Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

11. Lotus Effect and Self-Cleaning

verfasst von : Michael Nosonovsky, Pradeep K. Rohatgi

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Self-cleaning surfaces are capable of repelling contaminants, including solid particles, organic liquids, and biocontaminants. The most common principle of self-cleaning is based on the Lotus effect, which involves the superhydrophobicity induced by surface roughness. The phenomenon of superhydrophobicity and its various implications have been considered in detail in the preceding chapter. The name of the Lotus effect was coined due to the observation that the leaves of Lotus (Nelumbo) can emerge clean from dirty water, making lotus a symbol of purity in many Asian cultures. Superhydrophobicity is the core property that leads to the Lotus effect-based self-cleaning, so we discuss in this chapter basic observations on superhydrophobicity in biological surfaces (including, plant leaves, insects, birds, gecko feet, etc.) as well as artificial surfaces.
Literatur
Zurück zum Zitat Adamson, A.V.: Physical Chemistry of Surfaces. Wiley, New York (1990) Adamson, A.V.: Physical Chemistry of Surfaces. Wiley, New York (1990)
Zurück zum Zitat Baker, E.A.: Chemistry and morphology of plant epicuticular waxes. In: Cutler, D.F., Alvin, K.L., Price, C.E. (eds.) The Plant Cuticle, pp. 139–165. Academic, London (1982) Baker, E.A.: Chemistry and morphology of plant epicuticular waxes. In: Cutler, D.F., Alvin, K.L., Price, C.E. (eds.) The Plant Cuticle, pp. 139–165. Academic, London (1982)
Zurück zum Zitat Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)CrossRef Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)CrossRef
Zurück zum Zitat Bhushan, B., Jung, Y.C.: Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107, 1033–1041 (2007)CrossRef Bhushan, B., Jung, Y.C.: Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107, 1033–1041 (2007)CrossRef
Zurück zum Zitat Bhushan, B., Nosonovsky, M.: The rose petal effect and the modes of superhydrophobicity. Phil Trans Royal. Soc. A. 368, 4713–4728 (2010)MathSciNetCrossRefMATH Bhushan, B., Nosonovsky, M.: The rose petal effect and the modes of superhydrophobicity. Phil Trans Royal. Soc. A. 368, 4713–4728 (2010)MathSciNetCrossRefMATH
Zurück zum Zitat Blossey, R.: Self-cleaning surfaces – virtual realities. Nat Mater. 2, 301–306 (2003)CrossRef Blossey, R.: Self-cleaning surfaces – virtual realities. Nat Mater. 2, 301–306 (2003)CrossRef
Zurück zum Zitat Bormashenko, E., et al.: Micrometer-scale honeycomb polymer films and their properties. Macromol. Mater. Eng. 293, 872–877 (2008)CrossRef Bormashenko, E., et al.: Micrometer-scale honeycomb polymer films and their properties. Macromol. Mater. Eng. 293, 872–877 (2008)CrossRef
Zurück zum Zitat Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y., Pogreb, E.: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir 22, 9982–9985 (2006)CrossRef Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y., Pogreb, E.: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir 22, 9982–9985 (2006)CrossRef
Zurück zum Zitat Bormashenko, E., Bormashenko, Y., Stein, T., Whyman, G., Pogreb, R., Barkay, Z.: Environmental scanning electron microscope study of the fine structure of the triple line and Cassie-Wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007a)CrossRef Bormashenko, E., Bormashenko, Y., Stein, T., Whyman, G., Pogreb, R., Barkay, Z.: Environmental scanning electron microscope study of the fine structure of the triple line and Cassie-Wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007a)CrossRef
