Skip to main content

2022 | OriginalPaper | Buchkapitel

6. Soft Pneumatic Actuators: Modeling, Control, and Application

verfasst von : Erik Howard Skorina, Cagdas D. Onal

Erschienen in: Smart Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soft robots, robots that are constructed out of soft materials or using compliant actuation methods, can operate safely in complex environments without fear of damaging their surroundings or themselves. However, the soft materials and structures can be imprecise and difficult to control. This thesis seeks to remedy this problem for reverse pneumatic artificial muscle (rPAM) actuators, which can apply force by extending when pressurized. First, we discuss the modeling of simple linear rPAMs as well as the motion control of a linear rPAM-driven 1-degree-of-freedom (DoF) revolute joint. Control is done through an iterative sliding mode controller with and without a feedforward term. Next, we adapt this control approach to a soft planar bending segment and use a model reference adaptive controller to compensate for the variability of soft material mechanical properties. From there, we expanded the iterative sliding mode controller and used it to control 2-DoF joint modules using three linear rPAM actuators. We subsequently replaced this universal joint with the human wrist and developed a system to provide haptic feedback to the users, improving their performance computerized line-following task. We then developed a model to predict the behavior of bending actuators, both under load and while pressurized internally, which we used to perform inverse kinematic path following. These techniques represent a meaningful advancement in understanding and improving soft actuators, allowing them to move with speed and precision while resisting external forces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.K. Klute, J.M. Czerniecki, B. Hannaford, McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence, in 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, (IEEE, 1999), pp. 221–226 G.K. Klute, J.M. Czerniecki, B. Hannaford, McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence, in 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, (IEEE, 1999), pp. 221–226
2.
Zurück zum Zitat R.H. Gaylord, Fluid actuated motor system and stroking device. US Patent 2,844,126, 22 July 1958 R.H. Gaylord, Fluid actuated motor system and stroking device. US Patent 2,844,126, 22 July 1958
3.
Zurück zum Zitat B. Tondu, Modelling of the McKibben artificial muscle: A review. J. Intell. Mater. Syst. Struct. 23(3), 225–253 (2012)CrossRef B. Tondu, Modelling of the McKibben artificial muscle: A review. J. Intell. Mater. Syst. Struct. 23(3), 225–253 (2012)CrossRef
4.
Zurück zum Zitat H. Schulte Jr., The characteristics of the McKibben artificial muscle, in The Application of External Power in Prosthetics and Orthotics, (National Academy of Sciences – National Research Council, Washington DC, 1961) H. Schulte Jr., The characteristics of the McKibben artificial muscle, in The Application of External Power in Prosthetics and Orthotics, (National Academy of Sciences – National Research Council, Washington DC, 1961)
5.
Zurück zum Zitat W. Liu, C. Rahn, Fiber-reinforced membrane models of McKibben actuators. J. Appl. Mech. 70(6), 853–859 (2003)CrossRef W. Liu, C. Rahn, Fiber-reinforced membrane models of McKibben actuators. J. Appl. Mech. 70(6), 853–859 (2003)CrossRef
6.
Zurück zum Zitat F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides, Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)CrossRef F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides, Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)CrossRef
7.
Zurück zum Zitat B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. Walsh, G.M. Whitesides, Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 04 (2014) B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. Walsh, G.M. Whitesides, Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 04 (2014)
8.
Zurück zum Zitat J. Bishop-Moser, G. Krishnan, S. Kota, Force and hydraulic displacement amplification of fiber reinforced soft actuators, in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (American Society of Mechanical Engineers, 2013), p. V06AT07A031 J. Bishop-Moser, G. Krishnan, S. Kota, Force and hydraulic displacement amplification of fiber reinforced soft actuators, in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (American Society of Mechanical Engineers, 2013), p. V06AT07A031
9.
Zurück zum Zitat G. Krishnan, J. Bishop-Moser, C. Kim, S. Kota, Evaluating mobility behavior of fluid filled fiber-reinforced elastomeric enclosures, in ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (American Society of Mechanical Engineers, 2012), pp. 1089–1099 G. Krishnan, J. Bishop-Moser, C. Kim, S. Kota, Evaluating mobility behavior of fluid filled fiber-reinforced elastomeric enclosures, in ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (American Society of Mechanical Engineers, 2012), pp. 1089–1099
10.
