Skip to main content

2017 | OriginalPaper | Buchkapitel

Strategy for Identification of Nanomaterials’ Critical Properties Linked to Biological Impacts: Interlinking of Experimental and Computational Approaches

verfasst von : Iseult Lynch, Antreas Afantitis, Georgios Leonis, Georgia Melagraki, Eugenia Valsami-Jones

Erschienen in: Advances in QSAR Modeling

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Significant progress has been made over the last 10 years towards understanding those characteristics of nanoscale particles which correlate with enhanced biological activity and/or toxicity, as the basis for development of predictive tools for risk assessment and safer-by-design strategies. However, there are still a number of disconnects in the nanosafety workflow that hamper rapid progress towards full understanding of nano-specific mechanisms of action and nanomaterials (NMs)-induced adverse outcome pathways. One such disconnect is between physico-chemical characteristics determined experimentally as part of routine NMs characterisation, and the ability to predict a NM’s uptake and impacts on biological systems based on its pristine physico-chemical characteristics. Identification of critical properties (physico-chemical descriptors) that confer the ability to induce harm in biological systems under the relevant exposure conditions is central, in order to enable both prediction of impacts from related NMs [via quantitative property-activity or structure-activity relationships (QPARs/QSARs)] and development of strategies to ensure that these features are avoided in NM production in the future (“safety by design”). For this purpose, we have launched the Enalos InSilico platform, which is dedicated to the dissemination of our developed in silico workflows for NM risk assessment. So far, two predictive models have been made available online. The first tool is a Quantitative Nanostructure-Activity Relationship (QNAR) model for the prediction of the cellular uptake of NMs in pancreatic cancer cells and the second is an online tool for in silico screening of iron oxide NMs with a predictive classification model for their toxicological assessment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A., & El-Sayed, M. A. (1996). Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 272, 1924–1925. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A., & El-Sayed, M. A. (1996). Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 272, 1924–1925.
Zurück zum Zitat Albanese, A., Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., & Chan, W. C. (2014). Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano, 8, 5515–5526.CrossRef Albanese, A., Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., & Chan, W. C. (2014). Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano, 8, 5515–5526.CrossRef
Zurück zum Zitat Baun, A., Sørensen, S. N., Rasmussen, R. F., Hartmann, N. B., & Koch, C. B. (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquatic Toxicology, 86, 379–387.CrossRef Baun, A., Sørensen, S. N., Rasmussen, R. F., Hartmann, N. B., & Koch, C. B. (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquatic Toxicology, 86, 379–387.CrossRef
Zurück zum Zitat Bexiga, M. G., Varela, J. A., Wang, F., Fenaroli, F., Salvati, A., Lynch, I., et al. (2011). Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology, 5, 557–567.CrossRef Bexiga, M. G., Varela, J. A., Wang, F., Fenaroli, F., Salvati, A., Lynch, I., et al. (2011). Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology, 5, 557–567.CrossRef
Zurück zum Zitat Brus, L. (1994). Luminescence of silicon materials: Chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. Journal of Physical Chemistry, 98, 3575–3581.CrossRef Brus, L. (1994). Luminescence of silicon materials: Chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. Journal of Physical Chemistry, 98, 3575–3581.CrossRef
Zurück zum Zitat Burello, E., & Worth, A. P. (2011). A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology, 5, 228–235.CrossRef Burello, E., & Worth, A. P. (2011). A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology, 5, 228–235.CrossRef