Zurück zum Zitat Bormashenko, E., Pogreb, R., Whyman, G., Erlich, M.: Cassie-Wenzel wetting transition in vibrated drops deposited on the rough surfaces: is dynamic Cassie-Wenzel transition 2D or 1D affair? Langmuir 23, 6501–6503 (2007b)CrossRef Bormashenko, E., Pogreb, R., Whyman, G., Erlich, M.: Cassie-Wenzel wetting transition in vibrated drops deposited on the rough surfaces: is dynamic Cassie-Wenzel transition 2D or 1D affair? Langmuir 23, 6501–6503 (2007b)CrossRef
Zurück zum Zitat Cao, L., et al.: Anti-icing superhydrophobic coatings. Langmuir 25, 12444 (2009)CrossRef Cao, L., et al.: Anti-icing superhydrophobic coatings. Langmuir 25, 12444 (2009)CrossRef
Zurück zum Zitat Cassie, A., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)CrossRef Cassie, A., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)CrossRef
Zurück zum Zitat Erbil, H.Y., Demirel, A.L., Avci, Y.: Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003)CrossRef Erbil, H.Y., Demirel, A.L., Avci, Y.: Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003)CrossRef
Zurück zum Zitat Extrand, C.W.: Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir 18, 7991–7999 (2002)CrossRef Extrand, C.W.: Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir 18, 7991–7999 (2002)CrossRef
Zurück zum Zitat Feng, X.L., Feng, L., Jin, M.H., Zhai, J., Jiang, L., Zhu, D.B.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004)CrossRef Feng, X.L., Feng, L., Jin, M.H., Zhai, J., Jiang, L., Zhu, D.B.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004)CrossRef
Zurück zum Zitat Forbes, P.: Self-cleaning materials: lotus leaf-inspired nanotechnology. Sci. Am. Mag. 8 (2008) Forbes, P.: Self-cleaning materials: lotus leaf-inspired nanotechnology. Sci. Am. Mag. 8 (2008)
Zurück zum Zitat Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRef Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRef
Zurück zum Zitat Furstner, R., Barthlott, W., Neinhuis, C., Walzel, P.: Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961 (2005)CrossRef Furstner, R., Barthlott, W., Neinhuis, C., Walzel, P.: Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961 (2005)CrossRef
Zurück zum Zitat Gao, X.F., Jiang, L.: Biophysics: water-repellent legs of water striders. Nature 432, 36 (2004)CrossRef Gao, X.F., Jiang, L.: Biophysics: water-repellent legs of water striders. Nature 432, 36 (2004)CrossRef
Zurück zum Zitat Gillmor, S.D., Thiel, A.J., Strother, T.C., Smith, L.M., Lagally, M.G.: Hydrophilic/hydrophobic patterned surfaces as templates for DNA arrays. Langmuir 16, 7223–7228 (2000)CrossRef Gillmor, S.D., Thiel, A.J., Strother, T.C., Smith, L.M., Lagally, M.G.: Hydrophilic/hydrophobic patterned surfaces as templates for DNA arrays. Langmuir 16, 7223–7228 (2000)CrossRef
Zurück zum Zitat He, B., Patankar, N.A., Lee, J.: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 4999–5003 (2003)CrossRef He, B., Patankar, N.A., Lee, J.: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 4999–5003 (2003)CrossRef
Zurück zum Zitat He, M., et al.: Super-hydrophobic film retards frost formation. Soft Matter. 6, 2396–2399 (2010)CrossRef He, M., et al.: Super-hydrophobic film retards frost formation. Soft Matter. 6, 2396–2399 (2010)CrossRef
Zurück zum Zitat Herminghaus, S.: Roughness-induced non-wetting. Europhys. Lett. 52, 165–170 (2000)CrossRef Herminghaus, S.: Roughness-induced non-wetting. Europhys. Lett. 52, 165–170 (2000)CrossRef
Zurück zum Zitat Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., Takahara, A.: Superliquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir 21, 7299–7302 (2005)CrossRef Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., Takahara, A.: Superliquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir 21, 7299–7302 (2005)CrossRef
Zurück zum Zitat Huang, L., Lau, S.P., Yang, H.Y., Leong, E.S.P., Yu, S.F.: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. 109, 7746–7748 (2005) Huang, L., Lau, S.P., Yang, H.Y., Leong, E.S.P., Yu, S.F.: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. 109, 7746–7748 (2005)
