Skip to main content

2016 | OriginalPaper | Buchkapitel

7. Structural Elements

verfasst von : Jože Korelc, Peter Wriggers

Erschienen in: Automation of Finite Element Methods

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Trusses, beams and shells belong to the most important structural elements in engineering practice. Many structures in civil engineering—like masts, domes, frames or cooling towers—consist of such structural elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Since in the global configuration of the truss is already taken into account in (7.2) and (7.3) it is not necessary to introduce a transformation between local and global truss coordinates.
 
2
In case that the stresses are needed for post-processing purposes they simply can be computed from (5.​1) by \(S_X = \partial W^{SV,O} \, / \,\partial E_X = 1 \, / \,\lambda _X \,\partial W^{SV,O} \, / \,\partial \lambda _X\). Cauchy stresses then follow from (1.​71) with \(J_F=1\): \(\sigma _x = S_X\,\lambda _X^2\).
 
3
Quadratic or higher order interpolations could be introduced as well, but for most applications linear elements are sufficient since the linear shape functions are solution of the homogeneous differential equations of the truss in the geometrically linear case when linear elastic constitutive behaviour is assumed.
 
4
The second term in (7.13) can be considered at global level after assembly of the element residuals, as is well known from the linear finite element method.
 
5
This unexpected feature leads to a linear solution for special cases, like rolling up a beam under an end moment where the normal and shear forces are zero.
 
6
Note that the stress \({\varvec{T}}_B\) does not follow from the polar decomposition of the deformation gradient like the Biot stress, see Table 1.​2.
 
7
Note that a plane isoparametric surface assumes in general a hyper surface after deformation and thus the cross section does not remain plane in general.
 
8
The classical Kirchhoff–Love hypothesis would, of course, be a natural assumption for kinematics of thin shells. However this additional constraint requires \(C^1\)-continuous interpolation functions that cannot be constructed by interpolations using only primary variables for triangular and quadrilateral finite elements. In this context, a new approach which combines interpolations of the deformations with the CAD description of the shell surfaces are of interest. These discretization employ Bezier or other \(C^1\)-continuous polynomials, see e.g. Cirak et al. (2000), Onate and Cervera (1993) and lately Hughes et al. (2005) who introduced the notion of isogeometric analysis.
 
9
This formulation is contrary to classical shell theories where stress resultants are introduced with respect to the shell midsurface and related strain energies are constructed. The latter is especially complicated when finite strain constitutive models have to be considered.
 
10
In general this basis does not coincidence with the global cartesian coordinate system \(\{\varvec{E}_i\}\) of the reference configuration. Thus a transformation of vectors and tensors to the global coordinate system has to be performed in order to assemble the shell elements correctly since the FE displacements and rotations are defined in the global system.
 
