Skip to main content

2018 | OriginalPaper | Buchkapitel

Stochastic Deep Compressive Sensing for the Reconstruction of Diffusion Tensor Cardiac MRI

verfasst von : Jo Schlemper, Guang Yang, Pedro Ferreira, Andrew Scott, Laura-Ann McGill, Zohya Khalique, Margarita Gorodezky, Malte Roehl, Jennifer Keegan, Dudley Pennell, David Firmin, Daniel Rueckert

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding the structure of the heart at the microscopic scale of cardiomyocytes and their aggregates provides new insights into the mechanisms of heart disease and enables the investigation of effective therapeutics. Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR) is a unique non-invasive technique that can resolve the microscopic structure, organisation, and integrity of the myocardium without the need for exogenous contrast agents. However, this technique suffers from relatively low signal-to-noise ratio (SNR) and frequent signal loss due to respiratory and cardiac motion. Current DT-CMR techniques rely on acquiring and averaging multiple signal acquisitions to improve the SNR. Moreover, in order to mitigate the influence of respiratory movement, patients are required to perform many breath holds which results in prolonged acquisition durations (e.g., \(\sim \)30 min using the existing technology). In this study, we propose a novel cascaded Convolutional Neural Networks (CNN) based compressive sensing (CS) technique and explore its applicability to improve DT-CMR acquisitions. Our simulation based studies have achieved high reconstruction fidelity and good agreement between DT-CMR parameters obtained with the proposed reconstruction and fully sampled ground truth. When compared to other state-of-the-art methods, our proposed deep cascaded CNN method and its stochastic variation demonstrated significant improvements. To the best of our knowledge, this is the first study using deep CNN based CS for the DT-CMR reconstruction. In addition, with relatively straightforward modifications to the acquisition scheme, our method can easily be translated into a method for online, at-the-scanner reconstruction enabling the deployment of accelerated DT-CMR in various clinical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Axel, L.: Faster diffusion-weighted MR imaging of cardiac microstructure. Radiology 282(3), 622–626 (2017)CrossRef Axel, L.: Faster diffusion-weighted MR imaging of cardiac microstructure. Radiology 282(3), 622–626 (2017)CrossRef
2.
Zurück zum Zitat von Deuster, C.: Studying dynamic myofiber aggregate reorientation in dilated cardiomyopathy using in vivo magnetic resonance diffusion tensor imaging. Circ. Cardiovasc. Imaging 9(10), e005018 (2016) von Deuster, C.: Studying dynamic myofiber aggregate reorientation in dilated cardiomyopathy using in vivo magnetic resonance diffusion tensor imaging. Circ. Cardiovasc. Imaging 9(10), e005018 (2016)
3.
Zurück zum Zitat Ferreira, P.F., et al.: In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16, 87 (2014)CrossRef Ferreira, P.F., et al.: In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16, 87 (2014)CrossRef
4.
Zurück zum Zitat Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. arXiv preprint arXiv:1704.00447 (2017) Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. arXiv preprint arXiv:​1704.​00447 (2017)
5.
Zurück zum Zitat Han, Y.: Magn. Reson. Med. Deep learning with domain adaptation for accelerated projection-reconstruction MR 80(3), 1189–1205 (2018) Han, Y.: Magn. Reson. Med. Deep learning with domain adaptation for accelerated projection-reconstruction MR 80(3), 1189–1205 (2018)
6.
Zurück zum Zitat Hollingsworth, G.: Phys. Med. Biol. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction 60(21), 297–322 (2015) Hollingsworth, G.: Phys. Med. Biol. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction 60(21), 297–322 (2015)
8.
Zurück zum Zitat Huang, J.: Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation. Technol. Health Care 24(s2), S593–S599 (2016)CrossRef Huang, J.: Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation. Technol. Health Care 24(s2), S593–S599 (2016)CrossRef
9.
Zurück zum Zitat Lau, A.Z., et al.: Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn. Reson. Med. 73(3), 995–1004 (2015)CrossRef Lau, A.Z., et al.: Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn. Reson. Med. 73(3), 995–1004 (2015)CrossRef
10.
Zurück zum Zitat Lee, D., et al.: Deep residual learning for compressed sensing MRI. In: International Symposium on Biomedical Imaging, pp. 15–18. IEEE (2017) Lee, D., et al.: Deep residual learning for compressed sensing MRI. In: International Symposium on Biomedical Imaging, pp. 15–18. IEEE (2017)
11.
Zurück zum Zitat Lustig, M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef Lustig, M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef
12.
Zurück zum Zitat Ma, S., et al.: Accelerated cardiac diffusion tensor imaging using joint low-rank and sparsity constraints. IEEE Trans. Biomed. Eng. (2017) Ma, S., et al.: Accelerated cardiac diffusion tensor imaging using joint low-rank and sparsity constraints. IEEE Trans. Biomed. Eng. (2017)
13.
Zurück zum Zitat Mekkaoui, C.: Diffusion MRI in the heart. NMR Biomed. 30(3), e3426 (2017)CrossRef Mekkaoui, C.: Diffusion MRI in the heart. NMR Biomed. 30(3), e3426 (2017)CrossRef
14.
Zurück zum Zitat Nielles-Vallespin, S., et al.: Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. J. Am. Coll. Cardiol. 69(6), 661–676 (2017)CrossRef Nielles-Vallespin, S., et al.: Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. J. Am. Coll. Cardiol. 69(6), 661–676 (2017)CrossRef
15.
Zurück zum Zitat Nielles-Vallespin, S., et al.: In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn. Reson. Med. 70(2), 454–65 (2013)CrossRef Nielles-Vallespin, S., et al.: In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn. Reson. Med. 70(2), 454–65 (2013)CrossRef
16.
Zurück zum Zitat Qin, C., et al.: Convolutional recurrent neural networks for dynamic MR image reconstruction. arXiv preprint arXiv:1712.01751 (2017) Qin, C., et al.: Convolutional recurrent neural networks for dynamic MR image reconstruction. arXiv preprint arXiv:​1712.​01751 (2017)
17.
Zurück zum Zitat Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)CrossRef Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)CrossRef
19.
Zurück zum Zitat Schlemper, J.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)CrossRef Schlemper, J.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)CrossRef
21.
Zurück zum Zitat Sun, J., et al.: Deep ADMM-Net for compressive sensing MRI. In: NIPS, pp. 10–18 (2016) Sun, J., et al.: Deep ADMM-Net for compressive sensing MRI. In: NIPS, pp. 10–18 (2016)
22.
Zurück zum Zitat Wu, Y., et al.: Accelerated MR diffusion tensor imaging using distributed compressed sensing. Magn. Reson. Med. 71(2), 763–772 (2014)CrossRef Wu, Y., et al.: Accelerated MR diffusion tensor imaging using distributed compressed sensing. Magn. Reson. Med. 71(2), 763–772 (2014)CrossRef
23.
Zurück zum Zitat Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging, 1310–1321 (2018) Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging, 1310–1321 (2018)
Metadaten
Titel
Stochastic Deep Compressive Sensing for the Reconstruction of Diffusion Tensor Cardiac MRI
verfasst von
Jo Schlemper
Guang Yang
Pedro Ferreira
Andrew Scott
Laura-Ann McGill
Zohya Khalique
Margarita Gorodezky
Malte Roehl
Jennifer Keegan
Dudley Pennell
David Firmin
Daniel Rueckert
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00928-1_34