Skip to main content

2021 | OriginalPaper | Buchkapitel

12. Hybrid Additive Manufacturing

verfasst von : Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani

Erschienen in: Additive Manufacturing Technologies

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As manufacturing systems have evolved from manual to powered to automated processes over the past 200 years, it is common to find examples of multiple manufacturing systems combined into a single, hybrid machine to increase manufacturing efficiencies for certain categories of parts. In additive manufacturing, this trend is also accelerating. The most common hybrid AM systems involve the inclusion of a material removal (e.g., machining or cutting) step into the AM process chain. But hybrid AM systems go far beyond this one instantiation to include multiple AM processes in a single machine, combinations of traditional and AM manufacturing in a single machine, and more. In this chapter we explore various types of hybrid AM approaches and the unique benefits these hybrid machines enable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Klocke, F., Roderburg, A., & Zeppenfeld, C. (2011). Design methodology for hybrid production processes. Procedia Engineering, 9, 417–430.CrossRef Klocke, F., Roderburg, A., & Zeppenfeld, C. (2011). Design methodology for hybrid production processes. Procedia Engineering, 9, 417–430.CrossRef
2.
Zurück zum Zitat Nau, B., Roderburg, A., & Klocke, F. (2011). Ramp-up of hybrid manufacturing technologies. CIRP Journal of Manufacturing Science and Technology, 4(3), 313–316.CrossRef Nau, B., Roderburg, A., & Klocke, F. (2011). Ramp-up of hybrid manufacturing technologies. CIRP Journal of Manufacturing Science and Technology, 4(3), 313–316.CrossRef
3.
Zurück zum Zitat Flynn, J. M., et al. (2016). Hybrid additive and subtractive machine tools–Research and industrial developments. International Journal of Machine Tools and Manufacture, 101, 79–101.CrossRef Flynn, J. M., et al. (2016). Hybrid additive and subtractive machine tools–Research and industrial developments. International Journal of Machine Tools and Manufacture, 101, 79–101.CrossRef
4.
Zurück zum Zitat Merklein, M., et al. (2016). Hybrid additive manufacturing technologies–an analysis regarding potentials and applications. Physics Procedia, 83, 549–559.CrossRef Merklein, M., et al. (2016). Hybrid additive manufacturing technologies–an analysis regarding potentials and applications. Physics Procedia, 83, 549–559.CrossRef
5.
Zurück zum Zitat Kozak, J., & Rajurkar, K. P. (2000). Hybrid machining process evaluation and development. In Proceedings of 2nd international conference on machining and measurements of sculptured surfaces, Keynote Paper, Krakow. Kozak, J., & Rajurkar, K. P. (2000). Hybrid machining process evaluation and development. In Proceedings of 2nd international conference on machining and measurements of sculptured surfaces, Keynote Paper, Krakow.
6.
Zurück zum Zitat Lauwers, B., et al. (2014). Hybrid processes in manufacturing. CIRP Annals, 63(2), 561–583.CrossRef Lauwers, B., et al. (2014). Hybrid processes in manufacturing. CIRP Annals, 63(2), 561–583.CrossRef
7.
Zurück zum Zitat Sealy, M. P., et al. (2018). Hybrid processes in additive manufacturing. Journal of Manufacturing Science and Engineering, 140(6), 060801.CrossRef Sealy, M. P., et al. (2018). Hybrid processes in additive manufacturing. Journal of Manufacturing Science and Engineering, 140(6), 060801.CrossRef
8.
Zurück zum Zitat Brehl, D., & Dow, T. (2008). Review of vibration-assisted machining. Precision Engineering, 32(3), 153–172.CrossRef Brehl, D., & Dow, T. (2008). Review of vibration-assisted machining. Precision Engineering, 32(3), 153–172.CrossRef
9.
Zurück zum Zitat Lauwers, B., et al., (2010). Investigation of the process-material interaction in ultrasonic assisted grinding of ZrO2 based ceramic materials. In Proceedings of the 4th CIRP International Conference on High Performance Cutting. Lauwers, B., et al., (2010). Investigation of the process-material interaction in ultrasonic assisted grinding of ZrO2 based ceramic materials. In Proceedings of the 4th CIRP International Conference on High Performance Cutting.
