Skip to main content
Erschienen in: Physics of Metals and Metallography 11/2018

01.11.2018 | STRENGTH AND PLASTICITY

Strain Transfer across the Ferrite/Cementite Interface in Carbon Steels with Coarse Lamellar Pearlite

verfasst von: L. E. Kar’kina, I. G. Kabanova, I. N. Kar’kin

Erschienen in: Physics of Metals and Metallography | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A crystal geometry analysis was performed of strain transfer mechanisms across the ferrite/cementite interface in coarse lamellar pearlite. The possibility of strain transfer was evaluated using LRB criteria, which were developed by Lee, Robertson, and Birnbaum to describe the slip transfer mechanism across grain boundaries. Dislocation reactions at the Fe/Fe3C interface were studied according to the Pitsch–Petch orientation relationships between ferrite and cementite, which are valid for coarse lamellar pearlite. Slip planes and Burgers vectors of partial and full dislocations in cementite were proposed based on the results of atomistic simulation of stacking faults in close-packed planes of cementite. It was determined that the strain transfer across the Fe/Fe3C interface is possible only for two slip systems 1/2〈111〉{110}F and one slip system 1/2〈111〉{112}F of ferrite. The other slip systems of ferrite do not cross the interface and are involved in the hardening of the ferrite phase of pearlite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Langford, “Deformation of pearlite,” Metall. Trans. A. 8, 861–875 (1977).CrossRef G. Langford, “Deformation of pearlite,” Metall. Trans. A. 8, 861–875 (1977).CrossRef
2.
Zurück zum Zitat J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro, “The equilibrium of linear arrays of dislocations,” Philos. Mag. 42, 351–364 (1951).CrossRef J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro, “The equilibrium of linear arrays of dislocations,” Philos. Mag. 42, 351–364 (1951).CrossRef
3.
Zurück zum Zitat X. Zhang, A. Godfrey, X. Huang, N. Hansen, and Q. Liu, “Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire,” Acta Mater. 59, 3422–3430 (2011).CrossRef X. Zhang, A. Godfrey, X. Huang, N. Hansen, and Q. Liu, “Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire,” Acta Mater. 59, 3422–3430 (2011).CrossRef
4.
Zurück zum Zitat V. T. L. Buono, B. M. Gonzalez, T. M. Lima, and M. S. Andrade, “Measurement of fine pearlite interlamellar spacing by atomic force microscopy,” J. Mater. Sci. 32, 1005–1008 (1997).CrossRef V. T. L. Buono, B. M. Gonzalez, T. M. Lima, and M. S. Andrade, “Measurement of fine pearlite interlamellar spacing by atomic force microscopy,” J. Mater. Sci. 32, 1005–1008 (1997).CrossRef
5.
Zurück zum Zitat F. Danoix, D. Julien, X. Sauvage, and J. Copreaux, “Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe,” J. Mater. Sci. Eng., A 250, 8–13 (1998).CrossRef F. Danoix, D. Julien, X. Sauvage, and J. Copreaux, “Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe,” J. Mater. Sci. Eng., A 250, 8–13 (1998).CrossRef
6.
Zurück zum Zitat M. Zelin, “Microstructure evolution in pearlitic steels during wire drawing,” Acta Mater. 50, 4431–4447 (2002).CrossRef M. Zelin, “Microstructure evolution in pearlitic steels during wire drawing,” Acta Mater. 50, 4431–4447 (2002).CrossRef
7.
Zurück zum Zitat M. Dollar, I. M. Bernstein, and A. W. Thompson, “Influence of deformation substructure on flow and fracture of fully pearlitic steel,” Acta Metall. 36, 311–320 (1988).CrossRef M. Dollar, I. M. Bernstein, and A. W. Thompson, “Influence of deformation substructure on flow and fracture of fully pearlitic steel,” Acta Metall. 36, 311–320 (1988).CrossRef
8.
Zurück zum Zitat O. Bouaziz and C. Le Core, “Flow stress and microstructure modelling of ferrite–pearlite steels during cold rolling, ” Mater. Sci. Forum. 426–432, 1399–1405 (2003). O. Bouaziz and C. Le Core, “Flow stress and microstructure modelling of ferrite–pearlite steels during cold rolling, ” Mater. Sci. Forum. 426–432, 1399–1405 (2003).
