Skip to main content

2022 | OriginalPaper | Buchkapitel

Soybean Price Trend Forecast Using Deep Learning Techniques Based on Prices and Text Sentiments

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Predicting product prices is an essential activity in agricultural value chains. It can improve decision making and revenues for all agents. This chapter explores the use of deep learning techniques for predicting soybeans price trends in Brazil. A long short-term memory neural network (LSTM) forecasts the price signal. A convolutional neural network (CNN) generates a sentiment signal based on the sentiment analysis of news headlines. A multi-layer perceptron (MLP) is also evaluated to generate the sentiment signal, and an ensemble model, composed of both signals, prices and sentiment, is implemented. The four models (LSTM, CNN, and two ensembles with different weights for each signal) are evaluated in terms of their ability to predict the daily price trend. A hyperparameter analysis is conducted for all models, using the mean squared error (MSE) as a metric. Three models obtained the best result (0.60): (i) the LSTM alone; (ii) an ensemble model composed of a simple averaging of the signals; and (iii) an ensemble model composed of 90% price and 10% sentiment. The main findings are: (i) the analysis of the impact of hyperparameters on the models; (ii) the use of dictionaries has not significantly improved the sentiment prediction; (iii) the use of more than 50% of weight in the sentiment signal leads to worse predictions; and (iv) the CNN model provided a better sentiment signal than the MLP model. The benefits and possible uses of the models are discussed. The methodology used can be implemented for other products. Future work is related to improving data sets and implementing econometric models, unsupervised learning, and deep reinforcement learning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For an in-depth analysis of the precision, recall, and F1 score metrics, the reader can refer to Goutte and Gaussier [27]. For implementation purposes, the reader can refer to the Scikit Learn documentation: https://​scikit-learn.​org/​stable/​modules/​generated/​sklearn.​metrics.​f1_​score.​html
 
3
For an in-depth review of the main machine learning models applied to price prediction, the readers are referred to the work by Henrique et al. [33].
 
4
For an in-depth review of the components of artificial neural networks, the readers are referred to the work by Lipton et al. [35].
 
5
For an in-depth description of the LSTM model and its components, we refer the reader to the works by Yu et al. [41], Gers et al. [42], Schäfer and Zimmermann [38], and Lipton et al. [35].
 
6
For an in-depth description of the different models used for sentiment analysis and applications on different domains, the reader is referred to the work by Medhat et al. [18]. For an extensive review of sentiment analysis for market prediction, we refer the reader to the work by Nassirtoussi et al. [14].
 
7
For an in-depth description of the CNN model and its components, we refer the reader to the works by Zhang and Wallace [15] and LeCun and Bengio [55].
 
19
The Augmented Dickey-Fuller Test is a statistical test used to evaluate if a time series is stationary. For implementation details, we refer the reader to the Statsmodels library tutorial (https://​www.​statsmodels.​org/​dev/​generated/​statsmodels.​tsa.​stattools.​adfuller.​html)
 
20
A time series is considered stationary when its statistical properties do not change over time [62]. For an in-depth description of the different types of stationarity, we refer the reader to the work by Witt et al. [62].
 
21
Autocorrelation and partial autocorrelation functions evaluate the correlation between a time series and a lagged version of itself for different time lags. The main difference between them is that the first considers both direct and indirect effects of autocorrelation, while the second considers only direct effects. For more information on these functions, we refer the reader to the work of Hamilton and Watts [63]. For implementation details, we refer the reader to the Statsmodels library tutorial (https://​www.​statsmodels.​org/​devel/​generated/​statsmodels.​tsa.​stattools.​acf.​html)
 
22
The random walk model considers that the series history is not important for predicting the next period, only the value of the last period plus a white noise error. For a thorough analysis of the random walk hypothesis for stock market prices, we refer the reader to the work by Fama [64].
 
23
Cross-validation is a technique used to improve the pattern detection of deep learning models, especially on small datasets, by separating the training subset into several splits. For a thorough analysis of this concept, we refer the reader to the works by Prechelt [65] and Hu et al. [66].
 