Zurück zum Zitat Bussy, C., Pinault, M., Cambedouzou, J., Landry, M. J., Jegou, P., Mayne-L’hermite, M., et al. (2012). Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Particle and Fibre Toxicology, 9, 46.CrossRef Bussy, C., Pinault, M., Cambedouzou, J., Landry, M. J., Jegou, P., Mayne-L’hermite, M., et al. (2012). Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Particle and Fibre Toxicology, 9, 46.CrossRef
Zurück zum Zitat Chng, E. L., & Pumera, M. (2013). The toxicity of graphene oxides: Dependence on the oxidative methods used. Chemistry, 19, 8227–8235.CrossRef Chng, E. L., & Pumera, M. (2013). The toxicity of graphene oxides: Dependence on the oxidative methods used. Chemistry, 19, 8227–8235.CrossRef
Zurück zum Zitat Chowdhury, I., Duch, M. C., Gits, C. C., Hersam, M. C., & Walker, S. L. (2012). Impact of synthesis methods on the transport of single walled carbon nanotubes in the aquatic environment. Environmental Science and Technology, 46, 11752–11760.CrossRef Chowdhury, I., Duch, M. C., Gits, C. C., Hersam, M. C., & Walker, S. L. (2012). Impact of synthesis methods on the transport of single walled carbon nanotubes in the aquatic environment. Environmental Science and Technology, 46, 11752–11760.CrossRef
Zurück zum Zitat Clemments, A. M., Botella, P., & Landry, C. C. (2015). Protein adsorption from biofluids on silica nanoparticles: Corona analysis as a function of particle diameter and porosity. ACS Applied Materials & Interfaces, 7, 21682–21689.CrossRef Clemments, A. M., Botella, P., & Landry, C. C. (2015). Protein adsorption from biofluids on silica nanoparticles: Corona analysis as a function of particle diameter and porosity. ACS Applied Materials & Interfaces, 7, 21682–21689.CrossRef
Zurück zum Zitat Dawson, K. A., Linse, S., & Lynch, I. (2007). Water as a mediator of protein-nanoparticle interactions: Entropy driven protein binding as a paradigm for protein therapeutics in the Biopharma industry? E-nano Newsletter [Online], 23–34. Dawson, K. A., Linse, S., & Lynch, I. (2007). Water as a mediator of protein-nanoparticle interactions: Entropy driven protein binding as a paradigm for protein therapeutics in the Biopharma industry? E-nano Newsletter [Online], 23–34.
Zurück zum Zitat Deng, Z. J., Liang, M., Monteiro, M., Toth, I., & Minchin, R. F. (2011). Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 6, 39–44.CrossRef Deng, Z. J., Liang, M., Monteiro, M., Toth, I., & Minchin, R. F. (2011). Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 6, 39–44.CrossRef
Zurück zum Zitat Deng, Z. J., Liang, M., Toth, I., Monteiro, M., & Minchin, R. F. (2013). Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology, 7, 314–322.CrossRef Deng, Z. J., Liang, M., Toth, I., Monteiro, M., & Minchin, R. F. (2013). Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology, 7, 314–322.CrossRef
Zurück zum Zitat Fadeel, B., Feliu, N., Vogt, C., Abdelmonem, A. M., & Parak, W. J. (2013). Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5, 111–129. Fadeel, B., Feliu, N., Vogt, C., Abdelmonem, A. M., & Parak, W. J. (2013). Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5, 111–129.
Zurück zum Zitat Gajewicz, A., Schaeublin, N., Rasulev, B., Hussain, S., Leszczynska, D., Puzyn, T., et al. (2015). Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. Nanotoxicology, 9, 313–325.CrossRef Gajewicz, A., Schaeublin, N., Rasulev, B., Hussain, S., Leszczynska, D., Puzyn, T., et al. (2015). Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. Nanotoxicology, 9, 313–325.CrossRef
Zurück zum Zitat George, S., Lin, S. J., Jo, Z. X., Thomas, C. R., Li, L. J., Mecklenburg, M., et al. (2012). Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano, 6, 3745–3759. George, S., Lin, S. J., Jo, Z. X., Thomas, C. R., Li, L. J., Mecklenburg, M., et al. (2012). Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano, 6, 3745–3759.
Zurück zum Zitat Gerloff, K., Landesmann, B., Worth, A., Munn, S., Palosaari, T., & Whelan, M. (2016). The adverse outcome pathway approach in nanotoxicology. Computational Toxicology. Gerloff, K., Landesmann, B., Worth, A., Munn, S., Palosaari, T., & Whelan, M. (2016). The adverse outcome pathway approach in nanotoxicology. Computational Toxicology.