Zurück zum Zitat Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic, London (1992) Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic, London (1992)
Zurück zum Zitat Jansen, H., de Boer, M., Legtenberg, R., Elwenspoek, M.: The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5, 115–120 (1995)CrossRef Jansen, H., de Boer, M., Legtenberg, R., Elwenspoek, M.: The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5, 115–120 (1995)CrossRef
Zurück zum Zitat Jetter, R., Kunst, L., Samuels, A.L.: Composition of plant cuticular waxes. In: Riederer, M., Müller, C. (eds.) Biology of the Plant Cuticle, pp. 145–181. Blackwell, Oxford (2006)CrossRef Jetter, R., Kunst, L., Samuels, A.L.: Composition of plant cuticular waxes. In: Riederer, M., Müller, C. (eds.) Biology of the Plant Cuticle, pp. 145–181. Blackwell, Oxford (2006)CrossRef
Zurück zum Zitat Johnson, R.E., Dettre, R.H.: Contact angle hysteresis. In: Fowkes, F.M. (ed.) Contact Angle, Wettability, and Adhesion. Adv. Chem. Ser, vol. 43, pp. 112–135. American Chemical Society, Washington, DC (1964)CrossRef Johnson, R.E., Dettre, R.H.: Contact angle hysteresis. In: Fowkes, F.M. (ed.) Contact Angle, Wettability, and Adhesion. Adv. Chem. Ser, vol. 43, pp. 112–135. American Chemical Society, Washington, DC (1964)CrossRef
Zurück zum Zitat Khorasani, M.T., Mirzadeh, H., Kermani, Z.: Wettability of porous polydimethylsiloxane surface: morphology study. Appl. Surf. Sci. 242, 339–345 (2005)CrossRef Khorasani, M.T., Mirzadeh, H., Kermani, Z.: Wettability of porous polydimethylsiloxane surface: morphology study. Appl. Surf. Sci. 242, 339–345 (2005)CrossRef
Zurück zum Zitat Kijlstra, J., Reihs, K., Klami, A.: Roughness and topology of ultra-hydrophobic surfaces. Colloids Surf A Physicochem. Eng. Asp 206, 521–529 (2002)CrossRef Kijlstra, J., Reihs, K., Klami, A.: Roughness and topology of ultra-hydrophobic surfaces. Colloids Surf A Physicochem. Eng. Asp 206, 521–529 (2002)CrossRef
Zurück zum Zitat Klein, R.J., Biesheuvel, P.M., Yu, B.C., Meinhart, C.D., Lange, F.F.: Producing super-hydrophobic surfaces with nano-silica spheres. Z. Metallkd. 94, 377–380 (2003) Klein, R.J., Biesheuvel, P.M., Yu, B.C., Meinhart, C.D., Lange, F.F.: Producing super-hydrophobic surfaces with nano-silica spheres. Z. Metallkd. 94, 377–380 (2003)
Zurück zum Zitat Krasovitski, B., Marmur, A.: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)CrossRef Krasovitski, B., Marmur, A.: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)CrossRef
Zurück zum Zitat Kulinich, S.A., Farzaneh, M.: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 8854–8856 (2009)CrossRef Kulinich, S.A., Farzaneh, M.: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 8854–8856 (2009)CrossRef
Zurück zum Zitat Kulinich, S.A., Farzaneh, M.: On ice-repelling properties of rough hydrophibic surfaces. Cold Regions Sci Technol. 65, 60–64 (2011)CrossRef Kulinich, S.A., Farzaneh, M.: On ice-repelling properties of rough hydrophibic surfaces. Cold Regions Sci Technol. 65, 60–64 (2011)CrossRef
Zurück zum Zitat Kulinich, S.A., Farhadi, S., Nose, K., Du, X.W.: Superhydrophobic surfaces: are they really ice-repellent? Langmuir 27, 25–29 (2011)CrossRef Kulinich, S.A., Farhadi, S., Nose, K., Du, X.W.: Superhydrophobic surfaces: are they really ice-repellent? Langmuir 27, 25–29 (2011)CrossRef
Zurück zum Zitat Lafuma, A., Quėrė, D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)CrossRef Lafuma, A., Quėrė, D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)CrossRef
