Res. 22(2), 129–145 (2003)CrossRef R. Kuc: Recognizing retro-reflectors with an obliquely-oriented multi-point sonar and acoustic flow, Int. J. Robot. Res. 22(2), 129–145 (2003)CrossRef
21.73.
Zurück zum Zitat R. Mueller, R. Kuc: Foliage echoes: A probe into the ecological acoustics of bat echolocation, J. Acoust. Soc. Am. 108(2), 836–845 (2000)CrossRef R. Mueller, R. Kuc: Foliage echoes: A probe into the ecological acoustics of bat echolocation, J. Acoust. Soc. Am. 108(2), 836–845 (2000)CrossRef
21.74.
Zurück zum Zitat T. Horiuchi, T. Swindell, D. Sander, P. Abshire: A low-power CMOS neural amplifier with amplitude measurements for spike sorting, ISCAS, Vol. IV (2004) pp. 29–32 T. Horiuchi, T. Swindell, D. Sander, P. Abshire: A low-power CMOS neural amplifier with amplitude measurements for spike sorting, ISCAS, Vol. IV (2004) pp. 29–32
21.75.
Zurück zum Zitat R. Kuc: Neuromorphic processing of moving sonar data for estimating passing range, IEEE Sens. J. – Special Issue on Intelligent Sensors 7(5), 851–859 (2007) R. Kuc: Neuromorphic processing of moving sonar data for estimating passing range, IEEE Sens. J. – Special Issue on Intelligent Sensors 7(5), 851–859 (2007)
Metadaten
Titel
Sonar Sensing
verfasst von
Lindsay Kleeman, Prof
Roman Kuc, Dr.
Copyright-Jahr
2008
DOI
https://doi.org/10.1007/978-3-540-30301-5_22

Neuer Inhalt