Zurück zum Zitat Harper, S. L., Carriere, J. L., Miller, J. M., Hutchinson, J. E., Maddux, B. L. S., & Tanguay, R. L. (2011). Systematic evaluation of nanomaterial toxicity: Utility of standardised materials and rapid assays. ACS Nano, 5, 4688–4697.CrossRef Harper, S. L., Carriere, J. L., Miller, J. M., Hutchinson, J. E., Maddux, B. L. S., & Tanguay, R. L. (2011). Systematic evaluation of nanomaterial toxicity: Utility of standardised materials and rapid assays. ACS Nano, 5, 4688–4697.CrossRef
Zurück zum Zitat Hassellöv, M., & Kaegi, R. (2009). Analysis and characterization of manufactured nanoparticles in aquatic environments. In J. R. Lead & E. Smith (Eds.), Environmental and human health impacts of nanotechnology. Hassellöv, M., & Kaegi, R. (2009). Analysis and characterization of manufactured nanoparticles in aquatic environments. In J. R. Lead & E. Smith (Eds.), Environmental and human health impacts of nanotechnology.
Zurück zum Zitat Ho, C.-M., Yau, S. K.-W., Lok, C.-N., So, M.-H., & Che, C.-M. (2010). Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: A kinetic and mechanistic study. Chemistry—An Asian Journal, 5, 285–293.CrossRef Ho, C.-M., Yau, S. K.-W., Lok, C.-N., So, M.-H., & Che, C.-M. (2010). Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: A kinetic and mechanistic study. Chemistry—An Asian Journal, 5, 285–293.CrossRef
Zurück zum Zitat Ivask, A., Suarez, E., Patel, T., Boren, D., Ji, Z. X., Holden, P., et al. (2012). Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environmental Science and Technology, 46, 2398–2405.CrossRef Ivask, A., Suarez, E., Patel, T., Boren, D., Ji, Z. X., Holden, P., et al. (2012). Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environmental Science and Technology, 46, 2398–2405.CrossRef
Zurück zum Zitat Kleandrova, V. V., Luan, F., González-Díaz, H., Ruso, J. M., Speck-Planche, A., & Cordeiro, N. D. S. (2014). Computational tool for risk assessment of nanomaterials: Novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environmental Science and Technology, 48, 14686–14694.CrossRef Kleandrova, V. V., Luan, F., González-Díaz, H., Ruso, J. M., Speck-Planche, A., & Cordeiro, N. D. S. (2014). Computational tool for risk assessment of nanomaterials: Novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environmental Science and Technology, 48, 14686–14694.CrossRef
Zurück zum Zitat Klein, J. (2007). Probing the interactions of proteins and nanoparticles. PNAS, 104, 2029–2030.CrossRef Klein, J. (2007). Probing the interactions of proteins and nanoparticles. PNAS, 104, 2029–2030.CrossRef
Zurück zum Zitat Lee, K. J., Browning, L. M., Nallathamby, P. D., & Xu, X. H. (2013). Study of charge-dependent transport and toxicity of Peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chemical Research in Toxicology, 26, 904–917.CrossRef Lee, K. J., Browning, L. M., Nallathamby, P. D., & Xu, X. H. (2013). Study of charge-dependent transport and toxicity of Peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chemical Research in Toxicology, 26, 904–917.CrossRef
Zurück zum Zitat Li, R., Ji, Z., Chang, C. H., Dunphy, D. R., Cai, X., Meng, H., et al. (2014). Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano, 8, 1771–1783. Li, R., Ji, Z., Chang, C. H., Dunphy, D. R., Cai, X., Meng, H., et al. (2014). Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano, 8, 1771–1783.
Zurück zum Zitat Li, Y., Zhang, W., Niu, J., & Chen, Y. (2013). Surface coating-dependent dissolution, aggregation, and ROS generation of silver nanoparticles under different irradiation conditions. Environmental Science and Technology, 47, 10293–10301. Li, Y., Zhang, W., Niu, J., & Chen, Y. (2013). Surface coating-dependent dissolution, aggregation, and ROS generation of silver nanoparticles under different irradiation conditions. Environmental Science and Technology, 47, 10293–10301.
