Skip to main content

2023 | OriginalPaper | Buchkapitel

Structural Seismic Applications of Shape Memory Alloys: A Review

verfasst von : A. Kandola, J. Wong, J. Bhandher, K. Cowan, S. Aldabagh

Erschienen in: Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape memory alloys (SMAs) are metallic materials that possess superelastic properties and can undergo large deformations. There are mainly two types of SMAs that are commercially available in the market: NiTi-based alloys and Cu-based alloys, with the first being the most common. SMAs have the ability to return to their pre-deformed state through heating or stress removal due to a phase change in the material. Such service-mechanical properties are commonly known as shape memory effect, superelasticity, and hysteretic damping. SMAs are also known to have high-cycle fatigue resistance, corrosion resistance as well as high strength. Superelastic SMAs undergoing cyclic loading experience austenite–martensite phase transformations in its hysteresis. During the phase change, the elastic properties of the SMA increase. Through building and design, research and use of shape memory alloys have started to become more prevalent, including applications in structures located in seismic regions. The objective of this paper is to provide an overview of the applications of shape memory alloys in seismic-force-resisting elements of buildings and bridges in seismic regions. Several studies suggest that SMA technology significantly enhances the resistance to seismic loads and improves life cycle performance in structures. This makes SMA a promising alternative to conventional reinforcing steel since from the history of past earthquakes, civil infrastructures built across the world have proven to be susceptible to significant damage. Although the cost of SMA is higher compared to conventional construction material, implementing it into the structural design will resist drastic permanent deformations from seismic related activity and could prove to be beneficial considering the life cycle cost of the structure. Considering its superior self-centering property, there are many opportunities to investigate the use of SMA’s in civil structures in seismic regions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abraik EA (2020) seismic performance of superelastic shape memory alloy reinforced concrete shear wall systems. Electron Thesis Dissertation Repository 6752 Abraik EA (2020) seismic performance of superelastic shape memory alloy reinforced concrete shear wall systems. Electron Thesis Dissertation Repository 6752
2.
Zurück zum Zitat Abraik EA, Youssef MA (2015) Cyclic performance of shape memory alloy reinforced concrete walls Abraik EA, Youssef MA (2015) Cyclic performance of shape memory alloy reinforced concrete walls
3.
Zurück zum Zitat Abdulridha A, Palermo D (2017) Behaviour and modelling of hybrid SMA-steel reinforced concrete slender shear wall. Eng Struct 147:77–89CrossRef Abdulridha A, Palermo D (2017) Behaviour and modelling of hybrid SMA-steel reinforced concrete slender shear wall. Eng Struct 147:77–89CrossRef
4.
Zurück zum Zitat ACI Committee 318 (2005) Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Farmington Hills MI, USA ACI Committee 318 (2005) Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Farmington Hills MI, USA
5.
Zurück zum Zitat Alam MS, Nehdi M, Youssef MA (2009) Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys. Smart Struct Syst 5(5):565–585CrossRef Alam MS, Nehdi M, Youssef MA (2009) Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys. Smart Struct Syst 5(5):565–585CrossRef
6.
Zurück zum Zitat Alam MS, Nehdi M, Youssef MA (2008) Shape memory alloy-based smart RC bridge: overview of state-of-the-art. Smart Struct Syst 4(3):367–389CrossRef Alam MS, Nehdi M, Youssef MA (2008) Shape memory alloy-based smart RC bridge: overview of state-of-the-art. Smart Struct Syst 4(3):367–389CrossRef
7.
Zurück zum Zitat Alam MS, Youssef MA, Nehdi M (2007) Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review. Can J Civ Eng 34(9):1075–1086CrossRef Alam MS, Youssef MA, Nehdi M (2007) Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review. Can J Civ Eng 34(9):1075–1086CrossRef
8.
Zurück zum Zitat Asgarian B, Moradi S (2011) Seismic response of steel braced frames with shape memory alloy braces. J Constr Steel Res 67(1):65–74CrossRef Asgarian B, Moradi S (2011) Seismic response of steel braced frames with shape memory alloy braces. J Constr Steel Res 67(1):65–74CrossRef
9.
