Skip to main content

2013 | OriginalPaper | Buchkapitel

11. Stability of SIR Epidemic Model Equilibrium Points

verfasst von : Leonid Shaikhet

Erschienen in: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chapter 11 deals with a mathematical model of the spread of infectious diseases, so called SIR epidemic model. Sufficient conditions for stability in probability of the degenerated equilibrium point \(E_{0}=(b\mu_{1}^{-1},0,0)\) and the positive equilibrium point E =(S ,I ,R ) of SIR epidemic model with distributed delays and stochastic perturbations are obtained. Results of numerical simulations of stability regions and trajectories of stable solutions are shown in 3 figures. Similarly to the previous chapters numerical simulations of the processes S(t), I(t) and R(t) were obtained via the Euler–Maruyama scheme for stochastic differential equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Alonso-Quesada S, De la Sen M, Agarwal R, Ibeas A (2012) An observer-based vaccination control law for a SEIR epidemic model based on feedback linearization techniques for nonlinear systems. Adv Differ Equ 2012:161 CrossRef Alonso-Quesada S, De la Sen M, Agarwal R, Ibeas A (2012) An observer-based vaccination control law for a SEIR epidemic model based on feedback linearization techniques for nonlinear systems. Adv Differ Equ 2012:161 CrossRef
18.
Zurück zum Zitat Bailey NTJ (1957) The mathematical theory of epidemics. Griffin, London Bailey NTJ (1957) The mathematical theory of epidemics. Griffin, London
26.
Zurück zum Zitat Beretta E, Takeuchi Y (1995) Global stability of an SIR epidemic model with time delays. J Math Biol 33:250–260 MathSciNetMATH Beretta E, Takeuchi Y (1995) Global stability of an SIR epidemic model with time delays. J Math Biol 33:250–260 MathSciNetMATH
27.
Zurück zum Zitat Beretta E, Kolmanovskii V, Shaikhet L (1998) Stability of epidemic model with time delays influenced by stochastic perturbations. Math Comput Simul 45(3–4):269–277 (Special Issue “Delay Systems”) MathSciNetMATHCrossRef Beretta E, Kolmanovskii V, Shaikhet L (1998) Stability of epidemic model with time delays influenced by stochastic perturbations. Math Comput Simul 45(3–4):269–277 (Special Issue “Delay Systems”) MathSciNetMATHCrossRef
28.
Zurück zum Zitat Beretta E, Hara T, Ma W, Takeuchi Y (2001) Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal 47:4107–4115 MathSciNetMATHCrossRef Beretta E, Hara T, Ma W, Takeuchi Y (2001) Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal 47:4107–4115 MathSciNetMATHCrossRef
41.
Zurück zum Zitat Buonomo B, Rionero S (2010) On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate. Appl Math Comput 217(8):4010–4016 MathSciNetMATHCrossRef Buonomo B, Rionero S (2010) On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate. Appl Math Comput 217(8):4010–4016 MathSciNetMATHCrossRef
45.
Zurück zum Zitat Busenberg S, Cooke KL (1980) The effect of integral conditions in certain equations modelling epidemics and population growth. J Math Biol 10(1):13–32 MathSciNetMATHCrossRef Busenberg S, Cooke KL (1980) The effect of integral conditions in certain equations modelling epidemics and population growth. J Math Biol 10(1):13–32 MathSciNetMATHCrossRef
58.
Zurück zum Zitat Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382 MathSciNetMATH Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382 MathSciNetMATH
71.
Zurück zum Zitat Fan X, Wang Z, Xu X (2012) Global stability of two-group epidemic models with distributed delays and random perturbation. Abstr Appl Anal 2012:132095 MathSciNet Fan X, Wang Z, Xu X (2012) Global stability of two-group epidemic models with distributed delays and random perturbation. Abstr Appl Anal 2012:132095 MathSciNet
110.
Zurück zum Zitat Hethcote HW (1976) Qualitative analysis of communicable disease models. Math Biol Sci 28:335–356 MathSciNetMATH Hethcote HW (1976) Qualitative analysis of communicable disease models. Math Biol Sci 28:335–356 MathSciNetMATH
117.
Zurück zum Zitat Jovanovic M, Krstic M (2012) Stochastically perturbed vector-borne disease models with direct transmission. Appl Math Model 36:5214–5228 MathSciNetMATHCrossRef Jovanovic M, Krstic M (2012) Stochastically perturbed vector-borne disease models with direct transmission. Appl Math Model 36:5214–5228 MathSciNetMATHCrossRef
