Skip to main content

2014 | OriginalPaper | Buchkapitel

Spontaneous Assembly and Induced Aggregation of Food Proteins

verfasst von : Saïd Bouhallab, Thomas Croguennec

Erschienen in: Polyelectrolyte Complexes in the Dispersed and Solid State II

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Beyond their nutritional value, food proteins are a versatile group of biopolymers with a considerable number of functionalities throughout their extensive structures, conformations and interaction–aggregation behaviour in solution. In the present paper, we give an overview of the induced aggregation and spontaneous reversible assembly of food proteins that lead to a diversity of supramolecular structures. After a brief description of the properties of some food proteins, the first part summarises the aggregation processes that lead to supramolecular structures with a variety of morphologies and sizes. The second part reports on the requirements that drive spontaneous assembly of oppositely charged proteins into reversible supramolecular structures. The promising new applications of these structures in food and non-food sectors are also mentioned.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Graveland-Bikker JF, Ipsen R, Otte J et al (2004) Influence of calcium on the self-assembly of partially hydrolyzed α-lactalbumin. Langmuir 20:6841–6846 Graveland-Bikker JF, Ipsen R, Otte J et al (2004) Influence of calcium on the self-assembly of partially hydrolyzed α-lactalbumin. Langmuir 20:6841–6846
2.
Zurück zum Zitat Graveland-Bikker JF, de Kruifs CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203 Graveland-Bikker JF, de Kruifs CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203
3.
Zurück zum Zitat Nigen M, Croguennec T, Renard D et al (2007) Temperature affects the supramolecular structures resulting from alpha-lactalbumin-lysozyme interaction. Biochemistry 46:1248–1255 Nigen M, Croguennec T, Renard D et al (2007) Temperature affects the supramolecular structures resulting from alpha-lactalbumin-lysozyme interaction. Biochemistry 46:1248–1255
4.
Zurück zum Zitat Ipsen R, Otte J (2007) Self-assembly of partially hydrolysed alpha-lactalbumin. Biotechnol Adv 25:602–605 Ipsen R, Otte J (2007) Self-assembly of partially hydrolysed alpha-lactalbumin. Biotechnol Adv 25:602–605
5.
Zurück zum Zitat Desfougères Y, Croguennec T, Lechevalier V et al (2010) Charge and size drive spontaneous self-assembly of oppositely charged globular proteins into microspheres. J Phys Chem 114:4138–4144 Desfougères Y, Croguennec T, Lechevalier V et al (2010) Charge and size drive spontaneous self-assembly of oppositely charged globular proteins into microspheres. J Phys Chem 114:4138–4144
6.
Zurück zum Zitat Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178 Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178
7.
Zurück zum Zitat Donald AM (2008) Aggregation in β-lactoglobulin. Soft Matter 4:1147–1150 Donald AM (2008) Aggregation in β-lactoglobulin. Soft Matter 4:1147–1150
8.
Zurück zum Zitat Krebs MRH, Domike KR, Cannon D et al (2008) Common motif in protein self-assembly. Faraday Discuss 139:265–274 Krebs MRH, Domike KR, Cannon D et al (2008) Common motif in protein self-assembly. Faraday Discuss 139:265–274
9.
Zurück zum Zitat Dickinson E, Semenova MG, Belyakova LE et al (2001) Analysis of light scattering data on the calcium ion sensitivity of caseinate solution thermodynamics: relationship to emulsion flocculation. J Colloid Interface Sci 239(1):87–97 Dickinson E, Semenova MG, Belyakova LE et al (2001) Analysis of light scattering data on the calcium ion sensitivity of caseinate solution thermodynamics: relationship to emulsion flocculation. J Colloid Interface Sci 239(1):87–97
10.
Zurück zum Zitat Unterhaslberger G, Schmitt C, Sanchez C et al (2006) Heat denaturation and aggregation of beta-lacto globulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0. Food Hydrocolloid 20:1006–1019 Unterhaslberger G, Schmitt C, Sanchez C et al (2006) Heat denaturation and aggregation of beta-lacto globulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0. Food Hydrocolloid 20:1006–1019
11.
Zurück zum Zitat Yang F Jr, Zhang M, Zhou BR et al (2006) Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. J Mol Biol 362:821–834 Yang F Jr, Zhang M, Zhou BR et al (2006) Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. J Mol Biol 362:821–834
12.
Zurück zum Zitat Nigen M, Croguennec T, Bouhallab S (2009) Formation and stability of alpha-lactalbumin-lysozyme spherical particles: involvement of electrostatic forces. Food Hydrocolloid 23:510–518 Nigen M, Croguennec T, Bouhallab S (2009) Formation and stability of alpha-lactalbumin-lysozyme spherical particles: involvement of electrostatic forces. Food Hydrocolloid 23:510–518
13.
Zurück zum Zitat Thorn DC, Meehan S, Sunde M et al (2005) Amyloid fibril formation by bovine milk k-casein and its inhibition by the molecular chaperones αs- and β-casein. Biochemistry 44:17027–17036 Thorn DC, Meehan S, Sunde M et al (2005) Amyloid fibril formation by bovine milk k-casein and its inhibition by the molecular chaperones αs- and β-casein. Biochemistry 44:17027–17036
14.
Zurück zum Zitat Léonil J, Henry G, Jouanneau D et al (2008) Kinetics of fibril formation of bovine κ-casein indicate a conformational rearrangement as a critical step in the process. J Mol Biol 381:1267–1280 Léonil J, Henry G, Jouanneau D et al (2008) Kinetics of fibril formation of bovine κ-casein indicate a conformational rearrangement as a critical step in the process. J Mol Biol 381:1267–1280
15.
Zurück zum Zitat Schmitt C, Bovay C, Vuilliomenet A-M et al (2011) Influence of protein and mineral composition on the formation of whey protein heat-induced microgels. Food Hydrocolloid 25:558–567 Schmitt C, Bovay C, Vuilliomenet A-M et al (2011) Influence of protein and mineral composition on the formation of whey protein heat-induced microgels. Food Hydrocolloid 25:558–567
16.
Zurück zum Zitat Keskin O, Gursoy A, Ma B (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244 Keskin O, Gursoy A, Ma B (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244
17.