Zurück zum Zitat Baker T, Saiidi MS, Nakashoji B, Bingle J, Moore T, Khaleghi B (2018) Precast concrete spliced-girder bridge in Washington State using superelastic materials in bridge columns to improve seismic resiliency: from research to practice. PCI J 63(1):57–71CrossRef Baker T, Saiidi MS, Nakashoji B, Bingle J, Moore T, Khaleghi B (2018) Precast concrete spliced-girder bridge in Washington State using superelastic materials in bridge columns to improve seismic resiliency: from research to practice. PCI J 63(1):57–71CrossRef
10.
Zurück zum Zitat Barnes C (1999) Shape memory and superelastic alloys. In: Innovations: shape memory and superelastic alloys Barnes C (1999) Shape memory and superelastic alloys. In: Innovations: shape memory and superelastic alloys
11.
Zurück zum Zitat Billah AM, Alam MS (2016) Performance-based seismic design of shape memory alloy–reinforced concrete bridge piers. I: development of performance-based damage states. J Struct Eng 142(12):04016140 Billah AM, Alam MS (2016) Performance-based seismic design of shape memory alloy–reinforced concrete bridge piers. I: development of performance-based damage states. J Struct Eng 142(12):04016140
12.
Zurück zum Zitat Billah AM, Shahria Alam M (2016) Performance-based seismic design of shape memory alloy–reinforced concrete bridge piers. II: methodology and design example. J Struct Eng 142(12):04016141 Billah AM, Shahria Alam M (2016) Performance-based seismic design of shape memory alloy–reinforced concrete bridge piers. II: methodology and design example. J Struct Eng 142(12):04016141
13.
Zurück zum Zitat Billah AHMM, Alam MS (2017) Probabilistic seismic risk assessment of concrete bridge piers reinforced with different types of shape memory alloys. Eng Struct 162:97–108CrossRef Billah AHMM, Alam MS (2017) Probabilistic seismic risk assessment of concrete bridge piers reinforced with different types of shape memory alloys. Eng Struct 162:97–108CrossRef
14.
Zurück zum Zitat Chang W, Araki Y (2016) Use of shape-memory alloys in construction: a critical review. ICE Proc Civ Eng 169(2):87–95 Chang W, Araki Y (2016) Use of shape-memory alloys in construction: a critical review. ICE Proc Civ Eng 169(2):87–95
15.
Zurück zum Zitat Chowdhury MA, Rahmzadeh A, Alam MS (2019) Feasibility of using reduced length superelastic shape memory alloy strands in post-tensioned steel beam-column connections. J Intell Mater Syst Struct 30(2):283–307CrossRef Chowdhury MA, Rahmzadeh A, Alam MS (2019) Feasibility of using reduced length superelastic shape memory alloy strands in post-tensioned steel beam-column connections. J Intell Mater Syst Struct 30(2):283–307CrossRef
16.
Zurück zum Zitat Chowdhury MA, Rahmzadeh A, Alam MS (2019) Improving the seismic performance of post-tensioned self-centering connections using SMA angles or end plates with SMA bolts. Smart Mater Struct 28(7):075044 Chowdhury MA, Rahmzadeh A, Alam MS (2019) Improving the seismic performance of post-tensioned self-centering connections using SMA angles or end plates with SMA bolts. Smart Mater Struct 28(7):075044
17.
Zurück zum Zitat Costantino M, Ferdinando A, Domenico A (2015) Applications of shape memory alloys in structural engineering. Shape Mem Alloy Eng, Chapter 13: 369–403 Costantino M, Ferdinando A, Domenico A (2015) Applications of shape memory alloys in structural engineering. Shape Mem Alloy Eng, Chapter 13: 369–403
18.
Zurück zum Zitat Dolce M, Cardone D, Marnetto R (2000) Implementation and testing of passive control devices based on shape memory alloys. Earthquake Eng Struct Dynam 29(7):945–968CrossRef Dolce M, Cardone D, Marnetto R (2000) Implementation and testing of passive control devices based on shape memory alloys. Earthquake Eng Struct Dynam 29(7):945–968CrossRef
19.
