Skip to main content
Erschienen in: Fire Technology 3/2011

01.07.2011

Statistical Analysis of Effects of Nanoparticles on Hydrocarbon Pool Fire

verfasst von: Arash Najafi, Abdolsamad Zarringhalam Moghaddam

Erschienen in: Fire Technology | Ausgabe 3/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of pool diameters, height, fuel type, and presence of nanoparticles on flame temperature are tested. Nanoparticles were added and mixed with the fuel and its effect on flame spread time over the liquid fuel surface is studied. The results showed that pool diameter has the maximum effect on the increase of flame temperature. Nanoparticles reduce the flame temperature from 10 to 20% while flame spread time is increased 15% to 30% for kerosene and 6% to 26% for diesel oil. Experimental measurement of flame temperature distribution in a pool fire is carried out. Statistical analysis of flame temperature, flame spread time was made using Yates and ANOVA methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Planas-Cuchi E, Casal J (1998) Flame Temperature Distribution in a Pool Fire. Journal of Hazardous Materials, 62:231-241.CrossRef Planas-Cuchi E, Casal J (1998) Flame Temperature Distribution in a Pool Fire. Journal of Hazardous Materials, 62:231-241.CrossRef
2.
Zurück zum Zitat Planas-Cuchi E, Casal J, (1998) Modeling Temperature Evolution in Equipment Engulfed in a Pool-Fire. Fire Safety Journal, 30:251-268.CrossRef Planas-Cuchi E, Casal J, (1998) Modeling Temperature Evolution in Equipment Engulfed in a Pool-Fire. Fire Safety Journal, 30:251-268.CrossRef
3.
Zurück zum Zitat Munoz M, Arnaldos J, Casal J, Planas E, (2004) Analysis of the Geometric and Radiative Characteristics of Hydrocarbon Pool Fires. Combustion and Flame, 139:263-277.CrossRef Munoz M, Arnaldos J, Casal J, Planas E, (2004) Analysis of the Geometric and Radiative Characteristics of Hydrocarbon Pool Fires. Combustion and Flame, 139:263-277.CrossRef
4.
Zurück zum Zitat Oggero A, Darbra R. M, Munoz M, Planas E, Casal J (2006) A Survey of Accidents Occurring During the Transport of Hazardous Substances by Road and Rail. Journal of Hazardous Materials A133:1-7.CrossRef Oggero A, Darbra R. M, Munoz M, Planas E, Casal J (2006) A Survey of Accidents Occurring During the Transport of Hazardous Substances by Road and Rail. Journal of Hazardous Materials A133:1-7.CrossRef
5.
Zurück zum Zitat Chatris JM, Quintela J, Folch J, Planas E, Arnaldos J, Casal J, (2001) Experimental Study of Burning Rate in Hydrocarbon Pool Fire. Combustion and Flame, 126:1373-1383.CrossRef Chatris JM, Quintela J, Folch J, Planas E, Arnaldos J, Casal J, (2001) Experimental Study of Burning Rate in Hydrocarbon Pool Fire. Combustion and Flame, 126:1373-1383.CrossRef
6.
Zurück zum Zitat Nivolianitou Z, Konstandinidou M, Michalis Ch, (2006) Statistical Analysis of Major Accidents in Petrochemical Industry Notified to the Major Accident Reporting System. Journal of Hazardous Materials A137:1-7.CrossRef Nivolianitou Z, Konstandinidou M, Michalis Ch, (2006) Statistical Analysis of Major Accidents in Petrochemical Industry Notified to the Major Accident Reporting System. Journal of Hazardous Materials A137:1-7.CrossRef
7.
Zurück zum Zitat Koseki H (1996) Radiation properties and flame structure of large hydrocarbon pool fires. Thirteenth meeting of the UJNR panel on fire research and safety, vol 2. pp 41–50. Koseki H (1996) Radiation properties and flame structure of large hydrocarbon pool fires. Thirteenth meeting of the UJNR panel on fire research and safety, vol 2. pp 41–50.
8.
Zurück zum Zitat Emori and Saito (1983) Combustion Science and Technology, 31: 217-231.CrossRef Emori and Saito (1983) Combustion Science and Technology, 31: 217-231.CrossRef
9.
Zurück zum Zitat Hayasaka H (1996) Radiation transfer and temperature distribution in a few small pool flames. 13th meeting of the UNJR panel on fire research and safety, vol 1. pp 265–273. Hayasaka H (1996) Radiation transfer and temperature distribution in a few small pool flames. 13th meeting of the UNJR panel on fire research and safety, vol 1. pp 265–273.
10.
Zurück zum Zitat Novozhilov V, Koseki H, (2004) Computational Fluid Dynamics Prediction of Self-Sustained Pool Fire Combustion. Journal of the Institution of Engineers Singapore, 1(5):69-82. Novozhilov V, Koseki H, (2004) Computational Fluid Dynamics Prediction of Self-Sustained Pool Fire Combustion. Journal of the Institution of Engineers Singapore, 1(5):69-82.