Zurück zum Zitat Lin, S., Zhao, Y., Ji, Z., et al. (2013). Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small (Weinheim an der Bergstrasse, Germany) 9, 1776–1785. doi:10.1002/smll.201202128.CrossRef Lin, S., Zhao, Y., Ji, Z., et al. (2013). Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small (Weinheim an der Bergstrasse, Germany) 9, 1776–1785. doi:10.​1002/​smll.​201202128.CrossRef
Zurück zum Zitat Linsinger, T., Roebben, G., Gilliland, D., Calzolai, L., Rossi, F., Gibson, N., et al. (2012). Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterial”. Report EUR 25404 EN. Linsinger, T., Roebben, G., Gilliland, D., Calzolai, L., Rossi, F., Gibson, N., et al. (2012). Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterial”. Report EUR 25404 EN.
Zurück zum Zitat Liu, J., Aruguete, D. M., Jinschek, J. R., Rimstidt, J. D., & Hochella, Jr., M. F. (2008). The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochimica et Cosmochimica Acta, 72, 5984–5996. Liu, J., Aruguete, D. M., Jinschek, J. R., Rimstidt, J. D., & Hochella, Jr., M. F. (2008). The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochimica et Cosmochimica Acta, 72, 5984–5996.
Zurück zum Zitat Liu, J., von der Kammer, F., Zhang, B., Legros, S., & Hofmann, T. (2013a). Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: Assessing environmental behavior of functionalized gold nanoparticles on a continental scale. Environment International, 59, 53–62.CrossRef Liu, J., von der Kammer, F., Zhang, B., Legros, S., & Hofmann, T. (2013a). Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: Assessing environmental behavior of functionalized gold nanoparticles on a continental scale. Environment International, 59, 53–62.CrossRef
Zurück zum Zitat Liu, R., Jiang, W., Walkey, C. D., Chan, W. C., & Cohen, Y. (2015a). Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale, 7, 9664–9675.CrossRef Liu, R., Jiang, W., Walkey, C. D., Chan, W. C., & Cohen, Y. (2015a). Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale, 7, 9664–9675.CrossRef
Zurück zum Zitat Liu, R., Rallo, R., Bilal, M., & Cohen, Y. (2015b). Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles. Combinatorial Chemistry & High Throughput Screening, 18, 365–375.CrossRef Liu, R., Rallo, R., Bilal, M., & Cohen, Y. (2015b). Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles. Combinatorial Chemistry & High Throughput Screening, 18, 365–375.CrossRef
Zurück zum Zitat Liu, R., Rallo, R., George, S., Ji, Z., Nair, S., Nel, A. E., et al. (2011). Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small, 7, 1118–1126.CrossRef Liu, R., Rallo, R., George, S., Ji, Z., Nair, S., Nel, A. E., et al. (2011). Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small, 7, 1118–1126.CrossRef
Zurück zum Zitat Liu, X., Chen, G., Keller, A. A., & Su, C. (2013b). Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environments: From synthesis to fate. Environmental Science: Processes Impacts, 15, 169–189. Liu, X., Chen, G., Keller, A. A., & Su, C. (2013b). Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environments: From synthesis to fate. Environmental Science: Processes Impacts, 15, 169–189.
Zurück zum Zitat Lövestam, G., Rauscher, H., Roebben, G., Sokull Klüttgen, B., Gibson, N., Putaud, J.-P., et al. (2010). Considerations on a definition of nanomaterial for regulatory purposes. Lövestam, G., Rauscher, H., Roebben, G., Sokull Klüttgen, B., Gibson, N., Putaud, J.-P., et al. (2010). Considerations on a definition of nanomaterial for regulatory purposes.
Zurück zum Zitat Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science and Technology, 46, 6893–6899.CrossRef Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science and Technology, 46, 6893–6899.CrossRef
Zurück zum Zitat Lowry, G. V., Hill, R. J., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., et al. (2016). Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano, 3, 953–965. Lowry, G. V., Hill, R. J., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., et al. (2016). Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano, 3, 953–965.