Zurück zum Zitat J. Bishop-Moser, S. Kota, Towards snake-like soft robots: Design of fluidic fiber-reinforced elastomeric helical manipulators, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov 2013, pp. 5021–5026 J. Bishop-Moser, S. Kota, Towards snake-like soft robots: Design of fluidic fiber-reinforced elastomeric helical manipulators, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov 2013, pp. 5021–5026
11.
Zurück zum Zitat C.D. Onal, X. Chen, G.M. Whitesides, D. Rus, Soft mobile robots with on-board chemical pressure generation, in International Symposium on Robotics Research (ISRR), 2011 C.D. Onal, X. Chen, G.M. Whitesides, D. Rus, Soft mobile robots with on-board chemical pressure generation, in International Symposium on Robotics Research (ISRR), 2011
12.
Zurück zum Zitat C.D. Onal, D. Rus, A modular approach to soft robots, in 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), (IEEE, 2012), pp. 1038–1045CrossRef C.D. Onal, D. Rus, A modular approach to soft robots, in 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), (IEEE, 2012), pp. 1038–1045CrossRef
13.
Zurück zum Zitat C.D. Onal, D. Rus, Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir. Biomim. 8(2), 026003 (2013)CrossRef C.D. Onal, D. Rus, Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir. Biomim. 8(2), 026003 (2013)CrossRef
14.
Zurück zum Zitat M. Luo, W. Tao, F. Chen, T. K. Khuu, S. Ozel, C.D. Onal, Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake, in Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications, 2014 M. Luo, W. Tao, F. Chen, T. K. Khuu, S. Ozel, C.D. Onal, Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake, in Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications, 2014
15.
Zurück zum Zitat M. Luo, M. Agheli, C.D. Onal, Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake. Soft Robot. 1(2), 136–146 (2014)CrossRef M. Luo, M. Agheli, C.D. Onal, Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake. Soft Robot. 1(2), 136–146 (2014)CrossRef
16.
Zurück zum Zitat A.D. Marchese, K. Komorowski, C.D. Onal, D. Rus, Design and control of a soft and continuously deformable 2D robotic manipulation system, in Proceedings of the IEEE International Conference on Robotics and Automation, 2014 A.D. Marchese, K. Komorowski, C.D. Onal, D. Rus, Design and control of a soft and continuously deformable 2D robotic manipulation system, in Proceedings of the IEEE International Conference on Robotics and Automation, 2014
17.
Zurück zum Zitat R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)CrossRef R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)CrossRef
18.
Zurück zum Zitat M.T. Tolley, R.F. Shepherd, B. Mosadegh, K.C. Galloway, M. Wehner, M. Karpelson, R.J. Wood, G.M. Whitesides, A resilient, untethered soft robot. Soft Robot. 1(3), 213–223 (2014)CrossRef M.T. Tolley, R.F. Shepherd, B. Mosadegh, K.C. Galloway, M. Wehner, M. Karpelson, R.J. Wood, G.M. Whitesides, A resilient, untethered soft robot. Soft Robot. 1(3), 213–223 (2014)CrossRef
19.
Zurück zum Zitat R.V. Martinez, A.C. Glavan, C. Keplinger, A.I. Oyetibo, G.M. Whitesides, Soft actuators and robots that are resistant to mechanical damage. Adv. Funct. Mater. 24(20), 3003–3010 (2014)CrossRef R.V. Martinez, A.C. Glavan, C. Keplinger, A.I. Oyetibo, G.M. Whitesides, Soft actuators and robots that are resistant to mechanical damage. Adv. Funct. Mater. 24(20), 3003–3010 (2014)CrossRef
20.
Zurück zum Zitat M. Cianchetti, T. Ranzani, G. Gerboni, I. De Falco, C. Laschi, A. Menciassi, Stiff-flop surgical manipulator: Mechanical design and experimental characterization of the single module, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2013), pp. 3576–3581CrossRef M. Cianchetti, T. Ranzani, G. Gerboni, I. De Falco, C. Laschi, A. Menciassi, Stiff-flop surgical manipulator: Mechanical design and experimental characterization of the single module, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2013), pp. 3576–3581CrossRef
21.