Zurück zum Zitat Lam, S.W., Gan, W.Y., Chiang, K., Amal, R.: Ti2 semoconductor – a smart self-cleaning material. J. Aust Ceram Soc. 44, 6–11 (2008) Lam, S.W., Gan, W.Y., Chiang, K., Amal, R.: Ti2 semoconductor – a smart self-cleaning material. J. Aust Ceram Soc. 44, 6–11 (2008)
Zurück zum Zitat Lee, W., Jin, M., Yoo, W., Lee, J.: Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20, 7665–7669 (2004)CrossRef Lee, W., Jin, M., Yoo, W., Lee, J.: Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20, 7665–7669 (2004)CrossRef
Zurück zum Zitat Ma, M., Hill, R.M., Lowery, J.L., Fridrikh, S.V., Rutledge, G.C.: Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21, 5549–5554 (2005)CrossRef Ma, M., Hill, R.M., Lowery, J.L., Fridrikh, S.V., Rutledge, G.C.: Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21, 5549–5554 (2005)CrossRef
Zurück zum Zitat Marmur, A.: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343–8348 (2003)CrossRef Marmur, A.: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343–8348 (2003)CrossRef
Zurück zum Zitat Marmur, A.: The lotus effect: superhydrophobicity and metastability. Langmuir 20, 3517–3519 (2004)CrossRef Marmur, A.: The lotus effect: superhydrophobicity and metastability. Langmuir 20, 3517–3519 (2004)CrossRef
Zurück zum Zitat Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C.D.W., Riehle, M.O.: Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 5, 2097–2103 (2005)CrossRef Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C.D.W., Riehle, M.O.: Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 5, 2097–2103 (2005)CrossRef
Zurück zum Zitat Meuler, A.J., McKinley, G.H., Gareth, G., Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048–7052 (2010a)CrossRef Meuler, A.J., McKinley, G.H., Gareth, G., Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048–7052 (2010a)CrossRef
Zurück zum Zitat Meuler, A.J., Smith, J.D., Varanasi, K.K., Mabry, J.M., McKiney, G.H., Cohen, R.E.: Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 3100–3110 (2010b)CrossRef Meuler, A.J., Smith, J.D., Varanasi, K.K., Mabry, J.M., McKiney, G.H., Cohen, R.E.: Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 3100–3110 (2010b)CrossRef
Zurück zum Zitat Ming, W., Wu, D., van Benthem, R., de With, G.: Superhydrophobic films from raspberry-like particles. Nano Lett. 5, 2298–2301 (2005)CrossRef Ming, W., Wu, D., van Benthem, R., de With, G.: Superhydrophobic films from raspberry-like particles. Nano Lett. 5, 2298–2301 (2005)CrossRef
Zurück zum Zitat Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., Aizenberg, J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010)CrossRef Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., Aizenberg, J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010)CrossRef
Zurück zum Zitat Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997)CrossRef Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997)CrossRef
Zurück zum Zitat Nosonovsky, M.: Model for solid-liquid and solid-solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007b)CrossRef Nosonovsky, M.: Model for solid-liquid and solid-solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007b)CrossRef
Zurück zum Zitat Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157–3161 (2007e)CrossRef Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157–3161 (2007e)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Scale effects on dry friction during multiple asperity contact. ASME J Tribol 127, 37–46 (2005a)CrossRef Nosonovsky, M., Bhushan, B.: Scale effects on dry friction during multiple asperity contact. ASME J Tribol 127, 37–46 (2005a)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Roughness optimization for biomimetic superhydrophobic surfaces. Microsys. Technol. 11, 535–549 (2005b)CrossRef Nosonovsky, M., Bhushan, B.: Roughness optimization for biomimetic superhydrophobic surfaces. Microsys. Technol. 