Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 9/2019

25.08.2018 | Original Article

State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble

verfasst von: Chao Ma, Xu Zhai, Zhaopei Wang, Mingguang Tian, Qiusheng Yu, Lei Liu, Hao Liu, Hao Wang, Xibei Yang

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important for ensuring its safety and reliability. Among the various kinds of methods for predicting the SOH of lithium-ion batteries, machine-learning-based methods are the most popular. However, two common critical problems in machine-learning-based methods are extracting discriminative features and effectively utilizing the extracted features. In this study, we focused on solving these two issues. First, a sliding-window-based feature extraction technology (SWBFE) was designed to effectively extract features from different views in the discharge process of lithium-ion batteries. Second, we developed a multiple-view feature fusion with a support vector regression (SVR) ensemble strategy (MVFF-ESVR) for enhancing the performance in fusing multiple extracted features. The basic idea of MVFF-ESVR is to transform the feature-level fusion problem into a decision-level fusion problem. More specifically, for each feature, an SVR was modeled on the corresponding training set, and the AdaBoost and Stacking algorithms were utilized to incorporate multiple trained SVRs for generating two ensemble SVR models. By combining SWBFE with MVFF-ESVR, we further implemented two predictors, namely, Ada-TargetSOH and Sta-TargetSOH, for robust prediction of lithium-ion battery SOH. To evaluate the efficacy of the proposed predictors, we applied Ada-TargetSOH and Sta-TargetSOH on three types of lithium-ion battery datasets. The experimental results have demonstrated that our predictors outperform other existing lithium-ion battery SOH predictors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Zhang J, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sources 196(15):6007–6014CrossRef Zhang J, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sources 196(15):6007–6014CrossRef
2.
Zurück zum Zitat Kim JG, Son B, Mukherjee S et al (2015) A review of lithium and non-lithium based solid state batteries. J Power Sour 282:299–322 Kim JG, Son B, Mukherjee S et al (2015) A review of lithium and non-lithium based solid state batteries. J Power Sour 282:299–322
3.
Zurück zum Zitat Rezvanizaniani SM, Liu Z, Y Chen et al (2014) Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J Power Sources 256(12):110–124CrossRef Rezvanizaniani SM, Liu Z, Y Chen et al (2014) Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J Power Sources 256(12):110–124CrossRef
4.
Zurück zum Zitat Liao L, Köttig F (2014) Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans Reliab 63(1):191–207CrossRef Liao L, Köttig F (2014) Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans Reliab 63(1):191–207CrossRef
5.
Zurück zum Zitat Biagetti T, Sciubba E (2004) Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems. Energy 29: 12–15CrossRef Biagetti T, Sciubba E (2004) Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems. Energy 29: 12–15CrossRef
6.
Zurück zum Zitat Majidian A, Saidi MH (2007) Comparison of Fuzzy logic and neural network in life prediction of boiler tubes. Int J Fatigue 29(3):489–498CrossRef Majidian A, Saidi MH (2007) Comparison of Fuzzy logic and neural network in life prediction of boiler tubes. Int J Fatigue 29(3):489–498CrossRef
7.
Zurück zum Zitat Dong H, Jin X, Y Lou et al (2014) Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J Power Sour 271:114–123CrossRef Dong H, Jin X, Y Lou et al (2014) Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J Power Sour 271:114–123CrossRef
8.
Zurück zum Zitat Nuhic A, Terzimehic T, Soczka-Guth T et al (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sour 239:680–688CrossRef Nuhic A, Terzimehic T, Soczka-Guth T et al (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sour 239:680–688CrossRef
9.
Zurück zum Zitat Goebel K, Saha B, Saxena A et al (2010) Prognostics in battery health management. IEEE Instrum Meas Mag 11(4):33–40CrossRef Goebel K, Saha B, Saxena A et al (2010) Prognostics in battery health management. IEEE Instrum Meas Mag 11(4):33–40CrossRef
10.
Zurück zum Zitat Tang S, Yu C, X Wang et al (2014) Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error. Energies 7(2):520–547CrossRef Tang S, Yu C, X Wang et al (2014) Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error. Energies 7(2):520–547CrossRef
11.