Zurück zum Zitat J. Bishop-Moser, G. Krishnan, S. Kota, Force and moment generation of fiber-reinforced pneumatic soft actuators, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2013), pp. 4460–4465CrossRef J. Bishop-Moser, G. Krishnan, S. Kota, Force and moment generation of fiber-reinforced pneumatic soft actuators, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2013), pp. 4460–4465CrossRef
22.
Zurück zum Zitat G. Krishnan, Kinematics of a new class of smart actuators for soft robots based on generalized pneumatic artificial muscles, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), (IEEE, 2014), pp. 587–592CrossRef G. Krishnan, Kinematics of a new class of smart actuators for soft robots based on generalized pneumatic artificial muscles, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), (IEEE, 2014), pp. 587–592CrossRef
23.
Zurück zum Zitat N. Tsagarakis, D.G. Caldwell, Improved modelling and assessment of pneumatic muscle actuators, in Proceedings ICRA’00: IEEE International Conference on Robotics and Automation, vol. 4, (IEEE, 2000), pp. 3641–3646 N. Tsagarakis, D.G. Caldwell, Improved modelling and assessment of pneumatic muscle actuators, in Proceedings ICRA’00: IEEE International Conference on Robotics and Automation, vol. 4, (IEEE, 2000), pp. 3641–3646
24.
Zurück zum Zitat C.S. Kothera, M. Jangid, J. Sirohi, N.M. Wereley, Experimental characterization and static modeling of McKibben actuators. J. Mech. Des. 131(9), 091010 (2009)CrossRef C.S. Kothera, M. Jangid, J. Sirohi, N.M. Wereley, Experimental characterization and static modeling of McKibben actuators. J. Mech. Des. 131(9), 091010 (2009)CrossRef
25.
Zurück zum Zitat B. Kim, S.B. Lee, J. Lee, S. Cho, H. Park, S. Yeom, S.H. Park, A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int. J. Precis. Eng. Manuf. 13(5), 759–764 (2012)CrossRef B. Kim, S.B. Lee, J. Lee, S. Cho, H. Park, S. Yeom, S.H. Park, A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int. J. Precis. Eng. Manuf. 13(5), 759–764 (2012)CrossRef
26.
Zurück zum Zitat J.C. Case, E.L. White, R.K. Kramer, Soft material characterization for robotic applications. Soft Robot. 2(2), 80–87 (2015)CrossRef J.C. Case, E.L. White, R.K. Kramer, Soft material characterization for robotic applications. Soft Robot. 2(2), 80–87 (2015)CrossRef
27.
Zurück zum Zitat A.D. Marchese, C.D. Onal, D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)CrossRef A.D. Marchese, C.D. Onal, D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)CrossRef
28.
Zurück zum Zitat H. Zhao, R. Huang, R.F. Shepherd, Curvature control of soft orthotics via low cost solid-state optics, in 2016 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2016), pp. 4008–4013CrossRef H. Zhao, R. Huang, R.F. Shepherd, Curvature control of soft orthotics via low cost solid-state optics, in 2016 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2016), pp. 4008–4013CrossRef
29.
Zurück zum Zitat E.H. Skorina, M. Luo, S. Ozel, F. Chen, W. Tao, C.D. Onal, Feedforward augmented sliding mode motion control of antagonistic soft pneumatic actuators, in 2015 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2015), pp. 2544–2549CrossRef E.H. Skorina, M. Luo, S. Ozel, F. Chen, W. Tao, C.D. Onal, Feedforward augmented sliding mode motion control of antagonistic soft pneumatic actuators, in 2015 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2015), pp. 2544–2549CrossRef
30.
Zurück zum Zitat P. Polygerinos, Z. Wang, J.T. Overvelde, K.C. Galloway, R.J. Wood, K. Bertoldi, C.J. Walsh, Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)CrossRef P. Polygerinos, Z. Wang, J.T. Overvelde, K.C. Galloway, R.J. Wood, K. Bertoldi, C.J. Walsh, Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)CrossRef
31.