118.
Zurück zum Zitat Jumpen W, Orankitjaroen S, Boonkrong P, Wiwatanapataphee B (2011) SEIQR-SIS epidemic network model and its stability. Int J Math Comput Simul 5:326–333 Jumpen W, Orankitjaroen S, Boonkrong P, Wiwatanapataphee B (2011) SEIQR-SIS epidemic network model and its stability. Int J Math Comput Simul 5:326–333
123.
Zurück zum Zitat Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton MATH Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton MATH
124.
Zurück zum Zitat Khan H, Mohapatra RN, Vajravelu K, Liao SJ (2009) The explicit series solution of SIR and SIS epidemic models. Appl Math Comput 215:653–669 MathSciNetMATHCrossRef Khan H, Mohapatra RN, Vajravelu K, Liao SJ (2009) The explicit series solution of SIR and SIS epidemic models. Appl Math Comput 215:653–669 MathSciNetMATHCrossRef
152.
Zurück zum Zitat Korobeinikov A (2006) Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull Math Biol 68:615–626 MathSciNetCrossRef Korobeinikov A (2006) Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull Math Biol 68:615–626 MathSciNetCrossRef
154.
Zurück zum Zitat Korobeinikov A, Maini PK (2005) Nonlinear incidence and stability of infectious disease models. Math Med Biol 22:113–128 MATHCrossRef Korobeinikov A, Maini PK (2005) Nonlinear incidence and stability of infectious disease models. Math Med Biol 22:113–128 MATHCrossRef
168.
Zurück zum Zitat Lahrouz A, Omari L, Kiouach D (2011) Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal, Model Control 16:59–76 MathSciNet Lahrouz A, Omari L, Kiouach D (2011) Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal, Model Control 16:59–76 MathSciNet
179.
Zurück zum Zitat Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160:191–213 MathSciNetMATHCrossRef Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160:191–213 MathSciNetMATHCrossRef
187.
Zurück zum Zitat Ma W, Takeuchi Y, Hara T, Beretta E (2002) Permanence of an SIR epidemic model with distributed time delays. Tohoku Math J 54:581–591 MathSciNetMATHCrossRef Ma W, Takeuchi Y, Hara T, Beretta E (2002) Permanence of an SIR epidemic model with distributed time delays. Tohoku Math J 54:581–591 MathSciNetMATHCrossRef
188.
193.
Zurück zum Zitat Makinde OD (2007) Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy. Appl Math Comput 184:842–848 MathSciNetMATHCrossRef Makinde OD (2007) Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy. Appl Math Comput 184:842–848 MathSciNetMATHCrossRef
202.
Zurück zum Zitat McCluskey CC (2010) Complete global stability for an SIR epidemic model with delay—distributed or discrete. Nonlinear Anal, Real World Appl 11:55–59 MathSciNetMATHCrossRef McCluskey CC (2010) Complete global stability for an SIR epidemic model with delay—distributed or discrete. Nonlinear Anal, Real World Appl 11:55–59 MathSciNetMATHCrossRef
203.
Zurück zum Zitat McCluskey CC (2010) Global stability for an SIR epidemic model with delay and nonlinear incidence. Nonlinear Anal, Real World Appl 11(4):3106–3109 MathSciNetMATHCrossRef McCluskey CC (2010) Global stability for an SIR epidemic model with delay and nonlinear incidence. Nonlinear Anal, Real World Appl 11(4):3106–3109 MathSciNetMATHCrossRef
212.
Zurück zum Zitat Mollison D (2003) Epidemic models: their structure and relation to data. Publications of the Newton Institute. Cambridge University Press, Cambridge Mollison D (2003) Epidemic models: their structure and relation to data. Publications of the Newton Institute. Cambridge University Press, Cambridge
213.
Zurück zum Zitat Mukhopadhyay B, Bhattacharyya R (2007) Existence of epidemic waves in a disease transmission model with two-habitat population. Int J Syst Sci 38:699–707 MathSciNetMATHCrossRef Mukhopadhyay B, Bhattacharyya R (2007) Existence of epidemic waves in a disease transmission model with two-habitat population. Int J Syst Sci 38:699–707 MathSciNetMATHCrossRef
218.