Literatur
Zurück zum Zitat Bathe, K.J. 1982. Finite Element Procedures in Engineering Analysis. Englewood Cliffs: Prentice-Hall. Bathe, K.J. 1982. Finite Element Procedures in Engineering Analysis. Englewood Cliffs: Prentice-Hall.
Zurück zum Zitat Bathe, K.J. 1996. Finite Element Procedures. Englewood Cliffs: Prentice-Hall.MATH Bathe, K.J. 1996. Finite Element Procedures. Englewood Cliffs: Prentice-Hall.MATH
Zurück zum Zitat Bathe, K.J., and S. Bolourchi. 1979. Large displacement analysis of three-dimensional beam structures. International Journal for Numerical Methods in Engineering 14: 961–986.CrossRefMATH Bathe, K.J., and S. Bolourchi. 1979. Large displacement analysis of three-dimensional beam structures. International Journal for Numerical Methods in Engineering 14: 961–986.CrossRefMATH
Zurück zum Zitat Benson, D., Y. Bazilevs, M. Hsu, and T. Hughes. 2010. Isogeometric shell analysis: the reissner-mindlin shell. Computer Methods in Applied Mechanics and Engineering 199(5): 276–289.MathSciNetCrossRefMATH Benson, D., Y. Bazilevs, M. Hsu, and T. Hughes. 2010. Isogeometric shell analysis: the reissner-mindlin shell. Computer Methods in Applied Mechanics and Engineering 199(5): 276–289.MathSciNetCrossRefMATH
Zurück zum Zitat Betsch, P., F. Gruttmann, and E. Stein. 1996. A 4-node finite shell element for the implementation of assumed general hyperelastic 3d-elasticity at finite strains. Computer Methods in Applied Mechanics and Engineering 130: 57–79.MathSciNetCrossRefMATH Betsch, P., F. Gruttmann, and E. Stein. 1996. A 4-node finite shell element for the implementation of assumed general hyperelastic 3d-elasticity at finite strains. Computer Methods in Applied Mechanics and Engineering 130: 57–79.MathSciNetCrossRefMATH
Zurück zum Zitat Büchter, N., E. Ramm, and D. Roehl. 1994. Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. International Journal for Numerical Methods in Engineering 37: 2551–2568.CrossRefMATH Büchter, N., E. Ramm, and D. Roehl. 1994. Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. International Journal for Numerical Methods in Engineering 37: 2551–2568.CrossRefMATH
Zurück zum Zitat Büchter, N., and E. Ramm. 1992. Shell theory versus degeneration - a comparison in large rotation finite element analysis. International Journal for Numerical Methods in Engineering 34: 39–59.CrossRefMATH Büchter, N., and E. Ramm. 1992. Shell theory versus degeneration - a comparison in large rotation finite element analysis. International Journal for Numerical Methods in Engineering 34: 39–59.CrossRefMATH
Zurück zum Zitat Campello, E.M.B., P.M. Pimenta, and P. Wriggers. 2003. A triangular finte shell element based on a fully nonlinear shell formulation. Computational Mechanics 31: 505–518.CrossRefMATH Campello, E.M.B., P.M. Pimenta, and P. Wriggers. 2003. A triangular finte shell element based on a fully nonlinear shell formulation. Computational Mechanics 31: 505–518.CrossRefMATH
Zurück zum Zitat Campello, E.M.B., P.M. Pimenta, and P. Wriggers. 2007. Elastic-plastic analysis of metallic shells at finite strains. Rem-Revista Escola de Minas 60: 381–389.CrossRef Campello, E.M.B., P.M. Pimenta, and P. Wriggers. 2007. Elastic-plastic analysis of metallic shells at finite strains. Rem-Revista Escola de Minas 60: 381–389.CrossRef
Zurück zum Zitat Cirak, F., M. Ortiz, and P. Schröder. 2000. Subdivision surfaces: a new paradigm for thin shell finite-element analysis. International Journal for Numerical Methods in Engineering 47: 2039–2072.CrossRefMATH Cirak, F., M. Ortiz, and P. Schröder. 2000. Subdivision surfaces: a new paradigm for thin shell finite-element analysis. International Journal for Numerical Methods in Engineering 47: 2039–2072.CrossRefMATH
Zurück zum Zitat Crisfield, M.A. 1991. Non-linear finite element analysis of solids and structures, vol. 1. Chichester: Wiley.MATH Crisfield, M.A. 1991. Non-linear finite element analysis of solids and structures, vol. 1. Chichester: Wiley.MATH