Zurück zum Zitat M. Luo, E.H. Skorina, W. Tao, F. Chen, S. Ozel, Y. Sun, C.D. Onal, Towards modular soft robotics: Proprioceptive curvature sensing and sliding-mode control of soft bidirectional bending modules. Soft Robot. 4(2), 1–9 (2017) M. Luo, E.H. Skorina, W. Tao, F. Chen, S. Ozel, Y. Sun, C.D. Onal, Towards modular soft robotics: Proprioceptive curvature sensing and sliding-mode control of soft bidirectional bending modules. Soft Robot. 4(2), 1–9 (2017)
32.
Zurück zum Zitat C.-C. Hang, P. Parks, Comparative studies of model reference adaptive control systems. IEEE Trans. Autom. Control 18(5), 419–428 (1973)CrossRef C.-C. Hang, P. Parks, Comparative studies of model reference adaptive control systems. IEEE Trans. Autom. Control 18(5), 419–428 (1973)CrossRef
33.
Zurück zum Zitat J. Schroder, K. Kawamura, T. Gockel, R. Dillmann, Improved control of a humanoid arm driven by pneumatic actuators, in Proceedings of Humanoids, 2003 J. Schroder, K. Kawamura, T. Gockel, R. Dillmann, Improved control of a humanoid arm driven by pneumatic actuators, in Proceedings of Humanoids, 2003
34.
Zurück zum Zitat Y.-L. Park, J. Santos, K. Galloway, E.C. Goldfield, R.J. Wood, A soft wearable robotic device for active knee motions using flat pneumatic artificial muscles, in 2014 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2014), pp. 4805–4810CrossRef Y.-L. Park, J. Santos, K. Galloway, E.C. Goldfield, R.J. Wood, A soft wearable robotic device for active knee motions using flat pneumatic artificial muscles, in 2014 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2014), pp. 4805–4810CrossRef
35.
Zurück zum Zitat F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, C. Laschi, A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 7(2), 025006 (2012)CrossRef F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, C. Laschi, A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 7(2), 025006 (2012)CrossRef
36.
Zurück zum Zitat T. Nakamura, Y. Akamatsu, Y. Kusaka, Development of soft manipulator with variable rheological joints and pneumatic sensor for collision with environment. J. Robot. Mechatron. 20(4), 634 (2008)CrossRef T. Nakamura, Y. Akamatsu, Y. Kusaka, Development of soft manipulator with variable rheological joints and pneumatic sensor for collision with environment. J. Robot. Mechatron. 20(4), 634 (2008)CrossRef
37.
Zurück zum Zitat K. Boku, T. Nakamura, Development of 3-DoF soft manipulator with ER fluid clutches. J. Intell. Mater. Syst. Struct. 21(15), 1563–1567 (2010)CrossRef K. Boku, T. Nakamura, Development of 3-DoF soft manipulator with ER fluid clutches. J. Intell. Mater. Syst. Struct. 21(15), 1563–1567 (2010)CrossRef
38.
Zurück zum Zitat B. Tondu, S. Ippolito, J. Guiochet, A. Daidie, A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots. Int. J. Robot. Res. 24(4), 257–274 (2005)CrossRef B. Tondu, S. Ippolito, J. Guiochet, A. Daidie, A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots. Int. J. Robot. Res. 24(4), 257–274 (2005)CrossRef
39.
Zurück zum Zitat G. Tonietti, A. Bicchi, Adaptive simultaneous position and stiffness control for a soft robot arm, in 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, (IEEE, 2002), pp. 1992–1997CrossRef G. Tonietti, A. Bicchi, Adaptive simultaneous position and stiffness control for a soft robot arm, in 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, (IEEE, 2002), pp. 1992–1997CrossRef
40.
Zurück zum Zitat S. Eskiizmirliler, N. Forestier, B. Tondu, C. Darlot, A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles. Biol. Cybern. 86(5), 379–394 (2002)CrossRef S. Eskiizmirliler, N. Forestier, B. Tondu, C. Darlot, A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles. Biol. Cybern. 86(5), 379–394 (2002)CrossRef
41.
Zurück zum Zitat P. van der Smagt, F. Groen, K. Schulten, Analysis and control of a rubbertuator arm. Biol. Cybern. 75(5), 433–440 (1996)CrossRef P. van der Smagt, F. Groen, K. Schulten, Analysis and control of a rubbertuator arm. Biol. Cybern. 75(5), 433–440 (1996)CrossRef
42.