11.
Zurück zum Zitat Hamins A, Fischer J, Kashiwagi T, Klassen ME, Gore J (1994) Heat Feedback to the Fuel Surface in Pool Fires. Combustion Science and Technology, 97:37-62.CrossRef Hamins A, Fischer J, Kashiwagi T, Klassen ME, Gore J (1994) Heat Feedback to the Fuel Surface in Pool Fires. Combustion Science and Technology, 97:37-62.CrossRef
12.
Zurück zum Zitat Weckman EJ, Strong AB (1996) Experimental Investigation of the Turbulence Structure of Medium-Scale Pool Fires. Combustion and Flame, 105: 245-266.CrossRef Weckman EJ, Strong AB (1996) Experimental Investigation of the Turbulence Structure of Medium-Scale Pool Fires. Combustion and Flame, 105: 245-266.CrossRef
13.
Zurück zum Zitat Hassan MI, Grulke E, Chuah K, Saito K (2005) Effects of Carbon Nanotubes on Flame Spread Rate over 1-Propanol. Fire Safety Journal, 40: 425-438.CrossRef Hassan MI, Grulke E, Chuah K, Saito K (2005) Effects of Carbon Nanotubes on Flame Spread Rate over 1-Propanol. Fire Safety Journal, 40: 425-438.CrossRef
14.
Zurück zum Zitat Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and Flammability Properties of Polypropylene/Carbon Nanotube Nanocomposites. Polymer, 45: 4227-4239.CrossRef Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and Flammability Properties of Polypropylene/Carbon Nanotube Nanocomposites. Polymer, 45: 4227-4239.CrossRef
15.
Zurück zum Zitat Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Commun 23:761–756. Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Commun 23:761–756.
16.
Zurück zum Zitat Ito A, Masuda D, Saito K (1991) A Study of Flame Spread over Alcohols Using Holographic Interferometry. Combustion and Flame, 83: 375-389.CrossRef Ito A, Masuda D, Saito K (1991) A Study of Flame Spread over Alcohols Using Holographic Interferometry. Combustion and Flame, 83: 375-389.CrossRef
18.
Zurück zum Zitat Davies L (1993) Efficiency in research, development and production: the statistical design and analysis of chemical experiments. The Royal Society of Chemistry, Cambridge. Davies L (1993) Efficiency in research, development and production: the statistical design and analysis of chemical experiments. The Royal Society of Chemistry, Cambridge.
19.
Zurück zum Zitat Peeterbroeck S, Lautid F, Taulemesse J, Montererde F, Lopez J, Nagy JB, Alexandre M, Dubois Ph (2007) Mechanical Properties and Flame-Retardant Behavior of Ethylene Vinyl Acetate/High-Density Polyethylene Coated Carbon Nanotube NanoComposites. Advanced Functional Materials, 17:2787-2791.CrossRef Peeterbroeck S, Lautid F, Taulemesse J, Montererde F, Lopez J, Nagy JB, Alexandre M, Dubois Ph (2007) Mechanical Properties and Flame-Retardant Behavior of Ethylene Vinyl Acetate/High-Density Polyethylene Coated Carbon Nanotube NanoComposites. Advanced Functional Materials, 17:2787-2791.CrossRef
20.
Zurück zum Zitat Peeterbroeck S, Lautid F, Swoboda B, Lopez J, Morean N, Nagy JB, Alexandre M, Dubios Ph (2007) How Carbon Nanotube Crushing Can Improve Flame Retardant Behavior in Polymer Nano Composites. Macromolecular Rapid Communications, 28:260-264.CrossRef Peeterbroeck S, Lautid F, Swoboda B, Lopez J, Morean N, Nagy JB, Alexandre M, Dubios Ph (2007) How Carbon Nanotube Crushing Can Improve Flame Retardant Behavior in Polymer Nano Composites. Macromolecular Rapid Communications, 28:260-264.CrossRef
21.
Zurück zum Zitat Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF (2007) Effects of Aspect Ratio of MWNT on the Flammability Properties of Polymer Nanocomposites. Polymer, 48:6086-6096.CrossRef Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF (2007) Effects of Aspect Ratio of MWNT on the Flammability Properties of Polymer Nanocomposites. Polymer, 48:6086-6096.CrossRef
22.
Zurück zum Zitat Liu M, Lin MCh, Huang I, Wang Ch (2005) Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluilds. International Communications in Heat and Mass Transfer, 32: 1202–1210.CrossRef Liu M, Lin MCh, Huang I, Wang Ch (2005) Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluilds. International Communications in Heat and Mass Transfer, 32: 1202–1210.CrossRef
Metadaten
Titel
Statistical Analysis of Effects of Nanoparticles on Hydrocarbon Pool Fire
verfasst von
Arash Najafi
Abdolsamad Zarringhalam Moghaddam
Publikationsdatum
01.07.2011
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 3/2011
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-010-0183-8

Weitere Artikel der Ausgabe 3/2011

Fire Technology 3/2011 Zur Ausgabe