Literatur
2.
Zurück zum Zitat Baber, J. R., Wickersham, T. A., Sawyer, J. E., Freetly, H. C., Brown-Brandl, T. M., & Hales, K. E. (2020). Effects of diet type on nutrient utilization and energy balance in drylot heifers. Journal of Animal Science, 98(1), 1–8.CrossRef Baber, J. R., Wickersham, T. A., Sawyer, J. E., Freetly, H. C., Brown-Brandl, T. M., & Hales, K. E. (2020). Effects of diet type on nutrient utilization and energy balance in drylot heifers. Journal of Animal Science, 98(1), 1–8.CrossRef
3.
Zurück zum Zitat Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert Systems with Applications, 38(5), 5311–5319.CrossRef Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert Systems with Applications, 38(5), 5311–5319.CrossRef
4.
Zurück zum Zitat Goçken, M., Özçalici, M., Boru, A., & Dosdogru, A. T. (2016). Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Systems with Applications, 44, 320–331.CrossRef Goçken, M., Özçalici, M., Boru, A., & Dosdogru, A. T. (2016). Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Systems with Applications, 44, 320–331.CrossRef
5.
Zurück zum Zitat Di Persio, L., & Honchar, O. (2016). Artificial neural networks architectures for stock price prediction: Comparisons and applications. International Journal of Circuits, Systems and Signal Processing, 10, 403–413. Di Persio, L., & Honchar, O. (2016). Artificial neural networks architectures for stock price prediction: Comparisons and applications. International Journal of Circuits, Systems and Signal Processing, 10, 403–413.
6.
Zurück zum Zitat Weng, B., Lu, L., Wang, X., Megahed, F. M., & Martinez, W. (2018). Predicting short-term stock prices using ensemble methods and online data sources. Expert Systems with Applications, 112, 258–273.CrossRef Weng, B., Lu, L., Wang, X., Megahed, F. M., & Martinez, W. (2018). Predicting short-term stock prices using ensemble methods and online data sources. Expert Systems with Applications, 112, 258–273.CrossRef
7.
Zurück zum Zitat Nasira, G. M., & Hemageetha, N. (2012). Vegetable price prediction using data mining classification technique. In: International conference on pattern recognition, informatics and medical engineering (PRIME-2012). IEEE. pp. 99–102. Nasira, G. M., & Hemageetha, N. (2012). Vegetable price prediction using data mining classification technique. In: International conference on pattern recognition, informatics and medical engineering (PRIME-2012). IEEE. pp. 99–102.
8.
Zurück zum Zitat Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.CrossRef Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.CrossRef
9.
Zurück zum Zitat Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock price prediction using the ARIMA model. In: 2014 UKSim-AMSS 16th international conference on computer modeelling and simulation. IEEE. pp. 106–112. Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock price prediction using the ARIMA model. In: 2014 UKSim-AMSS 16th international conference on computer modeelling and simulation. IEEE. pp. 106–112.
10.
Zurück zum Zitat Rotela, J. R. P., Salomon, F. L. R., & Pamplona, E. O. (2014). ARIMA: An applied time series forecasting model for the Bovespa stock index. Applied Mathematics, 5(21), 3383–3391.CrossRef Rotela, J. R. P., Salomon, F. L. R., & Pamplona, E. O. (2014). ARIMA: An applied time series forecasting model for the Bovespa stock index. Applied Mathematics, 5(21), 3383–3391.CrossRef
11.
Zurück zum Zitat Kanchymalay, K., Salim, N., Sukprasert, A., Krishnan, R., & Hashim, U. R. A. (2017). Multivariate time series forecasting of crude palm oil price using machine learning techniques. IOP Conference Series: Materials Science and Engineering, 226(012117), 1–9. Kanchymalay, K., Salim, N., Sukprasert, A., Krishnan, R., & Hashim, U. R. A. (2017). Multivariate time series forecasting of crude palm oil price using machine learning techniques. IOP Conference Series: Materials Science and Engineering, 226(012117), 1–9.
12.