Zurück zum Zitat T. Amemiya, H. Gomi, Distinct Pseudo-Attraction Force Sensation by a Thumb-Sized Vibrator that Oscillates Asymmetrically (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014), pp. 88–95 T. Amemiya, H. Gomi, Distinct Pseudo-Attraction Force Sensation by a Thumb-Sized Vibrator that Oscillates Asymmetrically (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014), pp. 88–95
43.
Zurück zum Zitat A.V. Dowling, D. Fisher, T. Andriacchi, Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J. Biomech. Eng. 132(7), 071007 (2010)CrossRef A.V. Dowling, D. Fisher, T. Andriacchi, Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J. Biomech. Eng. 132(7), 071007 (2010)CrossRef
44.
Zurück zum Zitat L.A. Johnson, C.M. Higgins, A navigation aid for the blind using tactile-visual sensory substitution, in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, Aug 2006, pp. 6289–6292 L.A. Johnson, C.M. Higgins, A navigation aid for the blind using tactile-visual sensory substitution, in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, Aug 2006, pp. 6289–6292
45.
Zurück zum Zitat M. Chciuk, A. Milecki, P. Bachman, Comparison of a Traditional Control and a Force Feedback Control of the Robot Arm During Teleoperation (Springer International Publishing, Cham, 2017), pp. 277–289 M. Chciuk, A. Milecki, P. Bachman, Comparison of a Traditional Control and a Force Feedback Control of the Robot Arm During Teleoperation (Springer International Publishing, Cham, 2017), pp. 277–289
46.
Zurück zum Zitat C. Riecke, J. Artigas, R. Balachandran, R. Bayer, A. Beyer, B. Brunner, H. Buchner, T. Gumpert, R. Gruber, F. Hacker, K. Landzettel, G. Plank, S. Schatzle, H.-J. Sedlmayr, N. Seitz, B.-M. Steinmetz, M. Stelzer, J. Vogel, B. Weber, B. Willberg, A. Albu-Schaffer, Kontur-2 mission: The DLR force feedback joystick for space telemanipulation from the ISS, in The Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2016), 2016 C. Riecke, J. Artigas, R. Balachandran, R. Bayer, A. Beyer, B. Brunner, H. Buchner, T. Gumpert, R. Gruber, F. Hacker, K. Landzettel, G. Plank, S. Schatzle, H.-J. Sedlmayr, N. Seitz, B.-M. Steinmetz, M. Stelzer, J. Vogel, B. Weber, B. Willberg, A. Albu-Schaffer, Kontur-2 mission: The DLR force feedback joystick for space telemanipulation from the ISS, in The Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2016), 2016
47.
Zurück zum Zitat C.R. Wagner, N. Stylopoulos, R.D. Howe, The role of force feedback in surgery: Analysis of blunt dissection, in Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, 2002, pp. 68–74 C.R. Wagner, N. Stylopoulos, R.D. Howe, The role of force feedback in surgery: Analysis of blunt dissection, in Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, 2002, pp. 68–74
48.
Zurück zum Zitat J.C. Metzger, O. Lambercy, R. Gassert, High-fidelity rendering of virtual objects with the ReHapticKnob-novel avenues in robot-assisted rehabilitation of hand function, in 2012 IEEE Haptics Symposium (HAPTICS), March 2012, pp. 51–56 J.C. Metzger, O. Lambercy, R. Gassert, High-fidelity rendering of virtual objects with the ReHapticKnob-novel avenues in robot-assisted rehabilitation of hand function, in 2012 IEEE Haptics Symposium (HAPTICS), March 2012, pp. 51–56
49.
Zurück zum Zitat D. Margineanu, E.-C. Lovasz, C.M. Gruescu, V. Ciupe, S. Tatar, 5 DoF Haptic Exoskeleton for Space Telerobotics – Shoulder Module (Springer International Publishing, Cham, 2018), pp. 111–120 D. Margineanu, E.-C. Lovasz, C.M. Gruescu, V. Ciupe, S. Tatar, 5 DoF Haptic Exoskeleton for Space Telerobotics – Shoulder Module (Springer International Publishing, Cham, 2018), pp. 111–120
50.
