Skip to main content

2019 | OriginalPaper | Buchkapitel

10. Structural Properties of Bi Containing InP Films Explored by Cross-Sectional Scanning

verfasst von : C. M. Krammel, P. M. Koenraad, M. Roy, P. A. Maksym, Shumin Wang

Erschienen in: Bismuth-Containing Alloys and Nanostructures

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural properties of highly mismatched III-V semiconductors with small amounts of Bi are still not well understood at the atomic level. In this chapter, the potential of cross-sectional scanning tunneling microscopy (X-STM) to address these questions is reviewed. Special attention is paid to the X-STM contrast of isovalent impurities in the III-V system, which is discussed on the basis of theoretical STM images of the (110) surface using density functional theory (DFT) calculations. By comparing high-resolution X-STM images with complementary DFT calculations, Bi atoms down to the third monolayer below the InP (110) surface are identified. With this information, the Short-range ordering of Bi is studied, which reveals a strong tendency toward Bi pairing and clustering. In addition, the occurrence of Bi surface segregation at the interfaces of an InP/InP\(_{1-x}\)Bi\(_{x}\)/InP quantum well with a Bi concentration of \(2.4~\%\) is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III-V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005) Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III-V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)
2.
Zurück zum Zitat Z. Batool et al., The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)CrossRef Z. Batool et al., The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)CrossRef
3.
Zurück zum Zitat X. Chen et al, Effects of Bi on band gap bowing in \({\rm InP}_{1-x}{\rm Bi}_x\) alloys. Opt. Mater. Express 8, 1184 (2018)CrossRef X. Chen et al, Effects of Bi on band gap bowing in \({\rm InP}_{1-x}{\rm Bi}_x\) alloys. Opt. Mater. Express 8, 1184 (2018)CrossRef
4.
Zurück zum Zitat C.A. Broderick, M. Usman, E.P. O’Reilly. Theory of the electronic structure of dilute bismide alloys: tight-binding and k\(\cdot \)p models. in Bismuth-Containing Compounds. Ed. by H. Li, Z.M. Wang (Springer, New York, 2013), p. 55. ISBN: 978-1-4614-8121-8 C.A. Broderick, M. Usman, E.P. O’Reilly. Theory of the electronic structure of dilute bismide alloys: tight-binding and k\(\cdot \)p models. in Bismuth-Containing Compounds. Ed. by H. Li, Z.M. Wang (Springer, New York, 2013), p. 55. ISBN: 978-1-4614-8121-8
5.
Zurück zum Zitat K. Wang et al., InPBi single crystals grown by molecular beam epitaxy. Sci. Rep. 4, 5449 (2014) K. Wang et al., InPBi single crystals grown by molecular beam epitaxy. Sci. Rep. 4, 5449 (2014)
6.
Zurück zum Zitat K. Alberi et al., Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B. 75, 045203 (2007) K. Alberi et al., Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B. 75, 045203 (2007)
7.
Zurück zum Zitat C.M. Krammel et al., Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy. Phys. Rev. Mater. 1, 034606 (2017) C.M. Krammel et al., Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy. Phys. Rev. Mater. 1, 034606 (2017)
8.
Zurück zum Zitat S. Francoeur et al., Band gap of \({\rm GaAs}_{1-x}{\rm Bi}_x, 0 < x <\) 3:6% Lett. 82, 3874 (2003) S. Francoeur et al., Band gap of \({\rm GaAs}_{1-x}{\rm Bi}_x, 0 < x <\) 3:6% Lett. 82, 3874 (2003)
9.
Zurück zum Zitat S. Tixier et al., Molecular beam epitaxy growth of \({\rm GaAs}_{1-x}{\rm Bi}_x\). Appl. Phys. Lett. 82, 2245 (2003)CrossRef S. Tixier et al., Molecular beam epitaxy growth of \({\rm GaAs}_{1-x}{\rm Bi}_x\). Appl. Phys. Lett. 82, 2245 (2003)CrossRef
10.
Zurück zum Zitat D.L. Sales et al., Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)CrossRef D.L. Sales et al., Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)CrossRef
11.
Zurück zum Zitat G. Ciatto et al., Spatial correlation between Bi atoms in dilute \({\rm GaAs}_{1-x}{\rm Bi}_x\): from random distribution to Bi pairing and clustering. Phys. Rev. B. 78, 035325 (2008) G. Ciatto et al., Spatial correlation between Bi atoms in dilute \({\rm GaAs}_{1-x}{\rm Bi}_x\): from random distribution to Bi pairing and clustering. Phys. Rev. B. 78, 035325 (2008)