Zurück zum Zitat Min Y, Akbulut M, Kristiansen K et al (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538 Min Y, Akbulut M, Kristiansen K et al (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538
18.
Zurück zum Zitat Krebs MRH, Wilkins DK, Chung EW et al (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. J Mol Biol 300:541–549 Krebs MRH, Wilkins DK, Chung EW et al (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. J Mol Biol 300:541–549
19.
Zurück zum Zitat Gosal WS, Clark AH, Pudney (2002) Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin. Langmuir 18:7174–7181 Gosal WS, Clark AH, Pudney (2002) Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin. Langmuir 18:7174–7181
20.
Zurück zum Zitat Gosal WS, Clark AH, Ross-Murphy SB (2004) Fibrillar β-lactoglobulin gels: part 1: fibril formation and structure. Biomacromolecules 5:2408–2419 Gosal WS, Clark AH, Ross-Murphy SB (2004) Fibrillar β-lactoglobulin gels: part 1: fibril formation and structure. Biomacromolecules 5:2408–2419
21.
Zurück zum Zitat Rasmussen P, Barbiroli A, Bonomi et al (2007) Formation of structured polymers upon controlled denaturation of β-lactoglobulin with different chaotropes. Biopolymers 86:57–72 Rasmussen P, Barbiroli A, Bonomi et al (2007) Formation of structured polymers upon controlled denaturation of β-lactoglobulin with different chaotropes. Biopolymers 86:57–72
22.
Zurück zum Zitat Akkermans C, van der Goot AJ, Venema P et al (2007) Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J Agric Food Chem 55:9877–9882 Akkermans C, van der Goot AJ, Venema P et al (2007) Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J Agric Food Chem 55:9877–9882
23.
Zurück zum Zitat Lara C, Adamcik J, Jordens S et al (2011) General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12:1868–1875 Lara C, Adamcik J, Jordens S et al (2011) General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12:1868–1875
24.
Zurück zum Zitat Gummel J, Cousin F, Boué F (2007) Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J Am Chem Soc 129:5806–5807 Gummel J, Cousin F, Boué F (2007) Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J Am Chem Soc 129:5806–5807
25.
Zurück zum Zitat Semenova MG (2007) Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloid 21:23–45 Semenova MG (2007) Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloid 21:23–45
26.
Zurück zum Zitat Viney C (2004) Self-assembly as a route to fibrous materials: concepts, opportunities and challenges. Curr Opin Solid State Mater Sci 8:95–101 Viney C (2004) Self-assembly as a route to fibrous materials: concepts, opportunities and challenges. Curr Opin Solid State Mater Sci 8:95–101
27.
Zurück zum Zitat Velikov KP, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4:1964–1980 Velikov KP, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4:1964–1980
28.
Zurück zum Zitat Gummel J, Boué F, Clemens D et al (2008) Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolytes. Soft Matter 4(8):1653–1664 Gummel J, Boué F, Clemens D et al (2008) Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolytes. Soft Matter 4(8):1653–1664
29.
Zurück zum Zitat Doubliez JL, Garnier C, Renard D et al (2000) Protein-polysaccharide interactions. Curr Opin Colloid Interface Sci 5:202–214 Doubliez JL, Garnier C, Renard D et al (2000) Protein-polysaccharide interactions. Curr Opin Colloid Interface Sci 5:202–214
30.
Zurück zum Zitat de Kruif CG, Weinbreck F, de Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9:340–349 de Kruif CG, Weinbreck F, de Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9:340–349
31.
Zurück zum Zitat Cooper CL, Dubin PL, Kayitmazer AB et al (2005) Polyelectrolyte-protein complexes. Curr Opin Colloid Interface Sci 10:52–78 Cooper CL, Dubin PL, Kayitmazer AB et al (2005) Polyelectrolyte-protein complexes. Curr Opin Colloid Interface Sci 10:52–78
32.
Zurück zum Zitat de Vries R, Cohen Stuart M (2006) Theory and simulations of macroion complexation. Curr Opin Colloid Interface Sci 11:295–301 de Vries R, Cohen Stuart M (2006) Theory and simulations of macroion complexation. Curr Opin Colloid Interface Sci 11:295–301
33.
Zurück zum Zitat Hales K, Pochan DJ (2006) Using polyelectrolyte block copolymers to tune nanostructure assembly. Curr Opin Colloid Interface Sci 11:330–336 Hales K, Pochan DJ (2006) Using polyelectrolyte block copolymers to tune nanostructure assembly. Curr Opin Colloid Interface Sci 11:330–336
34.
Zurück zum Zitat Turgeon SL, Schmitt C, Sanchez C (2007) Protein-polysaccharide complexes and coacervates. Curr Opin Colloid Interface Sci 12(4–5):166–178 Turgeon SL, Schmitt C, Sanchez C (2007) Protein-polysaccharide complexes and coacervates. Curr Opin Colloid Interface Sci 12(4–5):166–178
35.
Zurück zum Zitat Jones GO, McClements DJ (2010) Functional biopolymer particles: design, fabrication, and application. Compr Rev Food Sci Food Safety 9:374–397 Jones GO, McClements DJ (2010) Functional biopolymer particles: design, fabrication, and application. Compr Rev Food Sci Food Safety 9:374–397
36.
Zurück zum Zitat Brownlow S, Cabral JHM, Cooper R et al (1997) Bovine β-lactoglobulin at 1.8 Angstrom resolution – still an enigmatic lipocalin. Structure 5(4):481–495 Brownlow S, Cabral JHM, Cooper R et al (1997) Bovine β-lactoglobulin at 1.8 Angstrom resolution – still an enigmatic lipocalin. Structure 5(4):481–495
37.
Zurück zum Zitat Sawyer L, Kontopidis G (2000) The core lipocalin, bovine β-lactoglobulin. Biochem Biophys Acta 1482:136–148 Sawyer L, Kontopidis G (2000) The core lipocalin, bovine β-lactoglobulin. Biochem Biophys Acta 1482:136–148
38.
