Skip to main content

2016 | OriginalPaper | Buchkapitel

Strategic Network Formation with Attack and Immunization

verfasst von : Sanjeev Goyal, Shahin Jabbari, Michael Kearns, Sanjeev Khanna, Jamie Morgenstern

Erschienen in: Web and Internet Economics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Strategic network formation arises in settings where agents receive some benefit from their connectedness to other agents, but also incur costs for forming these links. We consider a new network formation game that incorporates an adversarial attack, as well as immunization or protection against the attack. An agent’s network benefit is the expected size of her connected component post-attack, and agents may also choose to immunize themselves from attack at some additional cost. Our framework can be viewed as a stylized model of settings where reachability rather than centrality is the primary interest (as in many technological networks such as the Internet), and vertices may be vulnerable to attacks (such as viruses), but may also reduce risk via potentially costly measures (such as an anti-virus software).
Our main theoretical contributions include a strong bound on the edge density at equilibrium. In particular, we show that under a very mild assumption on the adversary’s attack model, every equilibrium network contains at most only \(2n-4\) edges for \(n \ge 4\), where n denotes the number of agents and this upper bound is tight. We also show that social welfare does not significantly erode: every non-trivial equilibrium with respect to several adversarial attack models asymptotically has social welfare at least as that of any equilibrium in the original attack-free model.
We complement our sharp theoretical results by a behavioral experiment on our game with over 100 participants, where despite the complexity of the game, the resulting network was surprisingly close to equilibrium.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The spread of the initial attack to reachable non-immunized vertices is deterministic in our model, and the protection of immunized vertices is absolute. It is also natural to consider relaxations such as probabilistic attack spreading and imperfect immunization, as well as generalizations such as multiple initial attack vertices. However, as we shall see, even the basic model we study here exhibits substantial complexity. We refer the reader to the full version for a discussion on possible extensions/relaxations.
 
2
The index \(k'\) in the definition of \(\mathcal {T}\) satisfies \(k'\le k\) (see k in the definition of \(\mathcal {V}\)).
 
3
If a vertex is killed, the size of her connected component is defined to be 0.
 
4
Lenzner [17] introduced this equilibrium concept under the name greedy equilibrium.
 
5
Vertex v is k-critical in a connected network if the size of the largest connected component after removing v is k.
 
6
We represent immunized and vulnerable vertices as blue and red, respectively. Although we treat the networks as undirected (the benefits and risks are bilateral), we use directed edges in some figures to denote which player purchased the edge.
 
7
Kliemann [15] proved Theorem 1 with a different technique for a density bound of \(2n-1\) for all n.
 
8
We view this condition as the most interesting regime, since in natural circumstances we do not expect the edge or immunization costs to grow with the population size.
 
Literatur
1.
Zurück zum Zitat Alpcan, T., Baar, T.: Network security: a decision and game-theoretic approach, 1st edn. Cambridge University Press, Cambridge (2010)CrossRef Alpcan, T., Baar, T.: Network security: a decision and game-theoretic approach, 1st edn. Cambridge University Press, Cambridge (2010)CrossRef
2.
Zurück zum Zitat Anderson, R.: Security engineering: a guide to building dependable distributed systems, 2nd edn. Wiley Publishing (2008) Anderson, R.: Security engineering: a guide to building dependable distributed systems, 2nd edn. Wiley Publishing (2008)
3.
Zurück zum Zitat Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum of squares partition problem. J. Comput. Syst. Sci. 72(6), 1077–1093 (2006)MathSciNetCrossRefMATH Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum of squares partition problem. J. Comput. Syst. Sci. 72(6), 1077–1093 (2006)MathSciNetCrossRefMATH
5.
6.
Zurück zum Zitat Blume, L., Easley, D., Kleinberg, J., Kleinberg, R., Tardos, É.: Network formation in the presence of contagious risk. In: EC, pp. 1–10 (2011) Blume, L., Easley, D., Kleinberg, J., Kleinberg, R., Tardos, É.: Network formation in the presence of contagious risk. In: EC, pp. 1–10 (2011)
7.
Zurück zum Zitat Cerdeiro, D., Dziubinski, M., Goyal, S.: Contagion risk and network design. Working Paper (2014) Cerdeiro, D., Dziubinski, M., Goyal, S.: Contagion risk and network design. Working Paper (2014)
9.
Zurück zum Zitat Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation game. In: PODC, pp. 347–351 (2003) Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation game. In: PODC, pp. 347–351 (2003)
10.
Zurück zum Zitat Goyal, S.: Connections: an introduction to the economics of networks. Princeton University Press, Princeton (2007) Goyal, S.: Connections: an introduction to the economics of networks. Princeton University Press, Princeton (2007)
11.
Zurück zum Zitat Goyal, S.: Conflicts and Networks. The Oxford Handbook on the Economics of Networks (2015) Goyal, S.: Conflicts and Networks. The Oxford Handbook on the Economics of Networks (2015)
12.
Zurück zum Zitat Gueye, A., Walrand, J., Anantharam, V.: A network topology design game, how to choose communication links in an adversarial environment. In: GameNets (2011) Gueye, A., Walrand, J., Anantharam, V.: A network topology design game, how to choose communication links in an adversarial environment. In: GameNets (2011)
13.
Zurück zum Zitat Ihde, S., Keßler, C., Neubert, S., Schumann, D., Lenzner, P., Friedrich, T.: Efficient best-response computation for strategic network formation under attack. CoRR abs/1610.01861 (2016) Ihde, S., Keßler, C., Neubert, S., Schumann, D., Lenzner, P., Friedrich, T.: Efficient best-response computation for strategic network formation under attack. CoRR abs/1610.01861 (2016)
14.
Zurück zum Zitat Kearns, M., Ortiz, L.: Algorithms for interdependent security games. In: NIPS, pp. 561–568 (2003) Kearns, M., Ortiz, L.: Algorithms for interdependent security games. In: NIPS, pp. 561–568 (2003)
16.
Zurück zum Zitat Laszka, A., Szeszlér, D., Buttyán, L.: Linear loss function for the network blocking game: an efficient model for measuring network robustness and link criticality. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 152–170. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-34266-0_9 CrossRef Laszka, A., Szeszlér, D., Buttyán, L.: Linear loss function for the network blocking game: an efficient model for measuring network robustness and link criticality. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 152–170. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). doi:10.​1007/​978-3-642-34266-0_​9 CrossRef
18.
Zurück zum Zitat Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of game theory as applied to network security. In: HICSS, pp. 1–10 (2010) Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of game theory as applied to network security. In: HICSS, pp. 1–10 (2010)
Metadaten
Titel
Strategic Network Formation with Attack and Immunization
verfasst von
Sanjeev Goyal
Shahin Jabbari
Michael Kearns
Sanjeev Khanna
Jamie Morgenstern
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54110-4_30

Premium Partner