Skip to main content

2017 | OriginalPaper | Buchkapitel

6. Stabilization of Nonlinear Systems via State Feedback

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter considers single-input single-output nonlinear systems that can be brought, by change of coordinates, to a special form having essentially the same structure as the normal form of a linear system. For such systems, it is also possible to define concepts and properties which identify a class of systems that can be seen as a nonlinear analogue of the class of linear system having all zeros with negative real part. This makes it possible to systematically develop stabilization methods that, in various forms, extend to nonlinear systems the stabilization methods presented in Chap. 2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
By “smooth map” we mean a \(C^\infty \) map, i.e., a map for which partial derivatives of any order are defined and continuous. In what follows, f(x) and g(x) will be sometimes regarded as smooth vector fields of \(\mathbb R^n\).
 
2
In fact, the right-hand side of the upper equation for each x is an affine function of u.
 
3
Some of the topics presented in this chapter are covered in various textbooks on nonlinear systems, such as [16]. The approach here follows that of [2]. For further reading, see also [1416].
 
4
The first of the two properties is clearly needed in order to have the possibility of reversing the transformation and recovering the original state vector as \(x =\varPhi ^{-1}(\tilde{x})\), while the second one guarantees that the description of the system in the new coordinates is still a smooth one.
 
5
Let \(\lambda \) be real-valued function and f a vector field, both defined on a subset U of \(\mathbb R^n\). The function \(L_f\lambda \) is the real-valued function defined as
$$L_f\lambda (x)=\sum _{i=1}^n{\partial \lambda \over \partial x_i}f_i(x):= {\partial \lambda \over \partial x}f(x).$$
This function is sometimes called the derivative of \(\lambda \) along f. If g is another vector field, the notation \(L_gL_f\lambda (x)\) stands for the derivative of the real-valued function \(L_f\lambda \) along g and the notation \(L_f^k\lambda (x)\) stands for the derivative of the real-valued function \(L_f^{k-1}\lambda \) along f.
 
6
See [2, p. 140–142] for a proof of Propositions 6.1 and 6.2.
 
7
Let \(\lambda \) be a real-valued function defined on a subset U of \(\mathbb R^n\). Its differential, denoted \(d\lambda (x)\), is the row vector
$$ d\lambda (x) = \left( \begin{matrix} \displaystyle {\partial \lambda \over \partial x_1} \displaystyle {\partial \lambda \over \partial x_2} \cdots \displaystyle {\partial \lambda \over \partial x_n}\end{matrix}\right) := {\partial \lambda \over \partial x}.$$
 
8
See, e.g., [2].
 
9
See [7] and also [2] for the proof.
 
10
Let f and g be vector fields of \(\mathbb R^n\). Their Lie bracket, denoted [fg], is the vector field of \(\mathbb R^n\) defined as
$$ [f,g](x) = {\partial g \over \partial x}f(x) -{\partial f \over \partial x}g(x). $$
The vector field \(ad_{f}^{k}g\) is recursively defined as follows
$$ ad_{f}^{0}g=g \qquad ad_{f}^{k}g = [f,ad_{f}^{k-1}g].$$
 
11
If \(\tau \) is a vector field of \(\mathbb R^n\), the flow of \(\tau \) is the map \(\varPhi _t^{\tau }(x)\), in which \(t\in \mathbb R\) and \(x\in \mathbb R^n\), defined by the following properties: \(\varPhi _0^{\tau }(x)=x\) and
$$ {\mathrm{d} \varPhi _t^{\tau }(x) \over \mathrm{d}\,t} = \tau (\varPhi _t^{\tau }(x)). $$
In other words, \(\varPhi _t^{\tau }(x)\) is the value at time \(t\in \mathbb R\) of the integral curve of the o.d.e. \(\dot{x} = \tau (x)\) passing through \(x=0\) at time \(t=0\). The vector field \(\tau \) is said to be complete if \(\varPhi _t^{\tau }(x)\) is defined for all \((t,x) \in \mathbb R\times \mathbb R^n\).
 
12
For further reading, see [8] and the references cited thererein.
 
13
We have tacitly assumed, as in Sect. 2.​1, that the triplet ABC is a minimal realization of its transfer function.
 
14
If we deal with a locally defined normal form, all functions of time are to be seen as functions defined in a neighborhood of \(t=0\). Otherwise, if the normal form is globally defined, such functions are defined for all t for which the solution of (6.12) is defined.
 
15
In the second part of the definition, of the property of input-of-state stability is invoked. For a summary of the main characterizations of such property and a number of related results, see Sect. B.2 of Appendix B. For further reading about the property of input-to-state stability, see references [10, 11, 14] of Appendix B. For further reading about the notion of a minimum-phase system, see also [8, 9].
 
16
See Sect. B.2 in Appendix B.
 
17
In what follows, property (6.16) will be sometime expressed in the equivalent form: V(x) is positive definite and proper .
 
18
This analogy is the motivation for the introduction of the term “minimum-phase” to indicate the asymptotic properties considered in Definition 6.1.
 
19
For additional reading on such design procedure, as well as on its use in problems of adaptive control, see [3, 10].
 
20
To check that this is always possible, observe that the difference
$$ \bar{f}(z,\xi ) = f(z,\xi ) - f(z,0) $$
is a smooth function vanishing at \(\xi =0\), and express \(\bar{f}(z,\xi )\) as
$$ \bar{f}(z,\xi ) = \int _0^1{\partial \bar{f}(z,s\xi ) \over \partial s}ds = \int _0^1\Bigl [{\partial \bar{f}(z,\zeta ) \over \partial \zeta }\Bigr ]_{\zeta = s\xi }\xi ds. $$
 
21
With a mild abuse of notation, we use here x instead of \(\tilde{x}\), to denote the vector of coordinates that characterize the normal form of the system.
 