Zurück zum Zitat Lynch, I. (2007). Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein-material interface. Physica A—Statistical Mechanics and its Applications, 373, 511–520.CrossRef Lynch, I. (2007). Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein-material interface. Physica A—Statistical Mechanics and its Applications, 373, 511–520.CrossRef
Zurück zum Zitat Lynch, I., Dawson, K. A., Lead, J. R., & Valsami-Jones, E. (2014a). Macromolecular coronas and their importance in nanotoxicology and nanoecotoxicology. In J. R. Lead & E. Valsami-Jones (Eds.), Nanoscience and the environment. Lynch, I., Dawson, K. A., Lead, J. R., & Valsami-Jones, E. (2014a). Macromolecular coronas and their importance in nanotoxicology and nanoecotoxicology. In J. R. Lead & E. Valsami-Jones (Eds.), Nanoscience and the environment.
Zurück zum Zitat Lynch, I., Weiss, C., & Valsami-Jones, E. (2014b). A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today, 9, 266–270.CrossRef Lynch, I., Weiss, C., & Valsami-Jones, E. (2014b). A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today, 9, 266–270.CrossRef
Zurück zum Zitat Melagraki, G., & Afantitis, A. (2014). Enalos InSilicoNano Platform: An online decision support tool for the design and virtual screening of nanoparticles. RSC Advances, 4, 50713–50725.CrossRef Melagraki, G., & Afantitis, A. (2014). Enalos InSilicoNano Platform: An online decision support tool for the design and virtual screening of nanoparticles. RSC Advances, 4, 50713–50725.CrossRef
Zurück zum Zitat Melagraki, G., & Afantitis, A. (2015). A risk assessment tool for the virtual screening of metal oxide nanoparticles through Enalos InSilicoNano Platform. Current Topics in Medicinal Chemistry, 15, 1827–1836. Melagraki, G., & Afantitis, A. (2015). A risk assessment tool for the virtual screening of metal oxide nanoparticles through Enalos InSilicoNano Platform. Current Topics in Medicinal Chemistry, 15, 1827–1836.
Zurück zum Zitat Meng, H., Xia, T., George, S., & Nel, A. E. (2009). A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano, 3, 1620–1627.CrossRef Meng, H., Xia, T., George, S., & Nel, A. E. (2009). A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano, 3, 1620–1627.CrossRef
Zurück zum Zitat Merhi, M., Dombu, C. Y., Brient, A., Chang, J., Platel, A., le Curieux, F., et al. (2012). Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity. International Journal of Pharmaceutics, 423, 37–44.CrossRef Merhi, M., Dombu, C. Y., Brient, A., Chang, J., Platel, A., le Curieux, F., et al. (2012). Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity. International Journal of Pharmaceutics, 423, 37–44.CrossRef
Zurück zum Zitat Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N., & Valsami-Jones, E. (2012). The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Science of the Total Environment, 438, 225–232.CrossRef Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N., & Valsami-Jones, E. (2012). The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Science of the Total Environment, 438, 225–232.CrossRef
Zurück zum Zitat Nap, R. J., & Szleifer, I. (2013). How to optimize binding of coated nanoparticles: Coupling of physical interactions. Molecular Organization and Chemical State Biomaterial Science, 1, 814–823.CrossRef Nap, R. J., & Szleifer, I. (2013). How to optimize binding of coated nanoparticles: Coupling of physical interactions. Molecular Organization and Chemical State Biomaterial Science, 1, 814–823.CrossRef
Zurück zum Zitat Nel, A. E., Parak, W. J., Chan, W. C., Xia, T., Hersam, M. C., Brinker, C. J., et al. (2015). Where are we heading in nanotechnology environmental health and safety and materials characterization? ACS Nano, 9, 5627–5630.CrossRef Nel, A. E., Parak, W. J., Chan, W. C., Xia, T., Hersam, M. C., Brinker, C. J., et al. (2015). Where are we heading in nanotechnology environmental health and safety and materials characterization? ACS Nano, 9, 5627–5630.CrossRef
Zurück zum Zitat Pagnout, C., Jomini, S., Dadhwal, M., Caillet, C., Thomas, F., & Bauda, P. (2012). Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids and Surfaces B: Biointerfaces, 92, 315–321.CrossRef Pagnout, C., Jomini, S., Dadhwal, M., Caillet, C., Thomas, F., & Bauda, P. (2012). Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids and Surfaces B: Biointerfaces, 92, 315–321.CrossRef
Zurück zum Zitat Park, E.-J., Yi, J., Kim, Y., Choi, K., & Park, K. (2010). Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 24, 872–878.CrossRef Park, E.-J., Yi, J., Kim, Y., Choi, K., & Park, K. (2010). Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 24, 872–878.CrossRef
Zurück zum Zitat Petersen, L. K., Chavez-Santoscoy, A. V., & Narasimhan, B. (2012). Combinatorial synthesis of and high-throughput protein release from polymer film and nanoparticle libraries. Journal of Visualized Experiments, 67, 3882. Petersen, L. K., Chavez-Santoscoy, A. V., & Narasimhan, B. (2012). Combinatorial synthesis of and high-throughput protein release from polymer film and nanoparticle libraries. Journal of Visualized Experiments, 67, 3882.