Zurück zum Zitat Ghosal, D., Bhatnagar, S., Akhtar, S., Ekbal, A., & Bhattacharyya, P. (2017). IITP at SemEval-2017 task 5: An ensemble of deep learning and feature based models for financial sentiment analysis. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017), ACL, Canada, pp. 899–903. Ghosal, D., Bhatnagar, S., Akhtar, S., Ekbal, A., & Bhattacharyya, P. (2017). IITP at SemEval-2017 task 5: An ensemble of deep learning and feature based models for financial sentiment analysis. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017), ACL, Canada, pp. 899–903.
13.
Zurück zum Zitat Mansar, Y., Gatti, L., Ferradans, S., Guerini, M., & Staiano, J. (2017). Fortia-FBK at SemEval-2017 task 5: Bullish or bearish? Inferring sentiment towards brands from financial news headlines. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017), ACL, Canada, pp.1–6. Mansar, Y., Gatti, L., Ferradans, S., Guerini, M., & Staiano, J. (2017). Fortia-FBK at SemEval-2017 task 5: Bullish or bearish? Inferring sentiment towards brands from financial news headlines. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017), ACL, Canada, pp.1–6.
14.
Zurück zum Zitat Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653–7670.CrossRef Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653–7670.CrossRef
15.
Zurück zum Zitat Zhang, Y., & Wallace, B. C. (2017). A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. In: Proceedings of the 8th international joint conference on natural language processing, AFNLP, Taiwan, pp.253–263. Zhang, Y., & Wallace, B. C. (2017). A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. In: Proceedings of the 8th international joint conference on natural language processing, AFNLP, Taiwan, pp.253–263.
16.
Zurück zum Zitat Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205.CrossRef Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205.CrossRef
17.
Zurück zum Zitat Jiang, Z., Liu, C., Hendricks, N. P., Ganapathysubramanian, B., Hayes, D. J., & Sarkar, S. (2018). Predicting county level corn yields using deep long short term memory models. arXiv preprint arXiv:1805.12044, pp.1–26. Jiang, Z., Liu, C., Hendricks, N. P., Ganapathysubramanian, B., Hayes, D. J., & Sarkar, S. (2018). Predicting county level corn yields using deep long short term memory models. arXiv preprint arXiv:1805.12044, pp.1–26.
18.
Zurück zum Zitat Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.CrossRef Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.CrossRef
19.
Zurück zum Zitat Xiong, T., Li, C., Bao, Y., Hu, Z., & Zhang, L. (2015). A combination method for interval forecasting of agricultural commodity futures prices. Knowledge-Based Systems, 77, 92–102.CrossRef Xiong, T., Li, C., Bao, Y., Hu, Z., & Zhang, L. (2015). A combination method for interval forecasting of agricultural commodity futures prices. Knowledge-Based Systems, 77, 92–102.CrossRef
20.
Zurück zum Zitat Khamis, A., & Abdullah, S. N. S. B. (2014). Forecasting wheat price using backpropagation and NARX neural network. The International Journal of Engineering and Science, 3(11), 19–26. Khamis, A., & Abdullah, S. N. S. B. (2014). Forecasting wheat price using backpropagation and NARX neural network. The International Journal of Engineering and Science, 3(11), 19–26.
21.
Zurück zum Zitat Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., & Wang, F. Y. (2019). Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler. IEEE Transactions on Computational Social Systems, 6(3), 547–553.CrossRef Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., & Wang, F. Y. (2019). Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler. IEEE Transactions on Computational Social Systems, 6(3), 547–553.CrossRef
22.
Zurück zum Zitat Wang, C., & Gao, Q. (2018). High and low prices prediction of soybean futures with LSTM neural network. In: 2018 IEEE 9th international conference on software engineering and service science (ICSESS). IEEE. pp.140–143. Wang, C., & Gao, Q. (2018). High and low prices prediction of soybean futures with LSTM neural network. In: 2018 IEEE 9th international conference on software engineering and service science (ICSESS). IEEE. pp.140–143.