Zurück zum Zitat Kontopidis G, Holt G, Sawyer L (2002) The ligand-binding site of bovine β-lactoglobulin: evidence for a function? J Mol Biol 318(4):1043–1055 Kontopidis G, Holt G, Sawyer L (2002) The ligand-binding site of bovine β-lactoglobulin: evidence for a function? J Mol Biol 318(4):1043–1055
39.
Zurück zum Zitat Papiz MZ, Sawyer L, Eliopoulos EE et al (1986) The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385 Papiz MZ, Sawyer L, Eliopoulos EE et al (1986) The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385
40.
Zurück zum Zitat Kitabatake N, Wada R, Fujita Y (2001) Reversible conformational change in beta-lactoglobulin modified with N-ethylmaleimide and resistance to molecular aggregation on heating. J Agric Food Chem 49:4011–4018 Kitabatake N, Wada R, Fujita Y (2001) Reversible conformational change in beta-lactoglobulin modified with N-ethylmaleimide and resistance to molecular aggregation on heating. J Agric Food Chem 49:4011–4018
41.
Zurück zum Zitat Jayat D, Gaudin JC, Chobert JM et al (2004) A recombinant C121S mutant of bovine β-lactoglobulin is more susceptible to peptic digestion and to denaturation by reducing agent and heating. Biochemistry 43:6312–6321 Jayat D, Gaudin JC, Chobert JM et al (2004) A recombinant C121S mutant of bovine β-lactoglobulin is more susceptible to peptic digestion and to denaturation by reducing agent and heating. Biochemistry 43:6312–6321
42.
Zurück zum Zitat Qi XL, Holt C, Mcnulty D et al (1997) Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, As determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem J 324:341–346 Qi XL, Holt C, Mcnulty D et al (1997) Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, As determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem J 324:341–346
43.
Zurück zum Zitat Mattison KW, Dubin PL, Brittain IJ (1998) Complex formation between bovine serum albumin and strong polyelectrolytes: effect of polymer charge density. J Phys Chem B 102:3830–3836 Mattison KW, Dubin PL, Brittain IJ (1998) Complex formation between bovine serum albumin and strong polyelectrolytes: effect of polymer charge density. J Phys Chem B 102:3830–3836
44.
Zurück zum Zitat Brew K, Vanaman TC, Hill RL (1967) Comparison of the amino acid sequence of bovine α-lactalbumin and hen egg white lysozyme. J Biol Chem 242:3747–3748 Brew K, Vanaman TC, Hill RL (1967) Comparison of the amino acid sequence of bovine α-lactalbumin and hen egg white lysozyme. J Biol Chem 242:3747–3748
45.
Zurück zum Zitat Hendrix T, Griko YV, Privalov PL (2000) A calorimetric study of the influence of calcium on the stability of bovine α lactalbumin. Biophys Chem 84:27–34 Hendrix T, Griko YV, Privalov PL (2000) A calorimetric study of the influence of calcium on the stability of bovine α lactalbumin. Biophys Chem 84:27–34
46.
Zurück zum Zitat Hiraoka Y, Secawa T, Kuwajima K et al (1980) α-Lactalbumin: a metalloprotein. Biochem Biophys Res Commun 95(3):1098–1104 Hiraoka Y, Secawa T, Kuwajima K et al (1980) α-Lactalbumin: a metalloprotein. Biochem Biophys Res Commun 95(3):1098–1104
47.
Zurück zum Zitat Bernal V, Jelen P (1984) Effect of calcium binding on thermal denaturation of bovine α-lactalbumin. J Dairy Sci 67:2452–2454 Bernal V, Jelen P (1984) Effect of calcium binding on thermal denaturation of bovine α-lactalbumin. J Dairy Sci 67:2452–2454
48.
Zurück zum Zitat DeWit JN, Klarenbeek G (1984) Effects of various heat treatments on structure and solubility of whey proteins. J Dairy Sci 67:2701–2710 DeWit JN, Klarenbeek G (1984) Effects of various heat treatments on structure and solubility of whey proteins. J Dairy Sci 67:2701–2710
49.
Zurück zum Zitat Griko YV, Remeta DP (1999) Energetics of solvent and ligand induced conformational changes in α-lactalbumin. Protein Sci 8(3):554–561 Griko YV, Remeta DP (1999) Energetics of solvent and ligand induced conformational changes in α-lactalbumin. Protein Sci 8(3):554–561
50.
Zurück zum Zitat Warner RC (1954) In: Neurath H, Bailey K (eds) The proteins, vol 2. Academic, New York, p 443 Warner RC (1954) In: Neurath H, Bailey K (eds) The proteins, vol 2. Academic, New York, p 443
51.
Zurück zum Zitat Li Chan E, Nakai S (1989) Biochemical basis for the properties of egg white. Crit Rev Poult Biol 2:21–57 Li Chan E, Nakai S (1989) Biochemical basis for the properties of egg white. Crit Rev Poult Biol 2:21–57
52.
Zurück zum Zitat Narita K, Ishii J (1962) N terminal sequence in ovalbumin. J Biochem (Tokyo) 52:367–373 Narita K, Ishii J (1962) N terminal sequence in ovalbumin. J Biochem (Tokyo) 52:367–373
53.
Zurück zum Zitat Nisbet AD, Saundry RH, Moir AJ et al (1981) The complete amino acid sequence of hen ovalbumin. Eur J Biochem 115:335–345 Nisbet AD, Saundry RH, Moir AJ et al (1981) The complete amino acid sequence of hen ovalbumin. Eur J Biochem 115:335–345
54.
Zurück zum Zitat Stein PE, Leslie AG, Finch JT et al (1990) Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347:99–102 Stein PE, Leslie AG, Finch JT et al (1990) Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347:99–102
55.
Zurück zum Zitat Stein PE, Leslie AG, Finch JT et al (1991) Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J Mol Biol 221:941–959 Stein PE, Leslie AG, Finch JT et al (1991) Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J Mol Biol 221:941–959
56.
Zurück zum Zitat Matsumoto T, Chiba J, Inoue H (1992) Effect of pH on colloidal properties of native ovalbumin aqueous systems. Colloid Polym Sci 270:687–693 Matsumoto T, Chiba J, Inoue H (1992) Effect of pH on colloidal properties of native ovalbumin aqueous systems. Colloid Polym Sci 270:687–693
57.