9.
Zurück zum Zitat J. Languillaume, “Formation of fine cementite precipitates in an ultra-fine grained low carbon steel,” Acta Mater. 45, 1201–1212 (1997).CrossRef J. Languillaume, “Formation of fine cementite precipitates in an ultra-fine grained low carbon steel,” Acta Mater. 45, 1201–1212 (1997).CrossRef
10.
Zurück zum Zitat V. G. Gavriljuk, “Decomposition of cementite in pearlite steel due to plastic deformation,” Mater. Sci. Eng., A 345, 81–89 (2003).CrossRef V. G. Gavriljuk, “Decomposition of cementite in pearlite steel due to plastic deformation,” Mater. Sci. Eng., A 345, 81–89 (2003).CrossRef
11.
Zurück zum Zitat M. H. Hong, W. T. Reynolds, T. Tarui, and K. Hono, “Atom probe and transmission electron microscopy investigations of heavily drawn pearlitic steel wire,” Metall. Mater. Trans. A 30, 717–727 (1999).CrossRef M. H. Hong, W. T. Reynolds, T. Tarui, and K. Hono, “Atom probe and transmission electron microscopy investigations of heavily drawn pearlitic steel wire,” Metall. Mater. Trans. A 30, 717–727 (1999).CrossRef
12.
Zurück zum Zitat K. Hono, M. Ohnlma, M. Murayama, S. Nishida, A. Yoshie, and T. Takahashi, “Cementite decomposition in heavily drawn pearlite steel wire,” Scr. Mater. 44, 977–983 (2001).CrossRef K. Hono, M. Ohnlma, M. Murayama, S. Nishida, A. Yoshie, and T. Takahashi, “Cementite decomposition in heavily drawn pearlite steel wire,” Scr. Mater. 44, 977–983 (2001).CrossRef
13.
Zurück zum Zitat H. G. Read, W. T. Reynolds, K. Hono, and T. Tarui, “APFIM and TEM studies of drawn pearlitic wire,” Scr. Mater. 37, 1221–1230 (1997).CrossRef H. G. Read, W. T. Reynolds, K. Hono, and T. Tarui, “APFIM and TEM studies of drawn pearlitic wire,” Scr. Mater. 37, 1221–1230 (1997).CrossRef
14.
Zurück zum Zitat W. J. Nam, C. M. Bae, S. J. Oh, and S. J. Kwon, “Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires,” Scr. Mater. 42, 457–463 (2000).CrossRef W. J. Nam, C. M. Bae, S. J. Oh, and S. J. Kwon, “Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires,” Scr. Mater. 42, 457–463 (2000).CrossRef
15.
Zurück zum Zitat J. Inoue, S. Nambu, Y. Ishimoto, and T. Koseki, “Fracture elongation of brittle/ductile multilayered steel composites with a strong interface,” Scr. Mater. 59, 1055–1058 (2008).CrossRef J. Inoue, S. Nambu, Y. Ishimoto, and T. Koseki, “Fracture elongation of brittle/ductile multilayered steel composites with a strong interface,” Scr. Mater. 59, 1055–1058 (2008).CrossRef
16.
Zurück zum Zitat M. Serror and J. Inoue, “Analytical study for deformability of laminated sheet metal with full interfacial bond,” J. Eng. Mech. 139, 94–98 (2013).CrossRef M. Serror and J. Inoue, “Analytical study for deformability of laminated sheet metal with full interfacial bond,” J. Eng. Mech. 139, 94–98 (2013).CrossRef
17.
Zurück zum Zitat T. Ohashi, L. Roslan, K. Takahashi, T. Shimokawa, M. Tanaka, and K. Higashida, “A multiscale approach for the deformation mechanism in pearlite microstructure: Numerical evaluation of elasto-plastic deformation in fine lamellar structures,” Mater. Sci. Eng., A 588, 214–220 (2013).CrossRef T. Ohashi, L. Roslan, K. Takahashi, T. Shimokawa, M. Tanaka, and K. Higashida, “A multiscale approach for the deformation mechanism in pearlite microstructure: Numerical evaluation of elasto-plastic deformation in fine lamellar structures,” Mater. Sci. Eng., A 588, 214–220 (2013).CrossRef
18.
Zurück zum Zitat A. March, “Mathematische theorie der regelung nach der korngestalt bei affiner deformation,“ Z. Kristallogr. 81, 285–298 (1932). A. March, “Mathematische theorie der regelung nach der korngestalt bei affiner deformation,“ Z. Kristallogr. 81, 285–298 (1932).
19.
Zurück zum Zitat X. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, and H. Vandekinderen, “Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models,” Acta Mater. 54, 1029–1040 (2006).CrossRef X. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, and H. Vandekinderen, “Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models,” Acta Mater. 54, 1029–1040 (2006).CrossRef