23.
Zurück zum Zitat Xiong, T., Li, C., & Bao, Y. (2018). Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM method: Evidence from the vegetable market in China. Neurocomputing, 275, 2831–2844.CrossRef Xiong, T., Li, C., & Bao, Y. (2018). Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM method: Evidence from the vegetable market in China. Neurocomputing, 275, 2831–2844.CrossRef
24.
Zurück zum Zitat Kantanantha, N., Serban, N., & Griffin, P. (2010). Yield and price forecasting for stochastic crop decision planning. Journal of Agricultural, Biological, and Environmental Statistics, 15(3), 362–380.MathSciNetMATHCrossRef Kantanantha, N., Serban, N., & Griffin, P. (2010). Yield and price forecasting for stochastic crop decision planning. Journal of Agricultural, Biological, and Environmental Statistics, 15(3), 362–380.MathSciNetMATHCrossRef
25.
Zurück zum Zitat Kamilaris, A., Kartakoullis, A., & Prenafeta-boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37.CrossRef Kamilaris, A., Kartakoullis, A., & Prenafeta-boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37.CrossRef
26.
Zurück zum Zitat Verdouw, C. N., et al. (2010). Process modelling in demand-driven supply chains: A reference model for the fruit industry. Computers and Electronics in Agriculture, 73(2), 174–187.CrossRef Verdouw, C. N., et al. (2010). Process modelling in demand-driven supply chains: A reference model for the fruit industry. Computers and Electronics in Agriculture, 73(2), 174–187.CrossRef
27.
Zurück zum Zitat Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European conference on information retrieval, ECIR (pp. 345–359). Springer. Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European conference on information retrieval, ECIR (pp. 345–359). Springer.
28.
Zurück zum Zitat Marto, T., Silva, R. F., Paula, A. M., Costa, A. H. R., & Cugnasca, C. E. (2019). Development of a labelled dataset of Brazilian agricultural market news titles for sentiment analysis. In: XII Congresso Brasileiro de Agroinformática (SBIAGRO), Brazil, pp.528–537. Marto, T., Silva, R. F., Paula, A. M., Costa, A. H. R., & Cugnasca, C. E. (2019). Development of a labelled dataset of Brazilian agricultural market news titles for sentiment analysis. In: XII Congresso Brasileiro de Agroinformática (SBIAGRO), Brazil, pp.528–537.
29.
Zurück zum Zitat Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural Systems, 153, 69–80.CrossRef Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural Systems, 153, 69–80.CrossRef
30.
Zurück zum Zitat Han, L., Liang, R., & Tang, K. E. (2013). Cross-market soybean futures price discovery: Does the Dalian commodity exchange affect the Chicago Board of Trade? Quantitative Finance, 13(4), 613–626.MathSciNetCrossRef Han, L., Liang, R., & Tang, K. E. (2013). Cross-market soybean futures price discovery: Does the Dalian commodity exchange affect the Chicago Board of Trade? Quantitative Finance, 13(4), 613–626.MathSciNetCrossRef
31.
Zurück zum Zitat Hamadi, H., Bassil, C., & Nehme, T. (2017). News surprises and volatility spillover among agricultural commodities: The case of corn, wheat, soybean and soybean oil. Research in International Business and Finance, 41, 148–157.CrossRef Hamadi, H., Bassil, C., & Nehme, T. (2017). News surprises and volatility spillover among agricultural commodities: The case of corn, wheat, soybean and soybean oil. Research in International Business and Finance, 41, 148–157.CrossRef
32.
Zurück zum Zitat Czudaj, R. L. (2020). The role of uncertainty on agricultural futures markets momentum trading and volatility. Studies in Nonlinear Dynamics & Econometrics, 24(3), 20180054. Czudaj, R. L. (2020). The role of uncertainty on agricultural futures markets momentum trading and volatility. Studies in Nonlinear Dynamics & Econometrics, 24(3), 20180054.