Zurück zum Zitat Farrel HM Jr, Qi PX, Uversky VN (2006) New views of protein structure: applications to the caseins: protein structure and functionality. In: Fishman ML, Qi PX, Wisker L (eds) Advances in biopolymers: molecules, clusters, networks, and interactions. American Chemical Society, Washington, DC, pp 52–70 Farrel HM Jr, Qi PX, Uversky VN (2006) New views of protein structure: applications to the caseins: protein structure and functionality. In: Fishman ML, Qi PX, Wisker L (eds) Advances in biopolymers: molecules, clusters, networks, and interactions. American Chemical Society, Washington, DC, pp 52–70
58.
Zurück zum Zitat Holt C, Sawyer L (1993) Caseins as rheomorphic proteins: interpretation of the primary and secondary structures of the αS1, β and κ-caseins. J Chem Soc Faraday Trans 89:2683–2692 Holt C, Sawyer L (1993) Caseins as rheomorphic proteins: interpretation of the primary and secondary structures of the αS1, β and κ-caseins. J Chem Soc Faraday Trans 89:2683–2692
59.
Zurück zum Zitat Fox PF, Brodkorb A (2008) The casein micelle: historical aspects, current concepts and significance. Int Dairy J 18:677–684 Fox PF, Brodkorb A (2008) The casein micelle: historical aspects, current concepts and significance. Int Dairy J 18:677–684
60.
Zurück zum Zitat Moore SA, Anderson BF, Groom CR et al (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J Mol Biol 274(2):222–236 Moore SA, Anderson BF, Groom CR et al (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J Mol Biol 274(2):222–236
61.
Zurück zum Zitat Baker EN (1994) Structure and reactivity of transferrins. Adv Inorg Chem 41:389–463 Baker EN (1994) Structure and reactivity of transferrins. Adv Inorg Chem 41:389–463
62.
Zurück zum Zitat Baker EN, Baker HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91(1):3–10 Baker EN, Baker HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91(1):3–10
63.
Zurück zum Zitat Spik G, Coddeville B, Mazurier J et al (1994) Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Adv Exp Med Biol 357:21–32 Spik G, Coddeville B, Mazurier J et al (1994) Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Adv Exp Med Biol 357:21–32
64.
Zurück zum Zitat Antonini G, Rossi P, Pitari G et al (2000) Role of glycan in bovine lactoferrin. In: Shimakaki K, Tsuda H, Tomita M, Kuwata T, Perraudin JP (eds) Lactoferrin: structure, function and applications. Elsevier Science, Amsterdam, pp 3–16 Antonini G, Rossi P, Pitari G et al (2000) Role of glycan in bovine lactoferrin. In: Shimakaki K, Tsuda H, Tomita M, Kuwata T, Perraudin JP (eds) Lactoferrin: structure, function and applications. Elsevier Science, Amsterdam, pp 3–16
65.
Zurück zum Zitat Rossi P, Giansanti F, Boffi A et al (2002) Ca2+ Binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochem Cell Biol 80:41–48 Rossi P, Giansanti F, Boffi A et al (2002) Ca2+ Binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochem Cell Biol 80:41–48
66.
Zurück zum Zitat Chaufer B, Rabiller-Baudry M, Lucas D et al (2000) Selective extraction of lysozyme from a mixture with lactoferrin by ultrafiltration. Role of the physico-chemical environment. Lait 80:197–203 Chaufer B, Rabiller-Baudry M, Lucas D et al (2000) Selective extraction of lysozyme from a mixture with lactoferrin by ultrafiltration. Role of the physico-chemical environment. Lait 80:197–203
67.
Zurück zum Zitat Mela I, Aumaitre E, Williamson A-M et al (2010) Charge reversal by salt-induced aggregation in aqueous lactoferrin solutions. Colloids Surf B 78(1):53–60 Mela I, Aumaitre E, Williamson A-M et al (2010) Charge reversal by salt-induced aggregation in aqueous lactoferrin solutions. Colloids Surf B 78(1):53–60
68.
Zurück zum Zitat Wang J, Dauter M, Alkire H (2007) Triclinic lysozyme at 0.65 Å resolution. Acta Cristallogr D 63(12):1254–1268 Wang J, Dauter M, Alkire H (2007) Triclinic lysozyme at 0.65 Å resolution. Acta Cristallogr D 63(12):1254–1268
69.
Zurück zum Zitat Canfield RE, Liu AK (1965) The disulfide bonds of egg white lysozyme (muramidase). J Biol Chem 240:1997–2002 Canfield RE, Liu AK (1965) The disulfide bonds of egg white lysozyme (muramidase). J Biol Chem 240:1997–2002
70.
Zurück zum Zitat Stradner A, Sedgwick H, Cardinaux F et al (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432(7016):492–495 Stradner A, Sedgwick H, Cardinaux F et al (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432(7016):492–495
71.
Zurück zum Zitat Liu Y, Porcar L, Chen J (2011) Lyzosyme protein solution with an intermediate range order structure. J Phys Chem B 115(22):7238–7247 Liu Y, Porcar L, Chen J (2011) Lyzosyme protein solution with an intermediate range order structure. J Phys Chem B 115(22):7238–7247
72.
Zurück zum Zitat Stradner A, Cardinaux F, Schurtenberger P et al (2006) A small angle scattering study on equilibrium clusters in lysozyme solution. J Phys Chem B 110(42):21222–21231 Stradner A, Cardinaux F, Schurtenberger P et al (2006) A small angle scattering study on equilibrium clusters in lysozyme solution. J Phys Chem B 110(42):21222–21231
73.
Zurück zum Zitat Bolder SG, Hendrickx H, Sagis LMC et al (2006) Fibril assemblies in aqueous whey protein mixtures. J Agric Food Chem 54:4229–4234 Bolder SG, Hendrickx H, Sagis LMC et al (2006) Fibril assemblies in aqueous whey protein mixtures. J Agric Food Chem 54:4229–4234
74.
Zurück zum Zitat Krebs MRH, Domike KR, Donald AM (2009) Protein aggregation: more than just fibrils. Biochem Soc Trans 37(9):682–686 Krebs MRH, Domike KR, Donald AM (2009) Protein aggregation: more than just fibrils. Biochem Soc Trans 37(9):682–686
75.