12.
Zurück zum Zitat C.M. Krammel., Atomic scale investigation of isovalent impurities and nanostructures in III-V semiconductors. PhD thesis. (2018) C.M. Krammel., Atomic scale investigation of isovalent impurities and nanostructures in III-V semiconductors. PhD thesis. (2018)
13.
Zurück zum Zitat F.J. Tilley et al., Scanning tunneling microscopy contrast of isovalent impurities on the GaAs (110) surface explained with a geometrical model. Phys. Rev. B. 93, 035313 (2016) F.J. Tilley et al., Scanning tunneling microscopy contrast of isovalent impurities on the GaAs (110) surface explained with a geometrical model. Phys. Rev. B. 93, 035313 (2016)
14.
Zurück zum Zitat R.M. Feenstra, A.P. Fein, Scanning tunneling microscopy of cleaved semiconductor surfaces. IBM J. Res. Develop. 30, 466 (1986)CrossRef R.M. Feenstra, A.P. Fein, Scanning tunneling microscopy of cleaved semiconductor surfaces. IBM J. Res. Develop. 30, 466 (1986)CrossRef
15.
Zurück zum Zitat J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26.6, 064001 (2011)CrossRef J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26.6, 064001 (2011)CrossRef
16.
Zurück zum Zitat A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80.1, 1 (2005)CrossRef A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80.1, 1 (2005)CrossRef
17.
Zurück zum Zitat E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)CrossRef E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)CrossRef
18.
Zurück zum Zitat R.S. Goldman, nanoprobing of semiconductor heterointerfaces: quantum dots, alloys and diffusion. J. Phys. D: Appl. Phys. 37, R163 (2004)CrossRef R.S. Goldman, nanoprobing of semiconductor heterointerfaces: quantum dots, alloys and diffusion. J. Phys. D: Appl. Phys. 37, R163 (2004)CrossRef
19.
Zurück zum Zitat J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26, 064001 (2011)CrossRef J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26, 064001 (2011)CrossRef
20.
Zurück zum Zitat R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, 1994), p. 109. ISBN: 9780521428477 R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, 1994), p. 109. ISBN: 9780521428477
21.
Zurück zum Zitat C.J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford Series in Optical and Imaging Sciences (Oxford University Press, 1993). ISBN: 9780198023562 C.J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford Series in Optical and Imaging Sciences (Oxford University Press, 1993). ISBN: 9780198023562
22.
Zurück zum Zitat J.A. Stroscio, W.J. Kaiser, Scanning Tunneling Microscopy (Elsevier Science, Methods of Experimental Physics, 1993). ISBN 9780080860152 J.A. Stroscio, W.J. Kaiser, Scanning Tunneling Microscopy (Elsevier Science, Methods of Experimental Physics, 1993). ISBN 9780080860152
23.
Zurück zum Zitat H. Ye et al., Relaxation models of the (110) zinc-blende III-V semiconductor surfaces: density functional study. Phys. Rev. B 78, 193308 (2008) H. Ye et al., Relaxation models of the (110) zinc-blende III-V semiconductor surfaces: density functional study. Phys. Rev. B 78, 193308 (2008)
24.
Zurück zum Zitat J.R. Chelikowsky, M.L. Cohen, Self-consistent pseudopotential calculation for the relaxed (110) surface of GaAs. Phys. Rev. B 20, 4150 (1979) J.R. Chelikowsky, M.L. Cohen, Self-consistent pseudopotential calculation for the relaxed (110) surface of GaAs. Phys. Rev. B 20, 4150 (1979)
25.
Zurück zum Zitat Ph. Ebert et al., Contribution of surface resonances to scanning tunneling microscopy images: (110) surfaces of III-V semiconductors. Phys. Rev. Lett. 77, 2997 (1996)CrossRef Ph. Ebert et al., Contribution of surface resonances to scanning tunneling microscopy images: (110) surfaces of III-V semiconductors. Phys. Rev. Lett. 77, 2997 (1996)CrossRef
26.
Zurück zum Zitat B. Engels et al., Comparison between ab initio theory and scanning tunneling microscopy for (110) surfaces of III-V semiconductors. Phys. Rev. B 58, 7799 (1998) B. Engels et al., Comparison between ab initio theory and scanning tunneling microscopy for (110) surfaces of III-V semiconductors. Phys. Rev. B 58, 7799 (1998)
27.