Zurück zum Zitat Li F, Xu J (2015) A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter. Microelectron Reliab 55(7):1035–1045CrossRef Li F, Xu J (2015) A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter. Microelectron Reliab 55(7):1035–1045CrossRef
12.
Zurück zum Zitat Miao Q, Cui H, L Xie et al (2013) Remaining useful life prediction of the lithium-ion battery using particle filtering. J Chongqing University 36(8):47–32 Miao Q, Cui H, L Xie et al (2013) Remaining useful life prediction of the lithium-ion battery using particle filtering. J Chongqing University 36(8):47–32
13.
Zurück zum Zitat Zheng X, Fang H (2015) An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction. Reliab Eng Syst Saf 144:74–82CrossRef Zheng X, Fang H (2015) An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction. Reliab Eng Syst Saf 144:74–82CrossRef
14.
Zurück zum Zitat Yu J (2015) State-of-health monitoring and prediction of lithium-ion battery using probabilistic indication and state-space model. IEEE Trans Instrum Meas 64(11):2937–2949CrossRef Yu J (2015) State-of-health monitoring and prediction of lithium-ion battery using probabilistic indication and state-space model. IEEE Trans Instrum Meas 64(11):2937–2949CrossRef
15.
Zurück zum Zitat He W, Williard N, M Osterman et al (2011) Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. J Power Sources 196(23):10314–10321CrossRef He W, Williard N, M Osterman et al (2011) Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. J Power Sources 196(23):10314–10321CrossRef
16.
Zurück zum Zitat Eddahech A, Briat O, Bertrand N et al (2012) Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int J Electr Power Energy Syst 42(1):487–494CrossRef Eddahech A, Briat O, Bertrand N et al (2012) Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int J Electr Power Energy Syst 42(1):487–494CrossRef
17.
Zurück zum Zitat Chen Y, Miao Q, B Zheng et al (2013) Quantitative analysis of lithium-ion battery capacity prediction via adaptive bathtub-shaped function. Energies 6(6):3082–3096CrossRef Chen Y, Miao Q, B Zheng et al (2013) Quantitative analysis of lithium-ion battery capacity prediction via adaptive bathtub-shaped function. Energies 6(6):3082–3096CrossRef
18.
Zurück zum Zitat Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning. MIT press, CambridgeMATH Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning. MIT press, CambridgeMATH
19.
Zurück zum Zitat Miller S, Childers D (2012) Probability and random processes: With applications to signal processing and communications: academic Press Miller S, Childers D (2012) Probability and random processes: With applications to signal processing and communications: academic Press
20.
Zurück zum Zitat Liu D, Pang J, J Zhou et al (2013) Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron Reliab 53(6):832–839CrossRef Liu D, Pang J, J Zhou et al (2013) Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron Reliab 53(6):832–839CrossRef
21.
Zurück zum Zitat Van Der Merwe R, Doucet A, De Freitas N et al. The unscented particle filter. pp 584–590 Van Der Merwe R, Doucet A, De Freitas N et al. The unscented particle filter. pp 584–590
22.
Zurück zum Zitat Julier SJ, Uhlmann JK. A new extension of the Kalman filter to nonlinear systems. pp 182–193 Julier SJ, Uhlmann JK. A new extension of the Kalman filter to nonlinear systems. pp 182–193
23.
Zurück zum Zitat Si XS, Wang W, CH Hu et al (2013) A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech Syst Signal Process 35: 219–237CrossRef Si XS, Wang W, CH Hu et al (2013) A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech Syst Signal Process 35: 219–237CrossRef
24.
Zurück zum Zitat Xing Y, Ma EW, Tsui K-L et al (2013) An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 53(6):811–820CrossRef Xing Y, Ma EW, Tsui K-L et al (2013) An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 53(6):811–820CrossRef
25.
Zurück zum Zitat Sepasi S, Ghorbani R, Liaw BY (2015) Inline state of health estimation of lithium-ion batteries using state of charge calculation. J Power Sour 299:246–254CrossRef Sepasi S, Ghorbani R, Liaw BY (2015) Inline state of health estimation of lithium-ion batteries using state of charge calculation. J Power Sour 299:246–254CrossRef
26.
Zurück zum Zitat Wang XZ, He YL, Wang DD (2013) Non-naive bayesian classifiers for classification problems with continuous attributes. IEEE Trans Cybern 44(1):21–39CrossRef Wang XZ, He YL, Wang DD (2013) Non-naive bayesian classifiers for classification problems with continuous attributes. IEEE Trans Cybern 44(1):21–39CrossRef
27.