11, 535–549 (2005b)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Wetting of rough three-dimensional superhydrophobic surfaces. Microsys. Technol. 12, 273–281 (2006a)CrossRef Nosonovsky, M., Bhushan, B.: Wetting of rough three-dimensional superhydrophobic surfaces. Microsys. Technol. 12, 273–281 (2006a)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces. Microsys. Technol. 12, 231–237 (2006b)CrossRef Nosonovsky, M., Bhushan, B.: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces. Microsys. Technol. 12, 231–237 (2006b)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007a)CrossRef Nosonovsky, M., Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007a)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Non-adhesive patterned surfaces: superhydrophobicity and wetting regime transitions. Langmuir 24, 1525–1533 (2008a)CrossRef Nosonovsky, M., Bhushan, B.: Non-adhesive patterned surfaces: superhydrophobicity and wetting regime transitions. Langmuir 24, 1525–1533 (2008a)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008c)CrossRef Nosonovsky, M., Bhushan, B.: Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008c)CrossRef
Zurück zum Zitat Nosonovsky, M., Bhushan, B.: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Springer-Verlag, Heidelberg, Germany (2008d)MATH Nosonovsky, M., Bhushan, B.: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Springer-Verlag, Heidelberg, Germany (2008d)MATH
Zurück zum Zitat Nosonovsky, M., Bormashenko, E.: Lotus effect: superhydrophobicity and self-cleaning. In: Favret, E., Fuentes, N. (eds.) Functional Properties of Biological Surfaces: Characterization and Technological Applications, pp. 43–78. World Scientific, Singapore (2009)CrossRef Nosonovsky, M., Bormashenko, E.: Lotus effect: superhydrophobicity and self-cleaning. In: Favret, E., Fuentes, N. (eds.) Functional Properties of Biological Surfaces: Characterization and Technological Applications, pp. 43–78. World Scientific, Singapore (2009)CrossRef
Zurück zum Zitat Patankar, N.A.: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097–7102 (2004a)CrossRef Patankar, N.A.: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097–7102 (2004a)CrossRef
Zurück zum Zitat Patankar, N.A.: Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20, 8209–8213 (2004b)CrossRef Patankar, N.A.: Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20, 8209–8213 (2004b)CrossRef
Zurück zum Zitat Qian, B., Shen, Z.: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 21, 9007–9009 (2005)CrossRef Qian, B., Shen, Z.: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 21, 9007–9009 (2005)CrossRef
Zurück zum Zitat Ryan, N.J.: Using platelet technology to seal and locate leaks in subsea umbilical lines. Offshore Technology Conference held in Houston, OTC-18882-PP, 30 April–3 May 2007 Ryan, N.J.: Using platelet technology to seal and locate leaks in subsea umbilical lines. Offshore Technology Conference held in Houston, OTC-18882-PP, 30 April–3 May 2007
Zurück zum Zitat Sanchez, F., Sobolev, K.: Nanotechnology in concrete – a review. Constr Build Mater 24(11), 2060–2071 (2010)CrossRef Sanchez, F., Sobolev, K.: Nanotechnology in concrete – a review. Constr Build Mater 24(11), 2060–2071 (2010)CrossRef
Zurück zum Zitat Semal, S., Blake, T.D., Geskin, V., de Ruijter, M.L., Castelein, G., De Coninck, J.: Influence of surface roughness on wetting dynamics. Langmuir 15, 8765–8770 (1999)CrossRef Semal, S., Blake, T.D., Geskin, V., de Ruijter, M.L., Castelein, G., De Coninck, J.: Influence of surface roughness on wetting dynamics. Langmuir 15, 8765–8770 (1999)CrossRef