33.
Zurück zum Zitat Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124, 226–251.CrossRef Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124, 226–251.CrossRef
34.
Zurück zum Zitat Ghahramani, Z. (2003). Unsupervised learning. In: Summer School on Machine Learning. Springer: Berlin, 72–112. Ghahramani, Z. (2003). Unsupervised learning. In: Summer School on Machine Learning. Springer: Berlin, 72–112.
35.
Zurück zum Zitat Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019, pp. 1–38. Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019, pp. 1–38.
36.
Zurück zum Zitat Ferreira, T., Paiva, F., Silva, R., Paula, A., Costa, A., & Cugnasca, C. (2019). Assessing reegression-based sentiment analysis techniques in financial texts. In: Proceedings of the XVI National Meeting on Artificial and Computational Intelligence. SBC. pp.729–740. Ferreira, T., Paiva, F., Silva, R., Paula, A., Costa, A., & Cugnasca, C. (2019). Assessing reegression-based sentiment analysis techniques in financial texts. In: Proceedings of the XVI National Meeting on Artificial and Computational Intelligence. SBC. pp.729–740.
37.
Zurück zum Zitat Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165–1195.CrossRef Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165–1195.CrossRef
38.
Zurück zum Zitat Schäfer, A. M., & Zimmermann, H. G. (2007). Recurrent neural networks are universal approximators. International Journal of Neural Systems, 17(4), 253–263.CrossRef Schäfer, A. M., & Zimmermann, H. G. (2007). Recurrent neural networks are universal approximators. International Journal of Neural Systems, 17(4), 253–263.CrossRef
39.
Zurück zum Zitat Pasini, A. (2015). Artificial neural networks for small dataset analysis. Journal of Thoracic Disease, 7(5), 953–960. Pasini, A. (2015). Artificial neural networks for small dataset analysis. Journal of Thoracic Disease, 7(5), 953–960.
40.
Zurück zum Zitat Shaikhina, T., & Khovanova, N. A. (2017). Handling limited datasets with neural networks in medical applications: A small-data approach. Artificial Intelligence in Medicine, 75, 51–63.CrossRef Shaikhina, T., & Khovanova, N. A. (2017). Handling limited datasets with neural networks in medical applications: A small-data approach. Artificial Intelligence in Medicine, 75, 51–63.CrossRef
41.
Zurück zum Zitat Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235–1270.MathSciNetMATHCrossRef Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235–1270.MathSciNetMATHCrossRef
42.
Zurück zum Zitat Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Continual prediction using LSTM with forget gates. In Neural Nets WIRN Vietri-99 (pp. 133–138). Springer.CrossRef Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Continual prediction using LSTM with forget gates. In Neural Nets WIRN Vietri-99 (pp. 133–138). Springer.CrossRef
43.
Zurück zum Zitat Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef
44.
Zurück zum Zitat Nelson, D. M., Pereira, A. C., & Oliveira, R. A. (2017). Stock market's price movement prediction with LSTM neural networks. In: Proceedings of the 2017 international joint conference on neural networks (IJCNN). IEEE, USA, pp.1419–1426. Nelson, D. M., Pereira, A. C., & Oliveira, R. A. (2017). Stock market's price movement prediction with LSTM neural networks. In: Proceedings of the 2017 international joint conference on neural networks (IJCNN). IEEE, USA, pp.1419–1426.
45.
Zurück zum Zitat Feuerriegel, S., & Gordon, J. (2019). News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions. European Journal of Operational Research, 272(1), 162–175.MathSciNetMATHCrossRef Feuerriegel, S., & Gordon, J. (2019). News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions. European Journal of Operational Research, 272(1), 162–175.MathSciNetMATHCrossRef
46.