10.
Zurück zum Zitat Wang, Z., & Rajurkar, K. P. (2000). Cryogenic machining of hard-to-cut materials. Wear, 239(2), 168–175.CrossRef Wang, Z., & Rajurkar, K. P. (2000). Cryogenic machining of hard-to-cut materials. Wear, 239(2), 168–175.CrossRef
11.
Zurück zum Zitat De Lacalle, L. L., et al. (2000). Using high pressure coolant in the drilling and turning of low machinability alloys. The International Journal of Advanced Manufacturing Technology, 16(2), 85–91.CrossRef De Lacalle, L. L., et al. (2000). Using high pressure coolant in the drilling and turning of low machinability alloys. The International Journal of Advanced Manufacturing Technology, 16(2), 85–91.CrossRef
12.
Zurück zum Zitat Brecher, C., et al. (2011). Laser-assisted milling of advanced materials. Physics Procedia, 12, 599–606.CrossRef Brecher, C., et al. (2011). Laser-assisted milling of advanced materials. Physics Procedia, 12, 599–606.CrossRef
13.
Zurück zum Zitat Rajurkar, K. P., et al. (1999). New developments in electro-chemical machining. CIRP Annals, 48(2), 567–579.CrossRef Rajurkar, K. P., et al. (1999). New developments in electro-chemical machining. CIRP Annals, 48(2), 567–579.CrossRef
14.
Zurück zum Zitat Kozak, J., Zybura-Skrabalak, M., & Skrabalak, G. (2016). Development of advanced abrasive electrical discharge grinding (AEDG) system for machining difficult-to-cut materials. Procedia CIRP, 42, 872–877.CrossRef Kozak, J., Zybura-Skrabalak, M., & Skrabalak, G. (2016). Development of advanced abrasive electrical discharge grinding (AEDG) system for machining difficult-to-cut materials. Procedia CIRP, 42, 872–877.CrossRef
15.
Zurück zum Zitat Zhu, D., et al. (2011). Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Annals, 60(1), 247–250.CrossRef Zhu, D., et al. (2011). Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Annals, 60(1), 247–250.CrossRef
16.
Zurück zum Zitat Golabczak, A., & Swiecik, R. (2010, April). Electro-discharge grinding: Energy consumption and internal stresses in the surface layer. In 16th International Symposium on Electromachining (ISEM), Shanghai. Golabczak, A., & Swiecik, R. (2010, April). Electro-discharge grinding: Energy consumption and internal stresses in the surface layer. In 16th International Symposium on Electromachining (ISEM), Shanghai.
17.
Zurück zum Zitat Koshy, P., Jain, V., & Lal, G. (1997). Grinding of cemented carbide with electrical spark assistance. Journal of Materials Processing Technology, 72(1), 61–68.CrossRef Koshy, P., Jain, V., & Lal, G. (1997). Grinding of cemented carbide with electrical spark assistance. Journal of Materials Processing Technology, 72(1), 61–68.CrossRef
18.
Zurück zum Zitat Alao, A.R. (2011). A fundamental study of vibration assisted machining. Advanced Materials Research, 264, 997–1002. Trans Tech Publ. Alao, A.R. (2011). A fundamental study of vibration assisted machining. Advanced Materials Research, 264, 997–1002. Trans Tech Publ.
19.
Zurück zum Zitat Wang, F., et al. (2007). Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed. Materials science and Engineering: A, 445, 461–466.CrossRef Wang, F., et al. (2007). Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed. Materials science and Engineering: A, 445, 461–466.CrossRef
22.
Zurück zum Zitat Khorasani, A. M., et al. (2018). A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical components. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3765–3784.CrossRef Khorasani, A. M., et al. (2018). A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical components. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3765–3784.CrossRef
23.
Zurück zum Zitat Khorasani, A. M., et al. (2018). Characterizing the effect of cutting condition, tool path, and heat treatment on cutting forces of selective laser melting spherical component in five-axis milling. Journal of Manufacturing Science and Engineering, 140(5), 051011.CrossRef Khorasani, A. M., et al. (2018). Characterizing the effect of cutting condition, tool path, and heat treatment on cutting forces of selective laser melting spherical component in five-axis milling. Journal of Manufacturing Science and Engineering, 140(5), 051011.CrossRef
24.