Zurück zum Zitat Shang, H.M., Wang, Y., Limmer, S.J., Chou, T.P., Takahashi, K., Cao, G.Z.: Optically transparent superhydrophobic silica-based films. Thin Solid Films 472, 37–43 (2005)CrossRef Shang, H.M., Wang, Y., Limmer, S.J., Chou, T.P., Takahashi, K., Cao, G.Z.: Optically transparent superhydrophobic silica-based films. Thin Solid Films 472, 37–43 (2005)CrossRef
Zurück zum Zitat Shibuichi, S., Onda, T., Satoh, N., Tsujii, K.: Super-water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100, 19512–19517 (1996)CrossRef Shibuichi, S., Onda, T., Satoh, N., Tsujii, K.: Super-water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100, 19512–19517 (1996)CrossRef
Zurück zum Zitat Shirtcliffe, N.J., McHale, G., Newton, M.I., Chabrol, G., Perry, C.C.: Dual-scale roughness produces unusually water-repellent surfaces. Adv. Mater. 16, 1929–1932 (2004)CrossRef Shirtcliffe, N.J., McHale, G., Newton, M.I., Chabrol, G., Perry, C.C.: Dual-scale roughness produces unusually water-repellent surfaces. Adv. Mater. 16, 1929–1932 (2004)CrossRef
Zurück zum Zitat Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C., Roach, P.: Porous materials show superhydrophobic to superhydrophilic switching. Chem. Commun. 3135–3137 (2005) Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C., Roach, P.: Porous materials show superhydrophobic to superhydrophilic switching. Chem. Commun. 3135–3137 (2005)
Zurück zum Zitat Shiu, J., Kuo, C., Chen, P., Mou, C.: Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem. Mater. 16, 561–564 (2004)CrossRef Shiu, J., Kuo, C., Chen, P., Mou, C.: Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem. Mater. 16, 561–564 (2004)CrossRef
Zurück zum Zitat Sun, M., Luo, C., Xu, L., Ji, H., Ouyang, Q., Yu, D., Chen, Y.: Artificial lotus leaf by nanocasting. Langmuir 21, 8978–8981 (2005)CrossRef Sun, M., Luo, C., Xu, L., Ji, H., Ouyang, Q., Yu, D., Chen, Y.: Artificial lotus leaf by nanocasting. Langmuir 21, 8978–8981 (2005)CrossRef
Zurück zum Zitat Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A.: Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl. Surf. Sci. 244, 619–622 (2005)CrossRef Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A.: Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl. Surf. Sci. 244, 619–622 (2005)CrossRef
Zurück zum Zitat Varanasi, K.K., Deng, T., Smith, J.D., Hsu, M., Bhate, N.: Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010)CrossRef Varanasi, K.K., Deng, T., Smith, J.D., Hsu, M., Bhate, N.: Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010)CrossRef
Zurück zum Zitat Wagner, P., Furstner, R., Barthlott, W., Neinhuis, C.: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exper. Botany 54, 1295–1303 (2003)CrossRef Wagner, P., Furstner, R., Barthlott, W., Neinhuis, C.: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exper. Botany 54, 1295–1303 (2003)CrossRef
Zurück zum Zitat Wang, R., et al.: Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater. 10, 135 (1998)CrossRef Wang, R., et al.: Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater. 10, 135 (1998)CrossRef
Zurück zum Zitat Wang, R., et al.: Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997)CrossRef Wang, R., et al.: Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997)CrossRef
Zurück zum Zitat Wang, S., Jiang, L.: Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)CrossRef Wang, S., Jiang, L.: Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)CrossRef
Zurück zum Zitat Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)CrossRef Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)CrossRef
Zurück zum Zitat Xu, L., Chen, W., Mulchandani, A., Yan, Y.: Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 44, 6009–6012 (2005)CrossRef Xu, L., Chen, W., Mulchandani, A., Yan, Y.: Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 44, 6009–6012 (2005)CrossRef