Zurück zum Zitat Schmitt C, Bovay C, Vuilliomenet A-M et al (2009) Multiscale characterization of individualized β-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Langmuir 25:7899–7909 Schmitt C, Bovay C, Vuilliomenet A-M et al (2009) Multiscale characterization of individualized β-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Langmuir 25:7899–7909
76.
Zurück zum Zitat Trexler AJ, Nilsoon MR (2007) The formation of amyloid fibrils from proteins in the lysozyme family. Curr Protein Pept Sci 8:537–557 Trexler AJ, Nilsoon MR (2007) The formation of amyloid fibrils from proteins in the lysozyme family. Curr Protein Pept Sci 8:537–557
77.
Zurück zum Zitat Lomakin A, Chung DS, Benedek GB et al (1996) On the nucleation and growth of amyloid α-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129 Lomakin A, Chung DS, Benedek GB et al (1996) On the nucleation and growth of amyloid α-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129
78.
Zurück zum Zitat Lomakin A, Teplow DB, Kirschner DA et al (1997) Kinetic theory of fibrillogenesis of amyloid b-protein. Proc Natl Acad Sci USA 94:7942–7947 Lomakin A, Teplow DB, Kirschner DA et al (1997) Kinetic theory of fibrillogenesis of amyloid b-protein. Proc Natl Acad Sci USA 94:7942–7947
79.
Zurück zum Zitat Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366 Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366
80.
Zurück zum Zitat Pellarin R, Guarnera E, Caflisch A (2007) Pathways and intermediates of amyloid fibril formation. J Mol Biol 374:917–924 Pellarin R, Guarnera E, Caflisch A (2007) Pathways and intermediates of amyloid fibril formation. J Mol Biol 374:917–924
81.
Zurück zum Zitat Arnaudov LN, de Vries R (2007) Theoretical modeling of the kinetics of fibrilar aggregation of bovine beta-lactoglobulin at pH 2. J Chem Phys 126:145106 Arnaudov LN, de Vries R (2007) Theoretical modeling of the kinetics of fibrilar aggregation of bovine beta-lactoglobulin at pH 2. J Chem Phys 126:145106
82.
Zurück zum Zitat Bolder SG, Sagis LMC, Venema P et al (2007) Effect of Stirling and seeding on whey proteína fibril formation. J Agric Food Chem 55:5661–5669 Bolder SG, Sagis LMC, Venema P et al (2007) Effect of Stirling and seeding on whey proteína fibril formation. J Agric Food Chem 55:5661–5669
83.
Zurück zum Zitat Loveday SM, Wang XL, Rao MA et al (2012) β-Lactoglobulin nanofibrils: effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocolloid 27:242–249 Loveday SM, Wang XL, Rao MA et al (2012) β-Lactoglobulin nanofibrils: effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocolloid 27:242–249
84.
Zurück zum Zitat Farrell H, Cooke P, Wickham E et al (2003) Environmental influences on bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259–273 Farrell H, Cooke P, Wickham E et al (2003) Environmental influences on bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259–273
85.
Zurück zum Zitat Akkermans C, Venema P, van der Goot AJ et al (2008) Peptides are building blocks of heat-induced fibrillar proteins aggregates of β-Lg formed at pH 2. Biomacromolecules 9:1474–1479 Akkermans C, Venema P, van der Goot AJ et al (2008) Peptides are building blocks of heat-induced fibrillar proteins aggregates of β-Lg formed at pH 2. Biomacromolecules 9:1474–1479
86.
Zurück zum Zitat Kroes-Nijboer A, Venema P, Bouman J et al (2011) Influence of protein hydrolysis on the growth kinetics of β-Lg fibrils. Langmuir 27:5753–5761 Kroes-Nijboer A, Venema P, Bouman J et al (2011) Influence of protein hydrolysis on the growth kinetics of β-Lg fibrils. Langmuir 27:5753–5761
87.
Zurück zum Zitat Hamada D, Tanaka T, Tartaglia GG et al (2009) Competition between folding, native-state dimerisation and amyloid aggregation in β-lactoglobulin. J Mol Biol 386:878–890 Hamada D, Tanaka T, Tartaglia GG et al (2009) Competition between folding, native-state dimerisation and amyloid aggregation in β-lactoglobulin. J Mol Biol 386:878–890
88.
Zurück zum Zitat Arnaudov LN, de Vries R, Ippel H et al (2003) Multiple steps during the formation of beta-lactoglobulin fibrils. Macromolecules 4:1614–1622 Arnaudov LN, de Vries R, Ippel H et al (2003) Multiple steps during the formation of beta-lactoglobulin fibrils. Macromolecules 4:1614–1622
89.
Zurück zum Zitat Arnaudov LN, de Vries R (2006) Strong impact of ionic strength on the kinetics of fibrilar aggregation of β-lactoglobulin. Biomacromolecules 7:3490–3498 Arnaudov LN, de Vries R (2006) Strong impact of ionic strength on the kinetics of fibrilar aggregation of β-lactoglobulin. Biomacromolecules 7:3490–3498
90.
Zurück zum Zitat Bromley EHC, Krebs MRH, Donald AM (2005) Aggregation across the length scales in β-lactoglobulin. Faraday Discuss 128:13–27 Bromley EHC, Krebs MRH, Donald AM (2005) Aggregation across the length scales in β-lactoglobulin. Faraday Discuss 128:13–27
91.
Zurück zum Zitat Krebs MRH, Bromley EHC, Rogers SS et al (2005) The mechanism of amyloid spherulite formation by bovine insulin. Biophys J 88:2013–2021 Krebs MRH, Bromley EHC, Rogers SS et al (2005) The mechanism of amyloid spherulite formation by bovine insulin. Biophys J 88:2013–2021
92.
Zurück zum Zitat Domike KR, Hardin E, Armstead DN et al (2009) Investigating the inner structure of irregular β-lactoglobulin spherulites. Eur Phys J E 29:173–182 Domike KR, Hardin E, Armstead DN et al (2009) Investigating the inner structure of irregular β-lactoglobulin spherulites. Eur Phys J E 29:173–182
93.