Zurück zum Zitat Bai G, Wang P, C Hu et al (2014) A generic model-free approach for lithium-ion battery health management. Appl Energy 135:247–260CrossRef Bai G, Wang P, C Hu et al (2014) A generic model-free approach for lithium-ion battery health management. Appl Energy 135:247–260CrossRef
28.
Zurück zum Zitat Wang S, Zhao L, X Su et al (2014) Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression. Energies 7(10):6492–6508CrossRef Wang S, Zhao L, X Su et al (2014) Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression. Energies 7(10):6492–6508CrossRef
29.
Zurück zum Zitat Zhou Y, Huang M, Chen Y et al (2016) A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J Power Sour 321:1–10CrossRef Zhou Y, Huang M, Chen Y et al (2016) A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J Power Sour 321:1–10CrossRef
30.
Zurück zum Zitat Klass V, Behm M, Lindbergh G (2014) A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources 270(3):262–272CrossRef Klass V, Behm M, Lindbergh G (2014) A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources 270(3):262–272CrossRef
31.
Zurück zum Zitat Hu C, Jain G, P Zhang et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Applied Energy 129:49–55 Hu C, Jain G, P Zhang et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Applied Energy 129:49–55
32.
Zurück zum Zitat Liu D, Zhou J, Pan D et al (2015) Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning. Measurement 63:143–151 Liu D, Zhou J, Pan D et al (2015) Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning. Measurement 63:143–151
33.
Zurück zum Zitat Wu J, Wang Y, X Zhang et al (2016) A novel state of health estimation method of Li-ion battery using group method of data handling. J Power Sour 327:457–464 Wu J, Wang Y, X Zhang et al (2016) A novel state of health estimation method of Li-ion battery using group method of data handling. J Power Sour 327:457–464
34.
Zurück zum Zitat Andre D, Appel C, Soczka-Guth T et al (2013) Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J Power Sources 224(5):20–27CrossRef Andre D, Appel C, Soczka-Guth T et al (2013) Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J Power Sources 224(5):20–27CrossRef
35.
Zurück zum Zitat Saha B, Kai G, S Poll et al (2009) Prognostics methods for battery health monitoring using a bayesian framework. IEEE Trans Instrum Meas 58(2):291–296CrossRef Saha B, Kai G, S Poll et al (2009) Prognostics methods for battery health monitoring using a bayesian framework. IEEE Trans Instrum Meas 58(2):291–296CrossRef
36.
37.
Zurück zum Zitat Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. Mach Learn: ECML -98:137–142 Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. Mach Learn: ECML -98:137–142
38.
Zurück zum Zitat Wang D, Miao Q, Pecht M (2013) Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J Power Sources 239(10):253–264CrossRef Wang D, Miao Q, Pecht M (2013) Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J Power Sources 239(10):253–264CrossRef
39.
Zurück zum Zitat Hu C, Jain G, Schmidt C et al (2015) Online estimation of lithium-ion battery capacity using sparse Bayesian learning. J Power Sour 289:105–113CrossRef Hu C, Jain G, Schmidt C et al (2015) Online estimation of lithium-ion battery capacity using sparse Bayesian learning. J Power Sour 289:105–113CrossRef
40.
Zurück zum Zitat Yang J, Yang J-y, Zhang D et al (2003) Feature fusion: parallel strategy vs. serial strategy. Pattern Recognit 36(6):1369–1381MATHCrossRef Yang J, Yang J-y, Zhang D et al (2003) Feature fusion: parallel strategy vs. serial strategy. Pattern Recognit 36(6):1369–1381MATHCrossRef
41.
Zurück zum Zitat Sun Q-S, Zeng S-G, Y Liu et al (2005) A new method of feature fusion and its application in image recognition. Pattern Recognit 38(12):2437–2448CrossRef Sun Q-S, Zeng S-G, Y Liu et al (2005) A new method of feature fusion and its application in image recognition. Pattern Recognit 38(12):2437–2448CrossRef
42.
Zurück zum Zitat Wang XZ, Li CG (2005) A new definition of sensitivity for RBFNN and its applications to feature reduction. Advances in Neural Networks—ISNN 2005, Second International Symposium on Neural Networks, Chongqing, China, pp 81–86 Wang XZ, Li CG (2005) A new definition of sensitivity for RBFNN and its applications to feature reduction. Advances in Neural Networks—ISNN 2005, Second International Symposium on Neural Networks, Chongqing, China, pp 81–86
43.
Zurück zum Zitat Hu J, Han K, Y Li et al (2016) TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM. Amino Acids 48(11):1–15CrossRef Hu J, Han K, Y Li et al (2016) TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM. Amino Acids 48(11):1–15CrossRef
44.
Zurück zum Zitat Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97: 273–324MATHCrossRef Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97: 273–324MATHCrossRef