Zurück zum Zitat R.M. Feenstra et al., Atom-selective imaging of the GaAs(110) surface. Phys. Rev. Lett. 58, 1192 (1987)CrossRef R.M. Feenstra et al., Atom-selective imaging of the GaAs(110) surface. Phys. Rev. Lett. 58, 1192 (1987)CrossRef
28.
Zurück zum Zitat H.A. McKay et al., Distribution of nitrogen atoms in dilute GaAsN and InGaAsN alloys studied by scanning tunneling microscopy. J. Vac. Sci. & Technol. B 19, 1644 (2001) H.A. McKay et al., Distribution of nitrogen atoms in dilute GaAsN and InGaAsN alloys studied by scanning tunneling microscopy. J. Vac. Sci. & Technol. B 19, 1644 (2001)
29.
Zurück zum Zitat A.Y. Lew et al. Characterization of arsenide/phosphide heterostructure interfaces grown by gassource molecular beam epitaxy. Appl. Phys. Lett. 67, 932 (1995)CrossRef A.Y. Lew et al. Characterization of arsenide/phosphide heterostructure interfaces grown by gassource molecular beam epitaxy. Appl. Phys. Lett. 67, 932 (1995)CrossRef
30.
Zurück zum Zitat R. Timm et al., Contrast mechanisms in cross-sectional scanning tunneling microscopy of GaSb/GaAs type-II nanostructures. J. Appl. Phys. 105, 093718 (2009)CrossRef R. Timm et al., Contrast mechanisms in cross-sectional scanning tunneling microscopy of GaSb/GaAs type-II nanostructures. J. Appl. Phys. 105, 093718 (2009)CrossRef
31.
Zurück zum Zitat H.W.M. Salemink, M.B. Johnson, O. Albrektsen, Crosssectional scanning tunneling microscopy on heterostructures: atomic resolution, composition fluctuations and doping. J. Vac. Sci. & Technol. B 12, 362 (1994) H.W.M. Salemink, M.B. Johnson, O. Albrektsen, Crosssectional scanning tunneling microscopy on heterostructures: atomic resolution, composition fluctuations and doping. J. Vac. Sci. & Technol. B 12, 362 (1994)
32.
Zurück zum Zitat A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80, 1 (2005)CrossRef A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80, 1 (2005)CrossRef
33.
Zurück zum Zitat E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)CrossRef E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)CrossRef
34.
Zurück zum Zitat X. Wu et al., Anomalous photoluminescence in \({\rm InP}_{1-x}{\rm Bi}_x\). Sci. Rep. 27867 (2016) X. Wu et al., Anomalous photoluminescence in \({\rm InP}_{1-x}{\rm Bi}_x\). Sci. Rep. 27867 (2016)
35.
Zurück zum Zitat L. Gelczuk et al., Bi-induced acceptor level responsible for partial compensation of native free electron density in InP 1 x Bi x dilute bismide alloys. J. Phys. D: Appl. Phys. 49, 115107 (2016)CrossRef L. Gelczuk et al., Bi-induced acceptor level responsible for partial compensation of native free electron density in InP 1 x Bi x dilute bismide alloys. J. Phys. D: Appl. Phys. 49, 115107 (2016)CrossRef
36.
Zurück zum Zitat S. Tixier et al., Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth. 251, 449 (2003)CrossRef S. Tixier et al., Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth. 251, 449 (2003)CrossRef
37.
Zurück zum Zitat M.R. Pillai et al., Growth of \({\rm In}_x{\rm Ga}_{1x}{\rm As/GaAs}\) heterostructures using Bi as a surfactant. J. Vac. Sci. & Technol. B. 18, 1232 (2000) M.R. Pillai et al., Growth of \({\rm In}_x{\rm Ga}_{1x}{\rm As/GaAs}\) heterostructures using Bi as a surfactant. J. Vac. Sci. & Technol. B. 18, 1232 (2000)
38.
Zurück zum Zitat K. Muraki et al., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992) K. Muraki et al., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992)
39.
Zurück zum Zitat M.A. Berding et al., Structural properties of bismuth-bearing semiconductor alloys. J. Appl. Phys. 63, 107 (1988)CrossRef M.A. Berding et al., Structural properties of bismuth-bearing semiconductor alloys. J. Appl. Phys. 63, 107 (1988)CrossRef
40.
Zurück zum Zitat L. Dominguez et al., Formation of tetragonal InBi clusters in InAsBi/InAs (100) heterostructures grown by molecular beam epitaxy. Appl. Phys. Exp. 6, 112601 (2013)CrossRef L. Dominguez et al., Formation of tetragonal InBi clusters in InAsBi/InAs (100) heterostructures grown by molecular beam epitaxy. Appl. Phys. Exp. 6, 112601 (2013)CrossRef
Metadaten
Titel
Structural Properties of Bi Containing InP Films Explored by Cross-Sectional Scanning
verfasst von
C. M. Krammel
P. M. Koenraad
M. Roy
P. A. Maksym
Shumin Wang
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8078-5_10

Neuer Inhalt