Zurück zum Zitat Rogers SS, Krebs MRH, Bromley EHC, van der Linden E, Donald AM (2006) Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro. Biophys J 90:1043–1054 Rogers SS, Krebs MRH, Bromley EHC, van der Linden E, Donald AM (2006) Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro. Biophys J 90:1043–1054
94.
Zurück zum Zitat Domike KR, Donald AM (2007) Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin. Biomacromolecules 8:3930–3937 Domike KR, Donald AM (2007) Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin. Biomacromolecules 8:3930–3937
95.
Zurück zum Zitat Bromley E, Krebs M, Donald A (2006) Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point. Soft Matter 21:145–152 Bromley E, Krebs M, Donald A (2006) Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point. Soft Matter 21:145–152
96.
Zurück zum Zitat Krebs MRH, Devlin GL, Donald AM (2007) Protein particulates: another generic form of protein aggregation? Biophys J 92:1336–1342 Krebs MRH, Devlin GL, Donald AM (2007) Protein particulates: another generic form of protein aggregation? Biophys J 92:1336–1342
97.
Zurück zum Zitat Bengoechea C, Peinado I, McClements DJ (2011) Formation of nanoparticles by controlled heat treatment of lactoferrin: factors affecting particles characteristics. Food Hydrocolloid 25:1354–1360 Bengoechea C, Peinado I, McClements DJ (2011) Formation of nanoparticles by controlled heat treatment of lactoferrin: factors affecting particles characteristics. Food Hydrocolloid 25:1354–1360
98.
Zurück zum Zitat Baussay K, Le Bon C, Nicolai T et al (2004) Influence of ionic strength on the heat-induced aggregation of the globular protein β-lactoglobulin at pH 7.0. Int J Biol Macromol 34:21–28 Baussay K, Le Bon C, Nicolai T et al (2004) Influence of ionic strength on the heat-induced aggregation of the globular protein β-lactoglobulin at pH 7.0. Int J Biol Macromol 34:21–28
99.
Zurück zum Zitat Pouzot M, Nicolai T, Visschers RW et al (2005) X-ray and light scattering study of the structure of large protein aggregates at neutral pH. Food Hydrocolloid 19:231–238 Pouzot M, Nicolai T, Visschers RW et al (2005) X-ray and light scattering study of the structure of large protein aggregates at neutral pH. Food Hydrocolloid 19:231–238
100.
Zurück zum Zitat Donato L, Schmitt C, Bovetto L et al (2009) Mechanism of formation of stable heat-induced β-lactoglobulin microgels. Int Dairy J 19:295–306 Donato L, Schmitt C, Bovetto L et al (2009) Mechanism of formation of stable heat-induced β-lactoglobulin microgels. Int Dairy J 19:295–306
101.
Zurück zum Zitat Le Bon C, Nicolaï T, Durand D (1999) Growth and structure of aggregates of heat-denatured β-lactoglobulin. Int J Food Sci Technol 34:451–465 Le Bon C, Nicolaï T, Durand D (1999) Growth and structure of aggregates of heat-denatured β-lactoglobulin. Int J Food Sci Technol 34:451–465
102.
Zurück zum Zitat Mossa S, Sciortino F, Tartaglia P et al (2004) Ground-state clusters for short-range attractive and lon-range repulsive potentials. Langmuir 20:10756–10763 Mossa S, Sciortino F, Tartaglia P et al (2004) Ground-state clusters for short-range attractive and lon-range repulsive potentials. Langmuir 20:10756–10763
103.
Zurück zum Zitat Sun XS, Wang D, Zhang L et al (2008) Morpholgy and phase separation of hydrophobic clusters of soy globular protein polymers. Macromol Biosci 2008:295–303 Sun XS, Wang D, Zhang L et al (2008) Morpholgy and phase separation of hydrophobic clusters of soy globular protein polymers. Macromol Biosci 2008:295–303
104.
Zurück zum Zitat Zuniga RN, Tolkach A, Kulozik U et al (2010) Kinetics of formation and physicochemical characterization of thermally-induced β-lactoglobulin aggregates. J Food Sci 75:E261–E268 Zuniga RN, Tolkach A, Kulozik U et al (2010) Kinetics of formation and physicochemical characterization of thermally-induced β-lactoglobulin aggregates. J Food Sci 75:E261–E268
105.
Zurück zum Zitat Yu S, Yao P, Jiang M et al (2006) Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers 83:148–158 Yu S, Yao P, Jiang M et al (2006) Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers 83:148–158
106.
Zurück zum Zitat Hu J, Yu S, Yao P (2007) Stable amphoteric nanogels made of ovalbumin and ovotransferrin via self-assembly. Langmuir 23:6358–6364 Hu J, Yu S, Yao P (2007) Stable amphoteric nanogels made of ovalbumin and ovotransferrin via self-assembly. Langmuir 23:6358–6364
107.
Zurück zum Zitat Pan XY, Yu S, Yao P et al (2007) Self-assembly of β-casein and lysozyme. J Colloid Interface Sci 316:405–412 Pan XY, Yu S, Yao P et al (2007) Self-assembly of β-casein and lysozyme. J Colloid Interface Sci 316:405–412
108.
Zurück zum Zitat Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30 Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30
109.
Zurück zum Zitat Ipsen R, Otte J, Qvist KB (2001) Molecular self-assembly of partially hydrolysed α-lactalbumin resulting in strong gels with a novel microstructure. J Dairy Res 68:277–286 Ipsen R, Otte J, Qvist KB (2001) Molecular self-assembly of partially hydrolysed α-lactalbumin resulting in strong gels with a novel microstructure. J Dairy Res 68:277–286
110.
Zurück zum Zitat Ubbink J, Burbidge A, Mezzenga R (2008) Food structure and functionality: a soft matter perspective. Soft Matter 4:1569–1581 Ubbink J, Burbidge A, Mezzenga R (2008) Food structure and functionality: a soft matter perspective. Soft Matter 4:1569–1581
111.
Zurück zum Zitat Jones GO, McClements DJ (2011) Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein–polysaccharide complexes. Adv Colloid Interfac 67:49–62 Jones GO, McClements DJ (2011) Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein–polysaccharide complexes. Adv Colloid Interfac 67:49–62
112.