Zurück zum Zitat Pokhrel, S., Nel, A. E., & Mädler, L. (2012). Custom-designed nanomaterial libraries for testing metal oxide toxicity. Accounts of Chemical Research, 46, 632–641.CrossRef Pokhrel, S., Nel, A. E., & Mädler, L. (2012). Custom-designed nanomaterial libraries for testing metal oxide toxicity. Accounts of Chemical Research, 46, 632–641.CrossRef
Zurück zum Zitat Puzyn, T., Rasulev, B., Gajewicz, A., Hu, X., Dasari, T. P., Michalkova, A., et al. (2011). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology, 6, 175–178. Puzyn, T., Rasulev, B., Gajewicz, A., Hu, X., Dasari, T. P., Michalkova, A., et al. (2011). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology, 6, 175–178.
Zurück zum Zitat Salvati, A., Aberg, C., dos Santos, T., Varela, J., Pinto, P., Lynch, I., et al. (2011). Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomedicine, 7, 818–826.CrossRef Salvati, A., Aberg, C., dos Santos, T., Varela, J., Pinto, P., Lynch, I., et al. (2011). Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomedicine, 7, 818–826.CrossRef
Zurück zum Zitat Sau, T. K., & Murphy, C. J. (2004). Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society, 126, 8648–8649.CrossRef Sau, T. K., & Murphy, C. J. (2004). Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society, 126, 8648–8649.CrossRef
Zurück zum Zitat Sau, T. K., Urban, A. S., Dondapati, S. K., Fedoruk, M., Horton, M. R., Rogach, A. L., et al. (2009). Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 342, 92–96. Sau, T. K., Urban, A. S., Dondapati, S. K., Fedoruk, M., Horton, M. R., Rogach, A. L., et al. (2009). Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 342, 92–96.
Zurück zum Zitat Shaw, S. Y., Westly, E. C., Pittet, M. J., Subramanian, A., Schreiber, S. L., & Weissleder, R. (2008). Perturbational profiling of nanomaterial biologic activity. Proceedings of the National Academy of Sciences U.S.A., 105, 7387–7392. Shaw, S. Y., Westly, E. C., Pittet, M. J., Subramanian, A., Schreiber, S. L., & Weissleder, R. (2008). Perturbational profiling of nanomaterial biologic activity. Proceedings of the National Academy of Sciences U.S.A., 105, 7387–7392.