Zurück zum Zitat M.A. Zhou, P. Ben-Tzvi, RML glove: An exoskeleton glove mechanism with haptics feedback. IEEE Trans. Mechatron. 20(2), 641–652 (2015)CrossRef M.A. Zhou, P. Ben-Tzvi, RML glove: An exoskeleton glove mechanism with haptics feedback. IEEE Trans. Mechatron. 20(2), 641–652 (2015)CrossRef
51.
Zurück zum Zitat J. Blake, H.B. Gurocak, Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatron. 14(5), 606–615 (2009)CrossRef J. Blake, H.B. Gurocak, Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatron. 14(5), 606–615 (2009)CrossRef
52.
Zurück zum Zitat M. Bouzit, G. Burdea, G. Popescu, R. Boian, The Rutgers Master II-new design force-feedback glove. IEEE/ASME Trans. Mechatron. 7(2), 256–263 (2002)CrossRef M. Bouzit, G. Burdea, G. Popescu, R. Boian, The Rutgers Master II-new design force-feedback glove. IEEE/ASME Trans. Mechatron. 7(2), 256–263 (2002)CrossRef
53.
Zurück zum Zitat A. Erwin, M.K. O’Malley, D. Ress, F. Sergi, Kinesthetic feedback during 2DoF wrist movements via a novel MR-compatible robot. IEEE Trans. Neural Syst. Rehabil. Eng. 25(9), 10127–10134 (2016). [Online]. Available: IEEE Transactions on Neural Systems and Rehabilitation Engineering A. Erwin, M.K. O’Malley, D. Ress, F. Sergi, Kinesthetic feedback during 2DoF wrist movements via a novel MR-compatible robot. IEEE Trans. Neural Syst. Rehabil. Eng. 25(9), 10127–10134 (2016). [Online]. Available: IEEE Transactions on Neural Systems and Rehabilitation Engineering
54.
Zurück zum Zitat S.B. Schorr, Z.F. Quek, R.Y. Romano, I. Nisky, W.R. Provancher, A.M. Okamura, Sensory substitution via cutaneous skin stretch feedback, in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 2341–2346 S.B. Schorr, Z.F. Quek, R.Y. Romano, I. Nisky, W.R. Provancher, A.M. Okamura, Sensory substitution via cutaneous skin stretch feedback, in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 2341–2346
57.
Zurück zum Zitat P.E. Patterson, J. Katz, Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J. Rehabil. Res. Dev. 29(1), 1–8 (1992)CrossRef P.E. Patterson, J. Katz, Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J. Rehabil. Res. Dev. 29(1), 1–8 (1992)CrossRef
58.
Zurück zum Zitat I.M. Koo, K. Jung, J.C. Koo, J.D. Nam, Y.K. Lee, H.R. Choi, Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24(3), 549–558 (2008)CrossRef I.M. Koo, K. Jung, J.C. Koo, J.D. Nam, Y.K. Lee, H.R. Choi, Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24(3), 549–558 (2008)CrossRef
61.
Zurück zum Zitat D. Sasaki, T. Noritsugu, M. Takaiwa, Development of active support splint driven by pneumatic soft actuator (ASSIST), in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), 2005 D. Sasaki, T. Noritsugu, M. Takaiwa, Development of active support splint driven by pneumatic soft actuator (ASSIST), in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), 2005
62.
Zurück zum Zitat H. Al-Fahaam, S. Davis, S. Nefti-Meziani, Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators, in 2016 International Conference for Students on Applied Engineering (ICSAE), (IEEE, 2016) H. Al-Fahaam, S. Davis, S. Nefti-Meziani, Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators, in 2016 International Conference for Students on Applied Engineering (ICSAE), (IEEE, 2016)
65.
Zurück zum Zitat F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, C. Laschi, A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 27(2), 334–345 (2012) F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, C. Laschi, A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 27(2), 334–345 (2012)
66.
Zurück zum Zitat M. Mahvash, P.E. Dupont, Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27(2), 334–345 (2011)CrossRef M. Mahvash, P.E. Dupont, Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27(2), 334–345 (2011)CrossRef
67.
Zurück zum Zitat B.A. Jones, I.D. Walker, Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)CrossRef B.A. Jones, I.D. Walker, Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)CrossRef
69.