Zurück zum Zitat Schmitt C, Turgeon SL (2011) Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface 167:63–70 Schmitt C, Turgeon SL (2011) Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface 167:63–70
113.
Zurück zum Zitat Voets IK, de Keizer A, Cohen Stuart MA (2009) Complex coacervate core micelles. Adv Colloid Interface 147–148:300–318 Voets IK, de Keizer A, Cohen Stuart MA (2009) Complex coacervate core micelles. Adv Colloid Interface 147–148:300–318
114.
Zurück zum Zitat Becker AL, Henzler K, Welsch N et al (2012) Proteins and polyelectrolytes: a charged relationship. Curr Opin Colloid Interface Sci 17:90–96 Becker AL, Henzler K, Welsch N et al (2012) Proteins and polyelectrolytes: a charged relationship. Curr Opin Colloid Interface Sci 17:90–96
115.
Zurück zum Zitat Sperber BLHM, Cohen Stuart MA, Schols HA et al (2010) Overall charge and local charge density of pectin determines the enthalpic and entropic contributions to complexation with β-lactoglobulin. Biomacromolecules 11:3578–3583 Sperber BLHM, Cohen Stuart MA, Schols HA et al (2010) Overall charge and local charge density of pectin determines the enthalpic and entropic contributions to complexation with β-lactoglobulin. Biomacromolecules 11:3578–3583
116.
Zurück zum Zitat Ball V, Winterhalter M, Schwinte P et al (2002) Complexation mechanism of bovine serum albumin and poly(allylamine hydrochloride). J Phys Chem B 106:2357–2364 Ball V, Winterhalter M, Schwinte P et al (2002) Complexation mechanism of bovine serum albumin and poly(allylamine hydrochloride). J Phys Chem B 106:2357–2364
117.
Zurück zum Zitat Muthukumar M (1995) Pattern recognition by polyelectrolytes. J Chem Phys 103:4723–4731 Muthukumar M (1995) Pattern recognition by polyelectrolytes. J Chem Phys 103:4723–4731
118.
Zurück zum Zitat Romanini D, Braia M, Angarte RG et al (2007) Interaction of lysozyme with negatively charged flexible chain polymers. J Chromatogr B 857:25–31 Romanini D, Braia M, Angarte RG et al (2007) Interaction of lysozyme with negatively charged flexible chain polymers. J Chromatogr B 857:25–31
119.
Zurück zum Zitat Ivinova ON, Izumrudov VA, Muronetz VI et al (2003) Influence of complexing polyanions on the thermostability of basic proteins. Macromol Biosci 3:210–215 Ivinova ON, Izumrudov VA, Muronetz VI et al (2003) Influence of complexing polyanions on the thermostability of basic proteins. Macromol Biosci 3:210–215
120.
Zurück zum Zitat Gummel J, Boué F, Deme B et al (2006) Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system. J Phys Chem B 110:24837–24846 Gummel J, Boué F, Deme B et al (2006) Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system. J Phys Chem B 110:24837–24846
121.
Zurück zum Zitat Chen YM, Yu CJ, Cheng TL et al (2008) Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir 24:3654–3660 Chen YM, Yu CJ, Cheng TL et al (2008) Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir 24:3654–3660
122.
Zurück zum Zitat Bayraktar H, Srivastava S, You C et al (2008) Controlled nanoparticle assembly through protein conformational changes. Soft Matter 4:629–904 Bayraktar H, Srivastava S, You C et al (2008) Controlled nanoparticle assembly through protein conformational changes. Soft Matter 4:629–904
123.
Zurück zum Zitat Liu Y, Guo R (2007) Interaction between casein and the oppositely charged surfactant. Biomacromolecules 8:2902–2908 Liu Y, Guo R (2007) Interaction between casein and the oppositely charged surfactant. Biomacromolecules 8:2902–2908
124.
Zurück zum Zitat De M, Miranda OR, Rana S et al (2009) Size and geometry dependent protein–nanoparticle self-assembly. Chem Commun 2009(16):2157–2159 De M, Miranda OR, Rana S et al (2009) Size and geometry dependent protein–nanoparticle self-assembly. Chem Commun 2009(16):2157–2159
125.
Zurück zum Zitat Morfin I, Buhler E, Cousin F et al (2011) Rodlike complexes of a polyelectrolyte (hyaluronan) and a protein (lysozyme) observed by SANS. Biomacromolecules 12:859–870 Morfin I, Buhler E, Cousin F et al (2011) Rodlike complexes of a polyelectrolyte (hyaluronan) and a protein (lysozyme) observed by SANS. Biomacromolecules 12:859–870
126.
Zurück zum Zitat Müller M, Ouyang W, Bohata K et al (2010) Nanostructured complexes of polyelectrolytes and charged polypeptides. Adv Eng Mater 12:B519–B528 Müller M, Ouyang W, Bohata K et al (2010) Nanostructured complexes of polyelectrolytes and charged polypeptides. Adv Eng Mater 12:B519–B528
127.
Zurück zum Zitat Mengarelli V, Auvray L, Zeghal M (2009) Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes. Eur Phys Lett 85:58001 Mengarelli V, Auvray L, Zeghal M (2009) Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes. Eur Phys Lett 85:58001
128.
Zurück zum Zitat Matsudomi N, Yamamura Y, Kobayashi K (1987) Agregation between lysozyme and heat-denatured ovalbumin. Agric Biol Chem 51(7):1811–1817 Matsudomi N, Yamamura Y, Kobayashi K (1987) Agregation between lysozyme and heat-denatured ovalbumin. Agric Biol Chem 51(7):1811–1817
129.
Zurück zum Zitat Howell N, Yeboah N, Lewis D (1995) Studies on the electrostatic interactions of lysozyme with α-lactalbumin and β-lactoglobulin. Int J Food Sci Technol 30:813–824 Howell N, Yeboah N, Lewis D (1995) Studies on the electrostatic interactions of lysozyme with α-lactalbumin and β-lactoglobulin. Int J Food Sci Technol 30:813–824
130.