Zurück zum Zitat Sizochenko, N., Rasulev, B., Gajewicz, A., Kuz’Min, V., Puzyn, T., & Leszczynski, J. (2014). From basic physics to mechanisms of toxicity: The “liquid drop” approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale, 6, 13986–13993.CrossRef Sizochenko, N., Rasulev, B., Gajewicz, A., Kuz’Min, V., Puzyn, T., & Leszczynski, J. (2014). From basic physics to mechanisms of toxicity: The “liquid drop” approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale, 6, 13986–13993.CrossRef
Zurück zum Zitat Soler, M. A. G., Lima, E. C. D., da Silva, S. W., Melo, T. F. O., Pimenta, A. C. M., Sinnecker, J. P., et al. (2007). Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir, 23, 9611–9617.CrossRef Soler, M. A. G., Lima, E. C. D., da Silva, S. W., Melo, T. F. O., Pimenta, A. C. M., Sinnecker, J. P., et al. (2007). Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir, 23, 9611–9617.CrossRef
Zurück zum Zitat Speck-Planche, A., Kleandrova, V. V., Luan, F., & Cordeiro, M. N. D. S. (2015). Computational modeling in nanomedicine: Prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model. Nanomedicine, 10, 193–204.CrossRef Speck-Planche, A., Kleandrova, V. V., Luan, F., & Cordeiro, M. N. D. S. (2015). Computational modeling in nanomedicine: Prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model. Nanomedicine, 10, 193–204.CrossRef
Zurück zum Zitat Stamm, H. (2011). Risk factors: Nanomaterials should be defined. Nature, 476, 399.CrossRef Stamm, H. (2011). Risk factors: Nanomaterials should be defined. Nature, 476, 399.CrossRef
Zurück zum Zitat Stefaniak, A. B., Hackley, V. A., Roebben, G., Ehara, K., Hankin, S., Postek, M. T., et al. (2013). Nanoscale reference materials for environmental, health and safety measurements: Needs, gaps and opportunities. Nanotoxicology, 7, 1325–1337.CrossRef Stefaniak, A. B., Hackley, V. A., Roebben, G., Ehara, K., Hankin, S., Postek, M. T., et al. (2013). Nanoscale reference materials for environmental, health and safety measurements: Needs, gaps and opportunities. Nanotoxicology, 7, 1325–1337.CrossRef
Zurück zum Zitat Studer, A. M., Limbach, L. K., van Duc, L., Krumeich, F., Athanassiou, E. K., Gerber, L. C., et al. (2010). Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology Letters, 197, 169–174.CrossRef Studer, A. M., Limbach, L. K., van Duc, L., Krumeich, F., Athanassiou, E. K., Gerber, L. C., et al. (2010). Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology Letters, 197, 169–174.CrossRef
Zurück zum Zitat Sund, J., Alenius, H., Vippola, M., Savolainen, K., & Puustinen, A. (2011). Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano, 5, 4300–4309.CrossRef Sund, J., Alenius, H., Vippola, M., Savolainen, K., & Puustinen, A. (2011). Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano, 5, 4300–4309.CrossRef
Zurück zum Zitat Teoh, W. Y., Amal, R., & Madler, L. (2010). Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale, 2, 1324–1347.CrossRef Teoh, W. Y., Amal, R., & Madler, L. (2010). Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale, 2, 1324–1347.CrossRef
Zurück zum Zitat Toropova, A. P., Toropov, A. A., Rallo, R., Leszczynska, D., & Leszczynski, J. (2015). Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicology and Environmental Safety, 112, 39–45.CrossRef Toropova, A. P., Toropov, A. A., Rallo, R., Leszczynska, D., & Leszczynski, J. (2015). Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicology and Environmental Safety, 112, 39–45.CrossRef
Zurück zum Zitat Vácha, R., Martinez-Veracoechea, F. J., & Frenkel, D. (2011). Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Letters, 11, 5391–5395.CrossRef Vácha, R., Martinez-Veracoechea, F. J., & Frenkel, D. (2011). Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Letters, 11, 5391–5395.CrossRef
Zurück zum Zitat Valsami-Jones, E., & Lynch, I. (2015). How safe are nanomaterials? Science, 350, 388–389.CrossRef Valsami-Jones, E., & Lynch, I. (2015). How safe are nanomaterials? Science, 350, 388–389.CrossRef
Zurück zum Zitat von der Kammer, F., Ferguson, P. L., Holden, P. A., Masion, A., Rogers, K. R., Klaine, S. J., et al. (2012). Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environmental Toxicology and Chemistry, 31, 32–49.CrossRef von der Kammer, F., Ferguson, P. L., Holden, P. A., Masion, A., Rogers, K. R., Klaine, S. J., et al. (2012). Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environmental Toxicology and Chemistry, 31, 32–49.CrossRef
Zurück zum Zitat Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I., & Dawson, K. A. (2010). What the cell “sees” in bionanoscience. Journal of the American Chemical Society, 132, 5761–5768. Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I., & Dawson, K. A. (2010). What the cell “sees” in bionanoscience. Journal of the American Chemical Society, 132, 5761–5768.