Zurück zum Zitat Crisfield, M.A. 1997. Non-linear finite element analysis of solids and structures, vol. 2. Chichester: Wiley.MATH Crisfield, M.A. 1997. Non-linear finite element analysis of solids and structures, vol. 2. Chichester: Wiley.MATH
Zurück zum Zitat Düster, A., H. Bröker, and E. Rank. 2001. The p-version of the finite element method for three-dimensional curved thin walled structures. International Journal for Numerical Methods in Engineering 52: 673–703.CrossRefMATH Düster, A., H. Bröker, and E. Rank. 2001. The p-version of the finite element method for three-dimensional curved thin walled structures. International Journal for Numerical Methods in Engineering 52: 673–703.CrossRefMATH
Zurück zum Zitat Dvorkin, E.N., E. Onate, and J. Oliver. 1988. On a nonlinear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. International Journal for Numerical Methods in Engineering 26: 1597–1613.CrossRefMATH Dvorkin, E.N., E. Onate, and J. Oliver. 1988. On a nonlinear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. International Journal for Numerical Methods in Engineering 26: 1597–1613.CrossRefMATH
Zurück zum Zitat Dvorkin, E.N., D. Pantuso, and A. Repetto. 1995. A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Computer Methods in Applied Mechanics and Engineering 125: 17–40.CrossRef Dvorkin, E.N., D. Pantuso, and A. Repetto. 1995. A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Computer Methods in Applied Mechanics and Engineering 125: 17–40.CrossRef
Zurück zum Zitat Eberlein, R., and P. Wriggers. 1999. Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis. Computer Methods in Applied Mechanics and Engineering 171: 243–279.CrossRefMATH Eberlein, R., and P. Wriggers. 1999. Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis. Computer Methods in Applied Mechanics and Engineering 171: 243–279.CrossRefMATH
Zurück zum Zitat Ehrlich, D., and F. Armero. 2005. Finite element methods for the analysis of softening plastic hinges in beams and frames. Computational Mechanics 35(4): 237–264.CrossRefMATH Ehrlich, D., and F. Armero. 2005. Finite element methods for the analysis of softening plastic hinges in beams and frames. Computational Mechanics 35(4): 237–264.CrossRefMATH
Zurück zum Zitat Gruttmann, F., and W. Wagner. 2005. A linear quadrilateral shell element with fast stiffness computation. Computer Methods in Applied Mechanics and Engineering 194(39–41): 4279–4300.CrossRefMATH Gruttmann, F., and W. Wagner. 2005. A linear quadrilateral shell element with fast stiffness computation. Computer Methods in Applied Mechanics and Engineering 194(39–41): 4279–4300.CrossRefMATH
Zurück zum Zitat Gruttmann, F., R. Sauer, and W. Wagner. 1998. A geometrical non-linear eccentric 3D-beam element with arbitrary cross-sections. Computer Methods in Applied Mechanics and Engineering 160: 383–400.MathSciNetCrossRefMATH Gruttmann, F., R. Sauer, and W. Wagner. 1998. A geometrical non-linear eccentric 3D-beam element with arbitrary cross-sections. Computer Methods in Applied Mechanics and Engineering 160: 383–400.MathSciNetCrossRefMATH
Zurück zum Zitat Gruttmann, F., R. Sauer, and W. Wagner. 2000. Theory and numerics of three-dimensional beams with elastoplastic material behaviour. International Journal for Numerical Methods in Engineering 48: 1675–1702.CrossRefMATH Gruttmann, F., R. Sauer, and W. Wagner. 2000. Theory and numerics of three-dimensional beams with elastoplastic material behaviour. International Journal for Numerical Methods in Engineering 48: 1675–1702.CrossRefMATH
Zurück zum Zitat Hauptmann, R., and K. Schweizerhof. 1998. A systematic development of ’solid-shell’ element formulation for linear and nonlinear analyses employing only displacement degree of freedom. International Journal for Numerical Methods in Engineering 42: 49–69.CrossRefMATH Hauptmann, R., and K. Schweizerhof. 1998. A systematic development of ’solid-shell’ element formulation for linear and nonlinear analyses employing only displacement degree of freedom. International Journal for Numerical Methods in Engineering 42: 49–69.CrossRefMATH