20.
Zurück zum Zitat V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, K. Yu. Okishev, T. I. Tabatchikova, and Yu. V. Khlebnikova, Pearlite in Carbon Steels (UrO RAN, Ekaterinburg, 2006) [in Russian] V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, K. Yu. Okishev, T. I. Tabatchikova, and Yu. V. Khlebnikova, Pearlite in Carbon Steels (UrO RAN, Ekaterinburg, 2006) [in Russian]
21.
Zurück zum Zitat L. E. Karkina, I. N. Karkin, I. G. Kabanova, and A. R. Kuznetsov, “Crystallographic analysis of slip transfer mechanisms across the ferrite/cementite interface in carbon steels with fine lamellar structure,” J. Appl. Crystallogr. 48, 97–106 (2015).CrossRef L. E. Karkina, I. N. Karkin, I. G. Kabanova, and A. R. Kuznetsov, “Crystallographic analysis of slip transfer mechanisms across the ferrite/cementite interface in carbon steels with fine lamellar structure,” J. Appl. Crystallogr. 48, 97–106 (2015).CrossRef
22.
Zurück zum Zitat Cementite in Carbon Steels (UMTs UPI, Ekaterinburg, 2017) [in Russian] Cementite in Carbon Steels (UMTs UPI, Ekaterinburg, 2017) [in Russian]
23.
Zurück zum Zitat T. C. Lee, I. M. Robertson, and H. K. Birnbaum, “An HVEM in situ deformation study of nickel doped with silver,” Acta Metal. 37, 407–415 (1989).CrossRef T. C. Lee, I. M. Robertson, and H. K. Birnbaum, “An HVEM in situ deformation study of nickel doped with silver,” Acta Metal. 37, 407–415 (1989).CrossRef
24.
Zurück zum Zitat T. C. Lee, I. M. Robertson, and H. K. Birnbaum, “An in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals,” Philos. Mag. A 62, 131–153 (1990).CrossRef T. C. Lee, I. M. Robertson, and H. K. Birnbaum, “An in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals,” Philos. Mag. A 62, 131–153 (1990).CrossRef
25.
Zurück zum Zitat T. C. Lee, I. M. Robertson, and H. K. Birnbaum, “An in situ transmission electron microscope deformation study on the slip transfer mechanisms in metals,” Metall. Trans. A 21, 2437–2447 (1990).CrossRef T. C. Lee, I. M. Robertson, and H. K. Birnbaum, “An in situ transmission electron microscope deformation study on the slip transfer mechanisms in metals,” Metall. Trans. A 21, 2437–2447 (1990).CrossRef
26.
Zurück zum Zitat L. E. Kar’kina, I. N. Kar’kin, and A. R. Kuznetsov, “Atomistic simulation of stacking faults in (001), (010), and (100) planes of cementite,” Phys. Met. Metallogr. 115, 85–97 (2014).CrossRef L. E. Kar’kina, I. N. Kar’kin, and A. R. Kuznetsov, “Atomistic simulation of stacking faults in (001), (010), and (100) planes of cementite,” Phys. Met. Metallogr. 115, 85–97 (2014).CrossRef
27.
Zurück zum Zitat L. E. Kar’kina, I. N. Kar’kin, and T. A. Zubkova, “Atomistic simulation of stacking faults in cementite: planes containing vector [010],” Phys. Met. Metallogr. 115, 814–829 (2014).CrossRef L. E. Kar’kina, I. N. Kar’kin, and T. A. Zubkova, “Atomistic simulation of stacking faults in cementite: planes containing vector [010],” Phys. Met. Metallogr. 115, 814–829 (2014).CrossRef
28.
Zurück zum Zitat L. E. Kar’kina and I. N. Kar’kin, “Atomistic simulation of stacking faults in cementite: planes containing vector [010],” Phys. Met. Metallogr. 115, 830–842 (2014).CrossRef L. E. Kar’kina and I. N. Kar’kin, “Atomistic simulation of stacking faults in cementite: planes containing vector [010],” Phys. Met. Metallogr. 115, 830–842 (2014).CrossRef
Metadaten
Titel
Strain Transfer across the Ferrite/Cementite Interface in Carbon Steels with Coarse Lamellar Pearlite
verfasst von
L. E. Kar’kina
I. G. Kabanova
I. N. Kar’kin
Publikationsdatum
01.11.2018
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 11/2018
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18110054

Weitere Artikel der Ausgabe 11/2018

Physics of Metals and Metallography 11/2018 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

On the Theory of Atomic Diffusion after Ion Implantation