45.
Zurück zum Zitat Yu DJ, Hu J, Wu XW et al (2013) Learning protein multi-view features in complex space. Amino Acids 44(5):1365–1379CrossRef Yu DJ, Hu J, Wu XW et al (2013) Learning protein multi-view features in complex space. Amino Acids 44(5):1365–1379CrossRef
46.
Zurück zum Zitat Dieckmann A, Rieskamp J (2007) The influence of information redundancy on probabilistic inferences. Memory Cognition 35(7):1801–1813CrossRef Dieckmann A, Rieskamp J (2007) The influence of information redundancy on probabilistic inferences. Memory Cognition 35(7):1801–1813CrossRef
47.
Zurück zum Zitat Yu DJ, Wu XW, HB Shen et al (2012) Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features. IEEE Trans Nanobiosci 11(4):375–385CrossRef Yu DJ, Wu XW, HB Shen et al (2012) Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features. IEEE Trans Nanobiosci 11(4):375–385CrossRef
48.
49.
Zurück zum Zitat Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process Lett Rev 11(10):203–224 Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process Lett Rev 11(10):203–224
50.
Zurück zum Zitat Freund Y, Schapire RE. Experiments with a new boosting algorithm. 148–156 Freund Y, Schapire RE. Experiments with a new boosting algorithm. 148–156
51.
Zurück zum Zitat Wolpert DH (1992) Stacked generalization. Neural networks 5(2):241–259CrossRef Wolpert DH (1992) Stacked generalization. Neural networks 5(2):241–259CrossRef
52.
Zurück zum Zitat Saha B, Goebel K (2007) Battery data set, NASA AMES prognostics data repository Saha B, Goebel K (2007) Battery data set, NASA AMES prognostics data repository
53.
Zurück zum Zitat Orchard ME, Tang L, B Saha et al (2010) Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices. Stud Inf Control 19(3):209–218 Orchard ME, Tang L, B Saha et al (2010) Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices. Stud Inf Control 19(3):209–218
54.
Zurück zum Zitat Pedregosa F, Gramfort A, Michel V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(10):2825–2830MathSciNetMATH Pedregosa F, Gramfort A, Michel V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(10):2825–2830MathSciNetMATH
55.
Zurück zum Zitat Yu DJ, Hu J, J Yang et al (2013) Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering. IEEE/ACM Trans Comput Biol Bioinf 10(4):994–1008CrossRef Yu DJ, Hu J, J Yang et al (2013) Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering. IEEE/ACM Trans Comput Biol Bioinf 10(4):994–1008CrossRef
56.
Zurück zum Zitat Armstrong JS, Overton TS (1977) Estimating nonresponse bias in mail surveys. J Market Res 14(3):396–402CrossRef Armstrong JS, Overton TS (1977) Estimating nonresponse bias in mail surveys. J Market Res 14(3):396–402CrossRef
57.
Zurück zum Zitat Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79CrossRef Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79CrossRef
58.
Zurück zum Zitat Qin T, Zeng S, Guo J (2015) Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model. Microelectron Reliab 55:1280–1284 Qin T, Zeng S, Guo J (2015) Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model. Microelectron Reliab 55:1280–1284
59.
Zurück zum Zitat Qin T, Zeng S, J Guo et al (2016) A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena. Energies 9(11):896CrossRef Qin T, Zeng S, J Guo et al (2016) A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena. Energies 9(11):896CrossRef
60.
Zurück zum Zitat Wang XZ, Wang R, HM Feng et al (2014) A new approach to classifier fusion based on upper integral. IEEE Trans Cybern 44(5):620–635MathSciNetCrossRef Wang XZ, Wang R, HM Feng et al (2014) A new approach to classifier fusion based on upper integral. IEEE Trans Cybern 44(5):620–635MathSciNetCrossRef
61.
Zurück zum Zitat Wang XZ, Xing HJ, Li Y et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654CrossRef Wang XZ, Xing HJ, Li Y et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654CrossRef
63.
Zurück zum Zitat Kittler J, Hatef M, Duin RPW et al (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239CrossRef Kittler J, Hatef M, Duin RPW et al (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239CrossRef
Metadaten
Titel
State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble
verfasst von
Chao Ma
Xu Zhai
Zhaopei Wang
Mingguang Tian
Qiusheng Yu
Lei Liu
Hao Liu
Hao Wang
Xibei Yang
Publikationsdatum
25.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 9/2019
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-018-0865-y

Weitere Artikel der Ausgabe 9/2019

International Journal of Machine Learning and Cybernetics 9/2019 Zur Ausgabe

Neuer Inhalt