Zurück zum Zitat Hughes, T.R.J. 1987. The Finite Element Method. Englewood Cliffs: Prentice Hall.MATH Hughes, T.R.J. 1987. The Finite Element Method. Englewood Cliffs: Prentice Hall.MATH
Zurück zum Zitat Hughes, T.J.R., J.A. Cottrell, and Y. Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39–41): 4135–4195.MathSciNetCrossRefMATH Hughes, T.J.R., J.A. Cottrell, and Y. Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39–41): 4135–4195.MathSciNetCrossRefMATH
Zurück zum Zitat Hughes, T.J.R., and W.K. Liu. 1981. Nonlinear finite element analysis of shells: Part I. threedimensional shells. Computer Methods in Applied Mechanics and Engineering 26: 331–362.MathSciNetCrossRefMATH Hughes, T.J.R., and W.K. Liu. 1981. Nonlinear finite element analysis of shells: Part I. threedimensional shells. Computer Methods in Applied Mechanics and Engineering 26: 331–362.MathSciNetCrossRefMATH
Zurück zum Zitat Jelenic, G., and M. Saje. 1995. A kinematically exact space finite strain beam model - finite element formulations by generalised virtual work principle. Computer Methods in Applied Mechanics and Engineering 120: 131–161.MathSciNetCrossRefMATH Jelenic, G., and M. Saje. 1995. A kinematically exact space finite strain beam model - finite element formulations by generalised virtual work principle. Computer Methods in Applied Mechanics and Engineering 120: 131–161.MathSciNetCrossRefMATH
Zurück zum Zitat Kahn R. 1987. Finite-element-berechnungen ebener stabwerke mit flissgelenken und grossen verschiebungen. Technical Report F 87/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover. Kahn R. 1987. Finite-element-berechnungen ebener stabwerke mit flissgelenken und grossen verschiebungen. Technical Report F 87/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover.
Zurück zum Zitat Kühborn, A., and H. Schoop. 1992. A nonlinear theory for sandwich shells including the wrinkling phenomenon. Ingenieur-Archiv 62: 413–427.MATH Kühborn, A., and H. Schoop. 1992. A nonlinear theory for sandwich shells including the wrinkling phenomenon. Ingenieur-Archiv 62: 413–427.MATH
Zurück zum Zitat Mäkinen, J. 2007. Total lagrangian Reissner’s geometrically exact beam element without singularities. International Journal for Numerical Methods in Engineering 70: 1009–1048.MathSciNetCrossRefMATH Mäkinen, J. 2007. Total lagrangian Reissner’s geometrically exact beam element without singularities. International Journal for Numerical Methods in Engineering 70: 1009–1048.MathSciNetCrossRefMATH
Zurück zum Zitat Lumpe G. Geometrisch nichtlineare berechnung von räumlichen stabwerken. Technical Report 28, Institut für Statik, Universität Hannover (1982). Lumpe G. Geometrisch nichtlineare berechnung von räumlichen stabwerken. Technical Report 28, Institut für Statik, Universität Hannover (1982).
Zurück zum Zitat Miehe, C. 1998. A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Computer Methods in Applied Mechanics and Engineering 155: 193–233.MathSciNetCrossRefMATH Miehe, C. 1998. A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Computer Methods in Applied Mechanics and Engineering 155: 193–233.MathSciNetCrossRefMATH
Zurück zum Zitat Onate, E., and M. Cervera. 1993. Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle. Engineering computations 10(6): 543–561.CrossRef Onate, E., and M. Cervera. 1993. Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle. Engineering computations 10(6): 543–561.CrossRef
Zurück zum Zitat Oran, C., and A. Kassimali. 1976. Large deformations of framed structures under static and dynamic loads. Computers and Structures 6: 539–547.CrossRefMATH Oran, C., and A. Kassimali. 1976. Large deformations of framed structures under static and dynamic loads. Computers and Structures 6: 539–547.CrossRefMATH
Zurück zum Zitat Pimenta, P., and T. Yojo. 1993. Geometrically exact analysis of spatial frames. Applied Mechanics Review 46: 118–128.CrossRef Pimenta, P., and T. Yojo. 1993. Geometrically exact analysis of spatial frames. Applied Mechanics Review 46: 118–128.CrossRef