Zurück zum Zitat Yabu, H., Shimomura, M.: Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 17, 5231–5234 (2005)CrossRef Yabu, H., Shimomura, M.: Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 17, 5231–5234 (2005)CrossRef
Zurück zum Zitat Young, T.: An essay on cohesion of fluids. Phil. Trans. R. Soc. 95, 65–87 (1805)CrossRef Young, T.: An essay on cohesion of fluids. Phil. Trans. R. Soc. 95, 65–87 (1805)CrossRef
Zurück zum Zitat Zhai, L., Cebeci, F.C., Cohen, R.E., Rubner, M.F.: Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 1349–1353 (2004)CrossRef Zhai, L., Cebeci, F.C., Cohen, R.E., Rubner, M.F.: Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 1349–1353 (2004)CrossRef
Zurück zum Zitat Zhang, J.L., Li, J.A., Han, Y.C.: Superhydrophobic PTFE surfaces by extension. Macromol. Rapid Commun. 25, 1105–1108 (2004a)CrossRef Zhang, J.L., Li, J.A., Han, Y.C.: Superhydrophobic PTFE surfaces by extension. Macromol. Rapid Commun. 25, 1105–1108 (2004a)CrossRef
Zurück zum Zitat Zhang, X., Feng, S., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., Li, X.: Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J. Am. Chem. Soc. 126, 3064–3065 (2004b)CrossRef Zhang, X., Feng, S., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., Li, X.: Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J. Am. Chem. Soc. 126, 3064–3065 (2004b)CrossRef
Zurück zum Zitat Shuttleworth, R. and Bailey, G.L.J., “The Spreading of Liquid over a Rigid Solid,” Discussions of the Faraday Society, 3(1948) 16–22 Shuttleworth, R. and Bailey, G.L.J., “The Spreading of Liquid over a Rigid Solid,” Discussions of the Faraday Society, 3(1948) 16–22
Zurück zum Zitat Bico, J., Thiele, U., and QuÕrÕ, D., “Wetting of Textured Surfaces,” Colloids and Surfaces A, 206 (2002) 41–46 Bico, J., Thiele, U., and QuÕrÕ, D., “Wetting of Textured Surfaces,” Colloids and Surfaces A, 206 (2002) 41–46
Zurück zum Zitat Jin, M.H., Feng, X.J., Xi, J.M., Zhai, J., Cho, K.W., Feng, L., and Jiang, L., “Superhydrophobic PDMS Surface with Ultra-low Adhesive Force,” Macromol. Rapid Commun., 26 (2005) 1805–1809 Jin, M.H., Feng, X.J., Xi, J.M., Zhai, J., Cho, K.W., Feng, L., and Jiang, L., “Superhydrophobic PDMS Surface with Ultra-low Adhesive Force,” Macromol. Rapid Commun., 26 (2005) 1805–1809
Zurück zum Zitat Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L., 2008, “Petal Effect: A Superhydrophobic State with High Adhesive Force,” Langmuir 24, 4114–4114 Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L., 2008, “Petal Effect: A Superhydrophobic State with High Adhesive Force,” Langmuir 24, 4114–4114
Zurück zum Zitat Xia, F. & Jiang, L. 2008, “Bio-Inspired, Smart, Multiscale Interfacial Materials,” Adv. Mater. 20, 2842–2858 Xia, F. & Jiang, L. 2008, “Bio-Inspired, Smart, Multiscale Interfacial Materials,” Adv. Mater. 20, 2842–2858
Zurück zum Zitat Gao, L. & McCarthy, T. J., 2008, “Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization,” Langmuir 24, 9184–9188 Gao, L. & McCarthy, T. J., 2008, “Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization,” Langmuir 24, 9184–9188
Zurück zum Zitat McHale, G., 2009, “All Solids, Including Teflon, Are Hydrophilic (To Some Extent), But Some Have Roughness Induced Hydrophobic Tendencies,” Langmuir 25, 7185–7187. McHale, G., 2009, “All Solids, Including Teflon, Are Hydrophilic (To Some Extent), But Some Have Roughness Induced Hydrophobic Tendencies,” Langmuir 25, 7185–7187.
Zurück zum Zitat Bhushan, B. & Her, E. K., 2010, “Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal” Langmuir 26, 8207–8217. Bhushan, B. & Her, E. K., 2010, “Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal” Langmuir 26, 8207–8217.
Metadaten
Titel
Lotus Effect and Self-Cleaning
verfasst von
Michael Nosonovsky
Pradeep K. Rohatgi
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-0926-7_11