Zurück zum Zitat Sealy, M., et al. (2016, August). Finite element modeling of hybrid additive manufacturing by laser shock peening. In Solid Freeform Fabrication Symposium (SFF), Austin. Sealy, M., et al. (2016, August). Finite element modeling of hybrid additive manufacturing by laser shock peening. In Solid Freeform Fabrication Symposium (SFF), Austin.
25.
Zurück zum Zitat Gale, J., Achuthan, A., & Don, A. (2016, August). Material property enhancement in additive manufactured materials using an ultrasonic peening technique. In Solid Freeform Fabrication Symposium (SFF), Austin. Gale, J., Achuthan, A., & Don, A. (2016, August). Material property enhancement in additive manufactured materials using an ultrasonic peening technique. In Solid Freeform Fabrication Symposium (SFF), Austin.
26.
Zurück zum Zitat El-Wardany, T. I., et al. (2014). Turbine disk fabrication with in situ material property variation, U. Patent, Editor. Google Patents. El-Wardany, T. I., et al. (2014). Turbine disk fabrication with in situ material property variation, U. Patent, Editor. Google Patents.
27.
Zurück zum Zitat Palanivel, S., et al. (2015). Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Materials & Design (1980–2015), 65, 934–952.CrossRef Palanivel, S., et al. (2015). Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Materials & Design (1980–2015), 65, 934–952.CrossRef
28.
Zurück zum Zitat Lamikiz, A., et al. (2007). Laser polishing of parts built up by selective laser sintering. International Journal of Machine Tools and Manufacture, 47(12), 2040–2050.CrossRef Lamikiz, A., et al. (2007). Laser polishing of parts built up by selective laser sintering. International Journal of Machine Tools and Manufacture, 47(12), 2040–2050.CrossRef
29.
Zurück zum Zitat Campanelli, S., et al. (2013). Taguchi optimization of the surface finish obtained by laser ablation on selective laser molten steel parts. Procedia CIRP, 12, 462–467.CrossRef Campanelli, S., et al. (2013). Taguchi optimization of the surface finish obtained by laser ablation on selective laser molten steel parts. Procedia CIRP, 12, 462–467.CrossRef
30.
Zurück zum Zitat Akula, S., & Karunakaran, K. (2006). Hybrid adaptive layer manufacturing: An intelligent art of direct metal rapid tooling process. Robotics and Computer-Integrated Manufacturing, 22(2), 113–123.CrossRef Akula, S., & Karunakaran, K. (2006). Hybrid adaptive layer manufacturing: An intelligent art of direct metal rapid tooling process. Robotics and Computer-Integrated Manufacturing, 22(2), 113–123.CrossRef
31.
Zurück zum Zitat Karunakaran, K., Sreenathbabu, A., & Pushpa, V. (2004). Hybrid layered manufacturing: Direct rapid metal tool-making process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(12), 1657–1665.CrossRef Karunakaran, K., Sreenathbabu, A., & Pushpa, V. (2004). Hybrid layered manufacturing: Direct rapid metal tool-making process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(12), 1657–1665.CrossRef
32.
Zurück zum Zitat Lorenz, K., et al. (2015). A review of hybrid manufacturing. In Solid Freeform Fabrication Conference Proceedings. Lorenz, K., et al. (2015). A review of hybrid manufacturing. In Solid Freeform Fabrication Conference Proceedings.
35.
Zurück zum Zitat Donoghue, J., et al. (2016). The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti–6Al–4V. Materials Characterization, 114, 103–114.CrossRef Donoghue, J., et al. (2016). The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti–6Al–4V. Materials Characterization, 114, 103–114.CrossRef
36.
Zurück zum Zitat Book, T. A., & Sangid, M. D. (2016). Evaluation of select surface processing techniques for in situ application during the additive manufacturing build process. JOM, 68(7), 1780–1792.CrossRef Book, T. A., & Sangid, M. D. (2016). Evaluation of select surface processing techniques for in situ application during the additive manufacturing build process. JOM, 68(7), 1780–1792.CrossRef
37.