22
The arguments used in this proof are essentially those originally proposed in [11] and frequently reused in the literature.
 
23
In fact, let x be a point of \(S_d^c\) for which \(\xi =0\). Then \(x\in S_0\), which implies \(x\in S^{\,\prime }\). Any of such x cannot be in \(S^{\,\prime \prime }\).
 
24
See Sect. B.1 of Appendix B, in this respect.
 
25
Note that such T only depends on the choice of \({\mathscr {C}}\) and \(\varepsilon \) and not on the value of k.
 
26
For further reading, see also [12].
 
27
See also [13], in this respect.
 
28
See, e.g., [7, 12], [2, pp. 439–448].
 
Literatur
1.
Zurück zum Zitat H. Nijmeijer, A. van der Schaft, Nonlinear Dynamical Control Systems (Springer, New York, 1990)CrossRefMATH H. Nijmeijer, A. van der Schaft, Nonlinear Dynamical Control Systems (Springer, New York, 1990)CrossRefMATH
3.
Zurück zum Zitat M. Kristic, I. Kanellakopoulos, P. Kokotovic, Nonlinear Adaptive Control Design (Wiley, New York, 1995) M. Kristic, I. Kanellakopoulos, P. Kokotovic, Nonlinear Adaptive Control Design (Wiley, New York, 1995)
4.
Zurück zum Zitat R. Marino, P. Tomei, Nonlinear Control Design: Adaptive, Robust (Prentice Hall, New York, 1995)MATH R. Marino, P. Tomei, Nonlinear Control Design: Adaptive, Robust (Prentice Hall, New York, 1995)MATH
5.
Zurück zum Zitat H. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 2002)MATH H. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 2002)MATH
6.
Zurück zum Zitat A. Astolfi, D. Karagiannis, R. Ortega, Nonlinear and Adaptive Control with Applications (Springer, London, 2008)CrossRefMATH A. Astolfi, D. Karagiannis, R. Ortega, Nonlinear and Adaptive Control with Applications (Springer, London, 2008)CrossRefMATH
7.
Zurück zum Zitat C.I. Byrnes, A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36, 1122–1137 (1991)MathSciNetCrossRefMATH C.I. Byrnes, A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36, 1122–1137 (1991)MathSciNetCrossRefMATH
8.
Zurück zum Zitat A. Isidori, The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story. European J. Control 19, 369–378 (2013)MathSciNetCrossRefMATH A. Isidori, The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story. European J. Control 19, 369–378 (2013)MathSciNetCrossRefMATH
9.
Zurück zum Zitat D. Liberzon, A.S. Morse, E.D. Sontag, Output-input stability and minimum-phase nonlinear systems. IEEE Trans. Autom. Control 47, 422–436 (2002)MathSciNetCrossRef D. Liberzon, A.S. Morse, E.D. Sontag, Output-input stability and minimum-phase nonlinear systems. IEEE Trans. Autom. Control 47, 422–436 (2002)MathSciNetCrossRef
10.
Zurück zum Zitat I. Kanellakopoulos, P.V. Kokotovic, A.S. Morse, A toolkit for nonlinear feedback design. Syst. Control Lett. 18, 83–92 (1992)MathSciNetCrossRefMATH I. Kanellakopoulos, P.V. Kokotovic, A.S. Morse, A toolkit for nonlinear feedback design. Syst. Control Lett. 18, 83–92 (1992)MathSciNetCrossRefMATH
11.
Zurück zum Zitat A. Bacciotti, Linear feedback: the local and potentially global stabilization of cascade systems. in Proceedings of IFAC Symposium on Nonlinear Control Systems Design, vol. 2, pp. 21–25 (1992) A. Bacciotti, Linear feedback: the local and potentially global stabilization of cascade systems. in Proceedings of IFAC Symposium on Nonlinear Control Systems Design, vol. 2, pp. 21–25 (1992)
12.
Zurück zum Zitat A. Saberi, P. Kokotovic, H. Sussmann, Global stabilization of partially linear composite systems. SIAM J. Control Optimiz. 28, 1491–1503 (1990)MathSciNetCrossRefMATH A. Saberi, P. Kokotovic, H. Sussmann, Global stabilization of partially linear composite systems. SIAM J. Control Optimiz. 28, 1491–1503 (1990)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Z.P. Jiang, A.R. Teel, L. Praly, Small-gain theorem for ISS systems and applications. Math. Control Signal Syst. 7, 95–120 (1994)MathSciNetCrossRefMATH Z.P. Jiang, A.R. Teel, L. Praly, Small-gain theorem for ISS systems and applications. Math. Control Signal Syst. 7, 95–120 (1994)MathSciNetCrossRefMATH
14.
Zurück zum Zitat R. Freeman, P. Kokotović, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques (Birkhäuser, New York, 1996)CrossRefMATH R. Freeman, P. Kokotović, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques (Birkhäuser, New York, 1996)CrossRefMATH
Metadaten
Titel
Stabilization of Nonlinear Systems via State Feedback
verfasst von
Alberto Isidori
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42031-8_6

Neuer Inhalt