Zurück zum Zitat Ferraioli M, Nuzzo D, Concilio A, Ameduri S (2019) Shape memory alloys for earthquake building protection. In: SPIE smart structures + nondestructive evaluation, Denver, CO, vol 10970, pp 60–79 Ferraioli M, Nuzzo D, Concilio A, Ameduri S (2019) Shape memory alloys for earthquake building protection. In: SPIE smart structures + nondestructive evaluation, Denver, CO, vol 10970, pp 60–79
20.
Zurück zum Zitat Ge J, Saiidi MS (2018) Seismic response of the three-span bridge with innovative materials including fault-rupture effect. Hindawi 2018(3):1–18 Ge J, Saiidi MS (2018) Seismic response of the three-span bridge with innovative materials including fault-rupture effect. Hindawi 2018(3):1–18
21.
Zurück zum Zitat Ghassemieh M, Kargarmoakhar R (2013) Response modification factor of steel frames utilizing shape memory alloys. J Intell Mater Syst Struct Ghassemieh M, Kargarmoakhar R (2013) Response modification factor of steel frames utilizing shape memory alloys. J Intell Mater Syst Struct
22.
Zurück zum Zitat Ghassemieh M, Mostafazadeh M, Sadeh MS (2012) Seismic control of concrete shear wall using shape memory alloys. J Intell Mater Syst Struct 23(5):535–543CrossRef Ghassemieh M, Mostafazadeh M, Sadeh MS (2012) Seismic control of concrete shear wall using shape memory alloys. J Intell Mater Syst Struct 23(5):535–543CrossRef
23.
Zurück zum Zitat Issa AS, Alam MS (2019) Experimental and numerical study on the seismic performance of a self-centering bracing system using closed-loop dynamic testing. Eng Struct 195:144–158CrossRef Issa AS, Alam MS (2019) Experimental and numerical study on the seismic performance of a self-centering bracing system using closed-loop dynamic testing. Eng Struct 195:144–158CrossRef
24.
Zurück zum Zitat Jung D, Deogekar P, Andrawes B (2019) Seismic performance of bridges with high strength concrete columns reinforced with SMA-FRP jackets. Smart Mater Struct 28(3) Jung D, Deogekar P, Andrawes B (2019) Seismic performance of bridges with high strength concrete columns reinforced with SMA-FRP jackets. Smart Mater Struct 28(3)
25.
Zurück zum Zitat Kabir R, Alam S, Said A, Ayad A (2016) Performance of hybrid reinforced concrete beam column joint: a critical review. Fibers 4(2):13CrossRef Kabir R, Alam S, Said A, Ayad A (2016) Performance of hybrid reinforced concrete beam column joint: a critical review. Fibers 4(2):13CrossRef
26.
Zurück zum Zitat Karamichailidou S (2016) The unique properties, manufacturing processes and applications of near equatomic Ni-Ti alloys 1–35 Karamichailidou S (2016) The unique properties, manufacturing processes and applications of near equatomic Ni-Ti alloys 1–35
27.
Zurück zum Zitat Ma HW, Cho CD (2007) Application of superelasticity of SMAs in bolted end-plate connection. Key Eng Mater 353–358:3039–3042CrossRef Ma HW, Cho CD (2007) Application of superelasticity of SMAs in bolted end-plate connection. Key Eng Mater 353–358:3039–3042CrossRef
28.
Zurück zum Zitat Miller DJ, Fahnestock LA, Eatherton MR (2011) Self-centering buckling-restrained braces for advanced seismic performance. In: Structures congress, ASCE, Las Vegas, Nevada, United States, vol 1, pp 960–970 Miller DJ, Fahnestock LA, Eatherton MR (2011) Self-centering buckling-restrained braces for advanced seismic performance. In: Structures congress, ASCE, Las Vegas, Nevada, United States, vol 1, pp 960–970
29.
Zurück zum Zitat Moradi S, Alam MS, Asgarian B (2014) Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces. Struct Design Tall Spec Build 23(18):1406–1425CrossRef Moradi S, Alam MS, Asgarian B (2014) Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces. Struct Design Tall Spec Build 23(18):1406–1425CrossRef
30.