Zurück zum Zitat Biesheuvel PM, Lindhoud S, de Vries R et al (2006) Phase behavior of mixtures of oppositely charged nanoparticles: heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme. Langmuir 22:1291–1300 Biesheuvel PM, Lindhoud S, de Vries R et al (2006) Phase behavior of mixtures of oppositely charged nanoparticles: heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme. Langmuir 22:1291–1300
131.
Zurück zum Zitat Biesheuvel PM, Lindhoud S, Cohen Stuart MA et al (2006) Phase behavior of mixtures of oppositely charged protein nanoparticles at asymmetric charge ratios. Phys Rev E 73(4):041408 Biesheuvel PM, Lindhoud S, Cohen Stuart MA et al (2006) Phase behavior of mixtures of oppositely charged protein nanoparticles at asymmetric charge ratios. Phys Rev E 73(4):041408
132.
Zurück zum Zitat Anema SG, de Kruif CG (2012) Co-acervates of lactoferrin and caseins. Soft Matter 8(16):4471–4478 Anema SG, de Kruif CG (2012) Co-acervates of lactoferrin and caseins. Soft Matter 8(16):4471–4478
133.
Zurück zum Zitat Tiwari A, Bindal S, Bohidar HB (2009) Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix. Biomacromolecules 10:184–189 Tiwari A, Bindal S, Bohidar HB (2009) Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix. Biomacromolecules 10:184–189
134.
Zurück zum Zitat Nigen M, Croguennec T, Madec MN et al (2007) Apo alpha-lactalbumin and lysozyme are colocalized in their subsequently formed spherical supramolecular assembly. FEBS J 274:6085–6093 Nigen M, Croguennec T, Madec MN et al (2007) Apo alpha-lactalbumin and lysozyme are colocalized in their subsequently formed spherical supramolecular assembly. FEBS J 274:6085–6093
135.
Zurück zum Zitat Nigen M, Le Tilly V, Croguennec T et al (2009) Molecular interaction between apo or holo α-lactalbumin and lysozyme: formation of heterodimers as assessed by fluorescence measurements. Biochim Biophys Acta 1794:709–715 Nigen M, Le Tilly V, Croguennec T et al (2009) Molecular interaction between apo or holo α-lactalbumin and lysozyme: formation of heterodimers as assessed by fluorescence measurements. Biochim Biophys Acta 1794:709–715
136.
Zurück zum Zitat Salvatore D, Duraffourg N, Favier A et al (2011) Investigation at residue level of the early steps during the assembly of two proteins into supramolecular objects. Biomacromolecules 12(6):2200–2210 Salvatore D, Duraffourg N, Favier A et al (2011) Investigation at residue level of the early steps during the assembly of two proteins into supramolecular objects. Biomacromolecules 12(6):2200–2210
137.
Zurück zum Zitat Shinoda W, DeVane R, Klein ML (2012) Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 22:1–12 Shinoda W, DeVane R, Klein ML (2012) Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 22:1–12
138.
Zurück zum Zitat Salvatore D, Croguennec T, Bouhallab S et al (2011) Kinetics and structure during self-assembly of oppositely charged proteins in aqueous solution. Biomacromolecules 12(5):1920–6192 Salvatore D, Croguennec T, Bouhallab S et al (2011) Kinetics and structure during self-assembly of oppositely charged proteins in aqueous solution. Biomacromolecules 12(5):1920–6192
139.
Zurück zum Zitat Persson BA, Lund M (2009) Association and electrostatic steering of α-lactalbumin– lysozyme heterodimers. Phys Chem Chem Phys 11:8879–8885 Persson BA, Lund M (2009) Association and electrostatic steering of α-lactalbumin– lysozyme heterodimers. Phys Chem Chem Phys 11:8879–8885
140.
Zurück zum Zitat Xu Y, Mazzawi M, Chen K et al (2011) Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity. Biomacromolecules 12:1512–1522 Xu Y, Mazzawi M, Chen K et al (2011) Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity. Biomacromolecules 12:1512–1522
141.
Zurück zum Zitat Lampreave F, Piñeiro A, Brock JH et al (1990) Interaction of bovine lactoferrin with other proteins of milk whey. Int J Biol Macromol 12(1):2–5 Lampreave F, Piñeiro A, Brock JH et al (1990) Interaction of bovine lactoferrin with other proteins of milk whey. Int J Biol Macromol 12(1):2–5
142.
Zurück zum Zitat Nigen M, Gaillard C, Croguennec T et al (2010) Dynamic and supramolecular organisation of α-lactalbumin/lysozyme microspheres: a microscopic study. Biophys Chem 146:30–35 Nigen M, Gaillard C, Croguennec T et al (2010) Dynamic and supramolecular organisation of α-lactalbumin/lysozyme microspheres: a microscopic study. Biophys Chem 146:30–35
143.
Zurück zum Zitat Sugimoto Y, Kamada Y, Tokunaga Y et al (2011) Aggregates with lysozyme and ovalbumin show features of amyloid-like fibrils. Biochem Cell Biol 89:533–544 Sugimoto Y, Kamada Y, Tokunaga Y et al (2011) Aggregates with lysozyme and ovalbumin show features of amyloid-like fibrils. Biochem Cell Biol 89:533–544
144.
Zurück zum Zitat Maresov EA, Semenov AN (2008) Mesoglobule morphologies of amphiphilic polymers. Macromolecules 41:9439–9457 Maresov EA, Semenov AN (2008) Mesoglobule morphologies of amphiphilic polymers. Macromolecules 41:9439–9457
145.
Zurück zum Zitat Nicolai T, Britten M, Schmitt C (2011) β-lactoglobulin aggregates: formation, structure and applications. Food hydrocolloid 25:1945–1962 Nicolai T, Britten M, Schmitt C (2011) β-lactoglobulin aggregates: formation, structure and applications. Food hydrocolloid 25:1945–1962
146.
Zurück zum Zitat Bachar M, Mandelbaum A, Portnaya I (2012) Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles. J Control Release 160:164–171 Bachar M, Mandelbaum A, Portnaya I (2012) Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles. J Control Release 160:164–171
Metadaten
Titel
Spontaneous Assembly and Induced Aggregation of Food Proteins
verfasst von
Saïd Bouhallab
Thomas Croguennec
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/12_2012_201

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.