Zurück zum Zitat W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I.D. Walker, B.A. Jones, M. Pritts, D. Dienno, M. Grissom, C.D. Rahn, Field trials and testing of the OctArm continuum manipulator, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, May 2006, pp. 2336–2341 W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I.D. Walker, B.A. Jones, M. Pritts, D. Dienno, M. Grissom, C.D. Rahn, Field trials and testing of the OctArm continuum manipulator, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, May 2006, pp. 2336–2341
70.
Zurück zum Zitat D. Trivedi, A. Lotfi, C.D. Rahn, Geometrically exact models for soft robotic manipulators. IEEE Trans. Robot. 24(4), 773–780 (Aug 2008)CrossRef D. Trivedi, A. Lotfi, C.D. Rahn, Geometrically exact models for soft robotic manipulators. IEEE Trans. Robot. 24(4), 773–780 (Aug 2008)CrossRef
71.
Zurück zum Zitat D. Braganza, D.M. Dawson, I.D. Walker, N. Nath, A neural network controller for continuum robots. IEEE Trans. Robot. 23(6), 1270–1277 (2007)CrossRef D. Braganza, D.M. Dawson, I.D. Walker, N. Nath, A neural network controller for continuum robots. IEEE Trans. Robot. 23(6), 1270–1277 (2007)CrossRef
72.
Zurück zum Zitat R. Kang, D.T. Branson, T. Zheng, E. Guglielmino, D.G. Caldwell, Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspir. Biomim. 8(3), 1270–1277 (2013)CrossRef R. Kang, D.T. Branson, T. Zheng, E. Guglielmino, D.G. Caldwell, Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspir. Biomim. 8(3), 1270–1277 (2013)CrossRef
73.
Zurück zum Zitat J. Frás, J. Czarnowski, M. Maciás, J. Główka, Static modeling of multi-section soft continuum manipulator for stiff-flop project, in Recent Advances in Automation, Robotics and Measuring Techniques, ed. by R. Szewczyk, C. Zieliński, M. Kaliczyńska, (Springer International Publishing, Cham, 2014), pp. 365–375CrossRef J. Frás, J. Czarnowski, M. Maciás, J. Główka, Static modeling of multi-section soft continuum manipulator for stiff-flop project, in Recent Advances in Automation, Robotics and Measuring Techniques, ed. by R. Szewczyk, C. Zieliński, M. Kaliczyńska, (Springer International Publishing, Cham, 2014), pp. 365–375CrossRef
74.
Zurück zum Zitat T. Mahl, A. Hildebrandt, O. Sawodny, A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Trans. Robot. 30(4), 935–949 (2014)CrossRef T. Mahl, A. Hildebrandt, O. Sawodny, A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Trans. Robot. 30(4), 935–949 (2014)CrossRef
75.
Zurück zum Zitat C.-P. Chou, B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)CrossRef C.-P. Chou, B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)CrossRef
76.
Zurück zum Zitat C. Vergari, P. Pourcelot, L. Holden, B. Ravary-Plumiöen, G. Gerard, P. Laugier, D. Mitton, N. Crevier-Denoix, True stress and Poisson’s ratio of tendons during loading. J. Biomech. 44, 719–724 (2011)CrossRef C. Vergari, P. Pourcelot, L. Holden, B. Ravary-Plumiöen, G. Gerard, P. Laugier, D. Mitton, N. Crevier-Denoix, True stress and Poisson’s ratio of tendons during loading. J. Biomech. 44, 719–724 (2011)CrossRef
77.
Zurück zum Zitat R. Ogden, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326(1567), 565–584 (1972) R. Ogden, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326(1567), 565–584 (1972)
78.
Zurück zum Zitat L. Crocker, B. Duncan, J. Urquhart, R. Hughes, A. Olusanya, The application of rubber material models to analyse flexible adhesive joints. Proc. Adhes. 99 (2007) L. Crocker, B. Duncan, J. Urquhart, R. Hughes, A. Olusanya, The application of rubber material models to analyse flexible adhesive joints. Proc. Adhes. 99 (2007)
79.
Zurück zum Zitat P. Martins, R. Natal Jorge, A. Ferreira, A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain 42(3), 135–147 (2006)CrossRef P. Martins, R. Natal Jorge, A. Ferreira, A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain 42(3), 135–147 (2006)CrossRef
80.