Zurück zum Zitat Walkey, C. D., Olsen, J. B., Song, F., Liu, R., Guo, H., Olsen, D. W., et al. (2014). Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 8, 2439–2455.CrossRef Walkey, C. D., Olsen, J. B., Song, F., Liu, R., Guo, H., Olsen, D. W., et al. (2014). Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 8, 2439–2455.CrossRef
Zurück zum Zitat Wang, X., Duch, M. C., Mansukhani, N., Ji, Z., Liao, Y. P., Wang, M., et al. (2015). Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano, 9, 3032–3043. Wang, X., Duch, M. C., Mansukhani, N., Ji, Z., Liao, Y. P., Wang, M., et al. (2015). Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano, 9, 3032–3043.
Zurück zum Zitat Weissleder, J., Kelly, K, Sun, E. Y., Shtatland, T., & Josephson, L. (2005). Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418–1423. Weissleder, J., Kelly, K, Sun, E. Y., Shtatland, T., & Josephson, L. (2005). Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418–1423.
Zurück zum Zitat Wells, D. M., Rossi, G., Ferrando, R., & Palmer, R. E. (2015). Metastability of the atomic structures of size-selected gold nanoparticles. Nanoscale, 7, 6498–6503.CrossRef Wells, D. M., Rossi, G., Ferrando, R., & Palmer, R. E. (2015). Metastability of the atomic structures of size-selected gold nanoparticles. Nanoscale, 7, 6498–6503.CrossRef
Zurück zum Zitat Xia, X.-R., Monteiro-Riviere, N. A., & Riviere, J. E. (2010). An index for characterization of nanomaterials in biological systems. Nature Nanotechnology, 5, 671–675.CrossRef Xia, X.-R., Monteiro-Riviere, N. A., & Riviere, J. E. (2010). An index for characterization of nanomaterials in biological systems. Nature Nanotechnology, 5, 671–675.CrossRef
Zurück zum Zitat Yang, S. T., Liu, Y., Wang, Y. W., & Cao, A. (2013). Biosafety and bioapplication of nanomaterials by designing protein–nanoparticle interactions. Small, 9, 1635–1653.CrossRef Yang, S. T., Liu, Y., Wang, Y. W., & Cao, A. (2013). Biosafety and bioapplication of nanomaterials by designing protein–nanoparticle interactions. Small, 9, 1635–1653.CrossRef
Zurück zum Zitat Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., et al. (2012a). Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs pyrolytic. JACS, 134, 15790–15804.CrossRef Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., et al. (2012a). Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs pyrolytic. JACS, 134, 15790–15804.CrossRef
Zurück zum Zitat Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., et al. (2012b). Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano, 6, 4349–4368.CrossRef Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., et al. (2012b). Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano, 6, 4349–4368.CrossRef
Zurück zum Zitat Zheng, H., Mortensen, L. J., & Delouise, L. A. (2013). Thiol antioxidant-functionalized CdSe/ZnS quantum dots: Synthesis, characterization, cytotoxicity. Journal of Biomedical Nanotechnology, 9, 382–392.CrossRef Zheng, H., Mortensen, L. J., & Delouise, L. A. (2013). Thiol antioxidant-functionalized CdSe/ZnS quantum dots: Synthesis, characterization, cytotoxicity. Journal of Biomedical Nanotechnology, 9, 382–392.CrossRef
Metadaten
Titel
Strategy for Identification of Nanomaterials’ Critical Properties Linked to Biological Impacts: Interlinking of Experimental and Computational Approaches
verfasst von
Iseult Lynch
Antreas Afantitis
Georgios Leonis
Georgia Melagraki
Eugenia Valsami-Jones
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56850-8_10