Zurück zum Zitat Pimenta, P.M., E.M.B. Campello, and P. Wriggers. 2004. A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element formulation. Computational Mechanics 34: 181–193.CrossRefMATH Pimenta, P.M., E.M.B. Campello, and P. Wriggers. 2004. A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element formulation. Computational Mechanics 34: 181–193.CrossRefMATH
Zurück zum Zitat Ramm E. 1976. Geometrisch nichtlineare Elastostatik und Finite Elemente. Technical Report Nr. 76-2, Institut für Baustatik der Universität Stuttgart. Ramm E. 1976. Geometrisch nichtlineare Elastostatik und Finite Elemente. Technical Report Nr. 76-2, Institut für Baustatik der Universität Stuttgart.
Zurück zum Zitat Rankin, C.C., and F.A. Brogan. 1984. An element independent corotational procedure for the treatment of large roations. In Collapse analysis of structures, ed. L.H. Sobel, and K. Thomas, 85–100. New York: ASME. Rankin, C.C., and F.A. Brogan. 1984. An element independent corotational procedure for the treatment of large roations. In Collapse analysis of structures, ed. L.H. Sobel, and K. Thomas, 85–100. New York: ASME.
Zurück zum Zitat Reissner, E. 1972. On one-dimensional finite strain beam theory, the plane problem. Journal of Applied Mathematics and Physics 23: 795–804.CrossRefMATH Reissner, E. 1972. On one-dimensional finite strain beam theory, the plane problem. Journal of Applied Mathematics and Physics 23: 795–804.CrossRefMATH
Zurück zum Zitat Roehl, D., and E. Ramm. 1996. Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. International Journal of Solids & Structures 33: 3215–3237.MathSciNetCrossRefMATH Roehl, D., and E. Ramm. 1996. Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. International Journal of Solids & Structures 33: 3215–3237.MathSciNetCrossRefMATH
Zurück zum Zitat Romero, I., and F. Armero. 2002. An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. International Journal for Numerical Methods in Engineering 54: 1683–1716.MathSciNetCrossRefMATH Romero, I., and F. Armero. 2002. An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. International Journal for Numerical Methods in Engineering 54: 1683–1716.MathSciNetCrossRefMATH
Zurück zum Zitat Sansour, C. 1995. A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Ingenieur-Archiv 65: 194–216.MATH Sansour, C. 1995. A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Ingenieur-Archiv 65: 194–216.MATH
Zurück zum Zitat Schoop, H. 1986. Oberflächenorientierte Schalentheorien endlicher Verschiebungen. Ingenieur-Archiv 56: 427–437.CrossRefMATH Schoop, H. 1986. Oberflächenorientierte Schalentheorien endlicher Verschiebungen. Ingenieur-Archiv 56: 427–437.CrossRefMATH
Zurück zum Zitat Seifert B. 1996. Zur Theorie und Numerik Finiter Elastoplastischer Deformationen von Schalenstrukturen. Dissertation, Institut für Baumechanik und Numerische Mechanik der Universität Hannover. Bericht Nr. F 96/2. Seifert B. 1996. Zur Theorie und Numerik Finiter Elastoplastischer Deformationen von Schalenstrukturen. Dissertation, Institut für Baumechanik und Numerische Mechanik der Universität Hannover. Bericht Nr. F 96/2.
Zurück zum Zitat Simo, J.C. 1985. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering 49: 55–70.CrossRefMATH Simo, J.C. 1985. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering 49: 55–70.CrossRefMATH
Zurück zum Zitat Simo, J.C., and L. Vu-Quoc. 1986. Three dimensional finite strain rod model. Part II: computational aspects. Computer Methods in Applied Mechanics and Engineering 58: 79–116.CrossRefMATH Simo, J.C., and L. Vu-Quoc. 1986. Three dimensional finite strain rod model. Part II: computational aspects. Computer Methods in Applied Mechanics and Engineering 58: 79–116.CrossRefMATH
Zurück zum Zitat Simo J.C., Fox D.D., Rifai M.S. 1989. Formulation and optimal parametrization. 1989. On a stress resultant geometrical exact shell model. Part I. Computer Methods in Applied Mechanics and Engineering 72: 267–304. Simo J.C., Fox D.D., Rifai M.S. 1989. Formulation and optimal parametrization. 1989. On a stress resultant geometrical exact shell model. Part I. Computer Methods in Applied Mechanics and Engineering 72: 267–304.