Zurück zum Zitat Francis, R., Newkirk, J., & Liou, F. (2016). Investigation of forged-like microstructure produced by a hybrid manufacturing process. Rapid Prototyping Journal, 22(4), 717–726.CrossRef Francis, R., Newkirk, J., & Liou, F. (2016). Investigation of forged-like microstructure produced by a hybrid manufacturing process. Rapid Prototyping Journal, 22(4), 717–726.CrossRef
38.
Zurück zum Zitat Yasa, E., Kruth, J.P., & Deckers, J. (2011). Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Annals, 60(1), 263–266.CrossRef Yasa, E., Kruth, J.P., & Deckers, J. (2011). Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Annals, 60(1), 263–266.CrossRef
39.
Zurück zum Zitat Hartmann, K., et al. (1994). Robot-assisted shape deposition manufacturing. In Proceedings of the 1994 IEEE international conference on robotics and automation. IEEE. Hartmann, K., et al. (1994). Robot-assisted shape deposition manufacturing. In Proceedings of the 1994 IEEE international conference on robotics and automation. IEEE.
40.
Zurück zum Zitat Xie, Y., et al. (2019). Strengthened peening effect on metallurgical bonding formation in cold spray additive manufacturing. Journal of Thermal Spray Technology, 28(4), 769–779.CrossRef Xie, Y., et al. (2019). Strengthened peening effect on metallurgical bonding formation in cold spray additive manufacturing. Journal of Thermal Spray Technology, 28(4), 769–779.CrossRef
41.
Zurück zum Zitat Gale, J. (2017). Application of ultrasonic peening during DMLS production of 316L stainless steel and its effect on material behavior. Rapid Prototyping Journal, 23(6), 1185–1194.MathSciNetCrossRef Gale, J. (2017). Application of ultrasonic peening during DMLS production of 316L stainless steel and its effect on material behavior. Rapid Prototyping Journal, 23(6), 1185–1194.MathSciNetCrossRef
42.
Zurück zum Zitat Kalentics, N., Logé, R., & Boillat, E. (2017). Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting. European Patent EP3147048A1. Kalentics, N., Logé, R., & Boillat, E. (2017). Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting. European Patent EP3147048A1.
43.
Zurück zum Zitat Kalentics, N., et al. (2017). 3D Laser Shock Peening–A new method for the 3D control of residual stresses in Selective Laser Melting. Materials & Design, 130, 350–356.CrossRef Kalentics, N., et al. (2017). 3D Laser Shock Peening–A new method for the 3D control of residual stresses in Selective Laser Melting. Materials & Design, 130, 350–356.CrossRef
44.
Zurück zum Zitat Yasa, E., & Kruth, J.P. (2011). Application of laser re-melting on selective laser melting parts. Advances in Production Engineering and Management, 6(4), 259–270. Yasa, E., & Kruth, J.P. (2011). Application of laser re-melting on selective laser melting parts. Advances in Production Engineering and Management, 6(4), 259–270.
45.
Zurück zum Zitat Yasa, E., & Kruth, J.P. (2010). Investigation of laser and process parameters for Selective Laser Erosion. Precision Engineering, 34(1), 101–112.CrossRef Yasa, E., & Kruth, J.P. (2010). Investigation of laser and process parameters for Selective Laser Erosion. Precision Engineering, 34(1), 101–112.CrossRef
46.
Zurück zum Zitat Yasa, E., Deckers, J., & Kruth, J.-P. (2011). The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyping Journal, 17(5), 312–327.CrossRef Yasa, E., Deckers, J., & Kruth, J.-P. (2011). The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyping Journal, 17(5), 312–327.CrossRef
47.
Zurück zum Zitat Qian, Y.-P., et al. (2008). Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology. Journal of Materials Processing Technology, 208(1), 99–104.CrossRef Qian, Y.-P., et al. (2008). Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology. Journal of Materials Processing Technology, 208(1), 99–104.CrossRef
Metadaten
Titel
Hybrid Additive Manufacturing
verfasst von
Ian Gibson
David Rosen
Brent Stucker
Mahyar Khorasani
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-56127-7_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.