Zurück zum Zitat S. Youssefian, N. Rahbar, E. Torres-Jara, Contact behavior of soft spherical tactile sensors. IEEE Sens. J. 14(5), 1435–1442 (2013)CrossRef S. Youssefian, N. Rahbar, E. Torres-Jara, Contact behavior of soft spherical tactile sensors. IEEE Sens. J. 14(5), 1435–1442 (2013)CrossRef
81.
Zurück zum Zitat American Society for Testing and Materials, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. ASTM International Standards, D412-06 (ASTM International, West Conshohocken, 2006) American Society for Testing and Materials, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. ASTM International Standards, D412-06 (ASTM International, West Conshohocken, 2006)
82.
Zurück zum Zitat American Society for Testing and Materials, Standard Test Methods for Rubber Properties in Compression. ASTM Standard, D575-91 (ASTM International, West Conshohocken, 2012) American Society for Testing and Materials, Standard Test Methods for Rubber Properties in Compression. ASTM Standard, D575-91 (ASTM International, West Conshohocken, 2012)
84.
Zurück zum Zitat M. Luo, E. Skorina, W. Tao, F. Chen, C.D. Onal, Optimized design of a rigid kinematic module for antagonistic soft actuation, in IEEE Conference on Technologies for Practical Robot Applications, 2015 M. Luo, E. Skorina, W. Tao, F. Chen, C.D. Onal, Optimized design of a rigid kinematic module for antagonistic soft actuation, in IEEE Conference on Technologies for Practical Robot Applications, 2015
85.
Zurück zum Zitat V. Utkin, Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)CrossRef V. Utkin, Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)CrossRef
86.
Zurück zum Zitat E. Skorina, W. Tao, F. Chen, M. Luo, C.D. Onal, Motion control of a soft-actuated modular manipulator, in IEEE International Conference on Robotics and Automation (ICRA), 2016 E. Skorina, W. Tao, F. Chen, M. Luo, C.D. Onal, Motion control of a soft-actuated modular manipulator, in IEEE International Conference on Robotics and Automation (ICRA), 2016
87.
Zurück zum Zitat S. Ozel, N. Keskin, D. Khea, C. Onal, A precise embedded curvature sensor module for soft-bodied robots. Sensors Actuators A Phys. 236, 349–356 (2015)CrossRef S. Ozel, N. Keskin, D. Khea, C. Onal, A precise embedded curvature sensor module for soft-bodied robots. Sensors Actuators A Phys. 236, 349–356 (2015)CrossRef
88.
Zurück zum Zitat E. Skorina, M. Luo, W. Oo, W. Tao, F. Chen, S. Youssefian, N. Rahbar, C. Onal, Reverse pneumatic artificial muscles (rPAMs): Modeling, integration, and control. PLoS One 13(10), e0204637 (2018)CrossRef E. Skorina, M. Luo, W. Oo, W. Tao, F. Chen, S. Youssefian, N. Rahbar, C. Onal, Reverse pneumatic artificial muscles (rPAMs): Modeling, integration, and control. PLoS One 13(10), e0204637 (2018)CrossRef
89.
Zurück zum Zitat M. Luo, E. Skorina, W. Tao, F. Chen, C.D. Onal, Optimized design of a rigid kinematic module for antagonistic soft actuation, in 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), (IEEE, 2015), pp. 1–6 M. Luo, E. Skorina, W. Tao, F. Chen, C.D. Onal, Optimized design of a rigid kinematic module for antagonistic soft actuation, in 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), (IEEE, 2015), pp. 1–6
90.
Zurück zum Zitat W. Tao, E.H. Skorina, F. Chen, J. McInnis, M. Luo, C.D. Onal, Bioinspired design and fabrication principles of reliable fluidic soft actuation modules, in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), (IEEE, 2015), pp. 2169–2174CrossRef W. Tao, E.H. Skorina, F. Chen, J. McInnis, M. Luo, C.D. Onal, Bioinspired design and fabrication principles of reliable fluidic soft actuation modules, in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), (IEEE, 2015), pp. 2169–2174CrossRef
93.
Zurück zum Zitat D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467475 (2015)CrossRef D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467475 (2015)CrossRef
Metadaten
Titel
Soft Pneumatic Actuators: Modeling, Control, and Application
verfasst von
Erik Howard Skorina
Cagdas D. Onal
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70514-5_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.