Zurück zum Zitat Joseph, K., & Garcia, P. (2018). Intraday market effects in electronic soybean futures market during non-trading and trading hour announcements. Applied Economics, 50(11), 1188–1202.CrossRef Joseph, K., & Garcia, P. (2018). Intraday market effects in electronic soybean futures market during non-trading and trading hour announcements. Applied Economics, 50(11), 1188–1202.CrossRef
47.
Zurück zum Zitat Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Intelligent asset allocation via market sentiment views. IEEE Computational Intelligence Magazine, 13(4), 25–34.CrossRef Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Intelligent asset allocation via market sentiment views. IEEE Computational Intelligence Magazine, 13(4), 25–34.CrossRef
48.
Zurück zum Zitat Zhang, W., & Skiena, S. (2010). Trading strategies to exploit blog and news sentiment. In: Fourth international AAAI conference on weblogs and social media, AAAI, USA, pp.375–378. Zhang, W., & Skiena, S. (2010). Trading strategies to exploit blog and news sentiment. In: Fourth international AAAI conference on weblogs and social media, AAAI, USA, pp.375–378.
49.
Zurück zum Zitat Mukherjee, S., & Bhattacharyya, P. (2012). Feature specific sentiment analysis for product reviews. In International conference on intelligent text processing and computational linguistics (pp. 475–487). Springer. Mukherjee, S., & Bhattacharyya, P. (2012). Feature specific sentiment analysis for product reviews. In International conference on intelligent text processing and computational linguistics (pp. 475–487). Springer.
50.
Zurück zum Zitat Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012). A system for real-time twitter sentiment analysis of 2012 U.S. presidential election cycle. In: Proceedings of the ACL 2012 system demonstrations, ACL, Jeju Island, Korea. pp.115–120. Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012). A system for real-time twitter sentiment analysis of 2012 U.S. presidential election cycle. In: Proceedings of the ACL 2012 system demonstrations, ACL, Jeju Island, Korea. pp.115–120.
51.
Zurück zum Zitat Ren, R., Wu, D. D., & Liu, T. (2018). Forecasting stock market movement direction using sentiment analysis and support vector machine. IEEE Systems Journal, 99, 1–11. Ren, R., Wu, D. D., & Liu, T. (2018). Forecasting stock market movement direction using sentiment analysis and support vector machine. IEEE Systems Journal, 99, 1–11.
52.
Zurück zum Zitat Ruder, S., Ghaffari, P., & Breslin, J. G. (2016). A hierarchical model of reviews for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on empirical methods in natural language processing, Austin, ACL, Texas, USA, pp. 999–1005. Ruder, S., Ghaffari, P., & Breslin, J. G. (2016). A hierarchical model of reviews for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on empirical methods in natural language processing, Austin, ACL, Texas, USA, pp. 999–1005.
53.
Zurück zum Zitat Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), 1–25. Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), 1–25.
54.
Zurück zum Zitat Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), ACL, Qatar, pp.1532–1543. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), ACL, Qatar, pp.1532–1543.
55.
Zurück zum Zitat LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1–14. LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1–14.
56.
Zurück zum Zitat Neuenschwander, B., Pereira, A., Meira Jr, W., & Barbosa, D. (2014). Sentiment analysis for streams of web data: A case study of Brazilian financial markets. In: Proceedings of the 20th Brazilian symposium on multimedia and the web, ACM, Brazil, pp.167–170. Neuenschwander, B., Pereira, A., Meira Jr, W., & Barbosa, D. (2014). Sentiment analysis for streams of web data: A case study of Brazilian financial markets. In: Proceedings of the 20th Brazilian symposium on multimedia and the web, ACM, Brazil, pp.167–170.
57.