Zurück zum Zitat Simo J.C., Fox D.D., Rifai M.S. 1990a. Computer Methods in Applied Mechanics and Engineering. On a stress resultant geometrical exact shell model. Part III. 79: 21–70. Simo J.C., Fox D.D., Rifai M.S. 1990a. Computer Methods in Applied Mechanics and Engineering. On a stress resultant geometrical exact shell model. Part III. 79: 21–70.
Zurück zum Zitat Simo, J.C., M.S. Rifai, and D.D. Fox. 1990b. On a stress resultant reometrically exact shell model. Part IV. Variable thickness shells with through-the-tickness stretching. Computer Methods in Applied Mechanics and Engineering 81: 91–126. Simo, J.C., M.S. Rifai, and D.D. Fox. 1990b. On a stress resultant reometrically exact shell model. Part IV. Variable thickness shells with through-the-tickness stretching. Computer Methods in Applied Mechanics and Engineering 81: 91–126.
Zurück zum Zitat Soric, J., U. Montag, and W.B. Krätzig. 1997. An efficient formulation of integration algorithms for elastoplastic shell analysis based on layered finite element approach. Computer Methods in Applied Mechanics and Engineering 148: 315–328.CrossRefMATH Soric, J., U. Montag, and W.B. Krätzig. 1997. An efficient formulation of integration algorithms for elastoplastic shell analysis based on layered finite element approach. Computer Methods in Applied Mechanics and Engineering 148: 315–328.CrossRefMATH
Zurück zum Zitat Wagner, W., S. Klinkel, and F. Gruttmann. 2002. Elastic and plastic analysis of thin-walled structures using improved hexahedral elements. Computers and Structures 80(9–10): 857–869.CrossRef Wagner, W., S. Klinkel, and F. Gruttmann. 2002. Elastic and plastic analysis of thin-walled structures using improved hexahedral elements. Computers and Structures 80(9–10): 857–869.CrossRef
Zurück zum Zitat Wempner, G. 1969. Finite elements, finite roataions and small strains of flexible shells. International Journal of Solids & Structures 5: 117–153.CrossRefMATH Wempner, G. 1969. Finite elements, finite roataions and small strains of flexible shells. International Journal of Solids & Structures 5: 117–153.CrossRefMATH
Zurück zum Zitat Wriggers, P., and F. Gruttmann. 1989. Large deformations of thin shells: Theory and finite-element- discretization, analytical and computational models of shells. In ASME, CED-Vol.3, vol. 135–159, ed. A.K. Noor, T. Belytschko, and J.C. Simo. Wriggers, P., and F. Gruttmann. 1989. Large deformations of thin shells: Theory and finite-element- discretization, analytical and computational models of shells. In ASME, CED-Vol.3, vol. 135–159, ed. A.K. Noor, T. Belytschko, and J.C. Simo.
Zurück zum Zitat Wriggers, P., R. Eberlein, and S. Reese. 1996. Comparison between shell and 3d-elements in finite plasticity. International Journal of Solids & Structures 33: 3309–3326.CrossRefMATH Wriggers, P., R. Eberlein, and S. Reese. 1996. Comparison between shell and 3d-elements in finite plasticity. International Journal of Solids & Structures 33: 3309–3326.CrossRefMATH
Zurück zum Zitat Wriggers, P., and F. Gruttmann. 1993. Thin shells with finite rotations formulated in biot stresses theory and finite-element-formulation. International Journal for Numerical Methods in Engineering 36: 2049–2071.CrossRefMATH Wriggers, P., and F. Gruttmann. 1993. Thin shells with finite rotations formulated in biot stresses theory and finite-element-formulation. International Journal for Numerical Methods in Engineering 36: 2049–2071.CrossRefMATH
Zurück zum Zitat Zienkiewicz, O.C., and R.L. Taylor. 2000b. The Finite Element Method, vol. 1, 5th ed. Oxford, UK: Butterworth-Heinemann. Zienkiewicz, O.C., and R.L. Taylor. 2000b. The Finite Element Method, vol. 1, 5th ed. Oxford, UK: Butterworth-Heinemann.
Metadaten
Titel
Structural Elements
verfasst von
Jože Korelc
Peter Wriggers
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-39005-5_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.