Zurück zum Zitat Muroya Y, Enatsu Y, Nakata Y (2011) Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate. J Math Anal Appl 377(1):1–14 MathSciNetMATHCrossRef Muroya Y, Enatsu Y, Nakata Y (2011) Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate. J Math Anal Appl 377(1):1–14 MathSciNetMATHCrossRef
223.
Zurück zum Zitat Naresh R, Tripathi A, Tchuenche JM, Sharma D (2009) Stability analysis of a time delayed SIR epidemic model with nonlinear incidence rate. Comput Math Appl 58(2):348–359 MathSciNetMATHCrossRef Naresh R, Tripathi A, Tchuenche JM, Sharma D (2009) Stability analysis of a time delayed SIR epidemic model with nonlinear incidence rate. Comput Math Appl 58(2):348–359 MathSciNetMATHCrossRef
289.
Zurück zum Zitat Song XY, Jiang Y, Wei HM (2009) Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Appl Math Comput 214:381–390 MathSciNetMATHCrossRef Song XY, Jiang Y, Wei HM (2009) Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Appl Math Comput 214:381–390 MathSciNetMATHCrossRef
294.
Zurück zum Zitat Takeuchi Y, Ma W, Beretta E (2000) Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal 42:931–947 MathSciNetMATHCrossRef Takeuchi Y, Ma W, Beretta E (2000) Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal 42:931–947 MathSciNetMATHCrossRef
295.
Zurück zum Zitat Tamizhmani KM, Ramani A, Grammaticos B, Carstea AS (2004) Modelling AIDS epidemic and treatment with difference equations. Adv Differ Equ 3:183–193 MathSciNet Tamizhmani KM, Ramani A, Grammaticos B, Carstea AS (2004) Modelling AIDS epidemic and treatment with difference equations. Adv Differ Equ 3:183–193 MathSciNet
296.
Zurück zum Zitat Tapaswi PK, Chattopadhyay J (1996) Global stability results of a “susceptible-infective-immune-susceptible” (SIRS) epidemic model. Ecol Model 87(1–3):223–226 CrossRef Tapaswi PK, Chattopadhyay J (1996) Global stability results of a “susceptible-infective-immune-susceptible” (SIRS) epidemic model. Ecol Model 87(1–3):223–226 CrossRef
310.
Zurück zum Zitat Wang W, Xin J, Zhang F (2010) Persistence of an SEIR model with immigration dependent on the prevalence of infection. Discrete Dyn Nat Soc. doi:10.1155/2010/727168. Article ID 727168, 7 pages MathSciNet Wang W, Xin J, Zhang F (2010) Persistence of an SEIR model with immigration dependent on the prevalence of infection. Discrete Dyn Nat Soc. doi:10.​1155/​2010/​727168. Article ID 727168, 7 pages MathSciNet
315.
Zurück zum Zitat Yang J, Wang X (2010) Existence of a nonautonomous SIR epidemic model with age structure. Adv Differ Equ. Article ID 212858, 23 pages Yang J, Wang X (2010) Existence of a nonautonomous SIR epidemic model with age structure. Adv Differ Equ. Article ID 212858, 23 pages
319.
Zurück zum Zitat Zhang J, Jin Z (2010) The analysis of epidemic network model with infectious force in latent and infected period. Discrete Dyn Nat Soc. Article ID 604329, 12 pages Zhang J, Jin Z (2010) The analysis of epidemic network model with infectious force in latent and infected period. Discrete Dyn Nat Soc. Article ID 604329, 12 pages
322.
Zurück zum Zitat Zhang F, Li Z, Zhang F (2008) Global stability of an SIR epidemic model with constant infectious period. Appl Math Comput 199:285–291 MathSciNetMATHCrossRef Zhang F, Li Z, Zhang F (2008) Global stability of an SIR epidemic model with constant infectious period. Appl Math Comput 199:285–291 MathSciNetMATHCrossRef
323.
Zurück zum Zitat Zhang TL, Liu JL, Teng ZD (2009) Dynamic behaviour for a nonautonomous SIRS epidemic model with distributed delays. Appl Math Comput 214:624–631 MathSciNetMATHCrossRef Zhang TL, Liu JL, Teng ZD (2009) Dynamic behaviour for a nonautonomous SIRS epidemic model with distributed delays. Appl Math Comput 214:624–631 MathSciNetMATHCrossRef
324.
Zurück zum Zitat Zhang Z, Wu J, Suo Y, Song X (2011) The domain of attraction for the endemic equilibrium of an SIRS epidemic model. Math Comput Simul 81:1697–1706 MathSciNetMATHCrossRef Zhang Z, Wu J, Suo Y, Song X (2011) The domain of attraction for the endemic equilibrium of an SIRS epidemic model. Math Comput Simul 81:1697–1706 MathSciNetMATHCrossRef
Metadaten
Titel
Stability of SIR Epidemic Model Equilibrium Points
verfasst von
Leonid Shaikhet
Copyright-Jahr
2013
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-00101-2_11

Neuer Inhalt