Zurück zum Zitat Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Rodrigues, J., & Aluisio, S. (2017). Portuguese woerd embeddings: Evaluating on word analogies and natural language tasks. arXiv preprint arXiv:1708.06025, pp.1–7. Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Rodrigues, J., & Aluisio, S. (2017). Portuguese woerd embeddings: Evaluating on word analogies and natural language tasks. arXiv preprint arXiv:1708.06025, pp.1–7.
58.
Zurück zum Zitat Silva, M.J., Carvalho, P., & Sarmento, L. (2012). Building a sentiment lexicon for social judgement mining. In: Lecture notes in computer science (LNCS)/lecture notes in artificial intelligence (LNAI), international conference on computational processing of Portuguese (PROPOR), Coimbra, Portugal, pp. 218–228. Silva, M.J., Carvalho, P., & Sarmento, L. (2012). Building a sentiment lexicon for social judgement mining. In: Lecture notes in computer science (LNCS)/lecture notes in artificial intelligence (LNAI), international conference on computational processing of Portuguese (PROPOR), Coimbra, Portugal, pp. 218–228.
59.
Zurück zum Zitat Souza, M., & Vieira, R. (2011). Construction of a portuguese opinion lexicon from multiple resources. In: Proceedings of the 8th Brazilian symposium in information and human language technology, Brazil, pp. 59–66. Souza, M., & Vieira, R. (2011). Construction of a portuguese opinion lexicon from multiple resources. In: Proceedings of the 8th Brazilian symposium in information and human language technology, Brazil, pp. 59–66.
60.
Zurück zum Zitat Souza, M., & Vieira, R. (2012). Sentiment analysis on twitter data for Portuguese language. In: Proceedings of the 10th international conference computational processing of the Portuguese language, Springer, Berlin, Heidelberg, pp. 241–247. Souza, M., & Vieira, R. (2012). Sentiment analysis on twitter data for Portuguese language. In: Proceedings of the 10th international conference computational processing of the Portuguese language, Springer, Berlin, Heidelberg, pp. 241–247.
61.
Zurück zum Zitat Pasqualotti, P. R., & Vieira, R. (2008). WordnetAffectBR: uma base lexical de palavras de emoções para a língua portuguesa. RENOTE-Revista Novas Tecnologias na Educação, 6(1), 1–10. Pasqualotti, P. R., & Vieira, R. (2008). WordnetAffectBR: uma base lexical de palavras de emoções para a língua portuguesa. RENOTE-Revista Novas Tecnologias na Educação, 6(1), 1–10.
62.
Zurück zum Zitat Witt, A., Kurths, J., & Pikovsky, A. (1998). Testing stationarity in time series. Physical Review E, 58(2), 1800–1810.CrossRef Witt, A., Kurths, J., & Pikovsky, A. (1998). Testing stationarity in time series. Physical Review E, 58(2), 1800–1810.CrossRef
63.
Zurück zum Zitat Hamilton, D. C., & Watts, D. G. (1978). Interpreting partial autocorrelation functions of seasonal time series models. Biometrika, 65(1), 135–140.MATHCrossRef Hamilton, D. C., & Watts, D. G. (1978). Interpreting partial autocorrelation functions of seasonal time series models. Biometrika, 65(1), 135–140.MATHCrossRef
64.
Zurück zum Zitat Fama, E. F. (1995). Random walks in stock market prices. Financial Analysts Journal, 51(1), 75–80.CrossRef Fama, E. F. (1995). Random walks in stock market prices. Financial Analysts Journal, 51(1), 75–80.CrossRef
65.
Zurück zum Zitat Prechelt, L. (1998). Automatic early stopping using cross validation: Quantifying the criteria. Neural Networks, 11(4), 761–767.CrossRef Prechelt, L. (1998). Automatic early stopping using cross validation: Quantifying the criteria. Neural Networks, 11(4), 761–767.CrossRef
66.
Zurück zum Zitat Hu, M. Y., Zhang, G., Jiang, C. X., & Patuwo, B. E. (1999). A cross-validation analysis of neural network out-of-sample performance in exchange rate forecasting. Decision Sciences, 30(1), 197–216.CrossRef Hu, M. Y., Zhang, G., Jiang, C. X., & Patuwo, B. E. (1999). A cross-validation analysis of neural network out-of-sample performance in exchange rate forecasting. Decision Sciences, 30(1), 197–216.CrossRef
Metadaten
Titel
Soybean Price Trend Forecast Using Deep Learning Techniques Based on Prices and Text Sentiments
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-84148-5_10

Premium Partner