Zurück zum Zitat Moradi S, Alam MS (2015) Feasibility study of utilizing superelastic shape memory alloy plates in steel beam-column connections for improved seismic performance. J Intell Mater Syst Struct 26(4):463–465CrossRef Moradi S, Alam MS (2015) Feasibility study of utilizing superelastic shape memory alloy plates in steel beam-column connections for improved seismic performance. J Intell Mater Syst Struct 26(4):463–465CrossRef
31.
Zurück zum Zitat Saiidi M, Zadeh M, O’Brien M (2006) Analysis of reinforced concrete bridge columns with shape memory alloy and engineered cementitious composites under cyclic loads. In: 3rd International conference on bridge maintenance, safety and management—bridge maintenance, safety, management, life-cycle performance and cost, Taylor and Francis/Balkema, Porto, Portugal, vol 1 pp 623–624 Saiidi M, Zadeh M, O’Brien M (2006) Analysis of reinforced concrete bridge columns with shape memory alloy and engineered cementitious composites under cyclic loads. In: 3rd International conference on bridge maintenance, safety and management—bridge maintenance, safety, management, life-cycle performance and cost, Taylor and Francis/Balkema, Porto, Portugal, vol 1 pp 623–624
32.
Zurück zum Zitat Sajja S (2012) A study of the reduced-order John Shaw SMA model and its extension for control applications. University of Waterloo, 6–11 Sajja S (2012) A study of the reduced-order John Shaw SMA model and its extension for control applications. University of Waterloo, 6–11
33.
Zurück zum Zitat Shahnewaz M, Alam MS (2015) Seismic performance of reinforced concrete wall with superelastic shape memory alloy rebar. Struct Congr 2015:2230–2240 Shahnewaz M, Alam MS (2015) Seismic performance of reinforced concrete wall with superelastic shape memory alloy rebar. Struct Congr 2015:2230–2240
34.
Zurück zum Zitat Watkins RT, Shaw JA (2018) Unbuckling of superelastic shape memory alloy columns. J Intell Mater Syst Struct 29(7):1360–1378CrossRef Watkins RT, Shaw JA (2018) Unbuckling of superelastic shape memory alloy columns. J Intell Mater Syst Struct 29(7):1360–1378CrossRef
35.
Zurück zum Zitat Wesolowsky MJ, Wilson JC (2004) Controlling seismic response with shape memory alloy devices. In: 13th World conference on earthquake engineering, Vancouver BC Wesolowsky MJ, Wilson JC (2004) Controlling seismic response with shape memory alloy devices. In: 13th World conference on earthquake engineering, Vancouver BC
36.
Zurück zum Zitat Xiaowei H, Yinong L, Fangmin G, Kaiyuan Y, Daqiang J, Yang R, Hong Y, Lishan C (2021) Enhanced superelasticity of nanocrystalline NiTi/NiTiNbFe laminar composite. J Alloys Compd 853:157309 Xiaowei H, Yinong L, Fangmin G, Kaiyuan Y, Daqiang J, Yang R, Hong Y, Lishan C (2021) Enhanced superelasticity of nanocrystalline NiTi/NiTiNbFe laminar composite. J Alloys Compd 853:157309
37.
Zurück zum Zitat Xiu L, Li J, Tsang H, Wilson J (2018) Enhancing seismic performance of unbonded prestressed concrete bridge column using superelastic shape memory alloy. Sage J 29(15):3082–3096 Xiu L, Li J, Tsang H, Wilson J (2018) Enhancing seismic performance of unbonded prestressed concrete bridge column using superelastic shape memory alloy. Sage J 29(15):3082–3096
38.
Zurück zum Zitat Youssef MA, Alam MS, Nehdi M (2008) Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys. J Earthquake Eng 12(7):1205–1222CrossRef Youssef MA, Alam MS, Nehdi M (2008) Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys. J Earthquake Eng 12(7):1205–1222CrossRef
Metadaten
Titel
Structural Seismic Applications of Shape Memory Alloys: A Review
verfasst von
A. Kandola
J. Wong
J. Bhandher
K. Cowan
S. Aldabagh
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-1004-3_24