Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2020

01.07.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure–Phase Transformations and Properties of Non-Ferrous Metals and Alloys under Extreme Conditions

verfasst von: I. G. Brodova, V. I. Zel’dovich, I. V. Khomskaya

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—The review presents the original experimental data on the structure formation and properties of titanium, aluminum, copper, and their alloys upon intense deformation and shock-wave conditions. The main volume of the article is devoted to the production of the submicrocrystalline and nanocrystalline non-ferrous metals and alloys by dynamic channel-angular pressing. The optimal regimes of DCAP which make it possible to obtain high-quality bulk samples without surface defects were determined for the each material. The changes in the morphological and dimensional characteristics of the structure of different materials depending on the deformation regime were studied in detail using complex analytical methods. The mechanisms of the deformation and deformation strengthening of metals and alloys in a wide range of strain-rate deformation have been considered. New data on the thermal stability of SMC and NC materials obtained by the dynamic pressing are presented. The analysis of change in the dynamic characteristics upon shock-wave compression depending on the nature of alloys has been carried out. The relationship between the composition and structure of the SMC aluminum, copper, and their alloys obtained by DCAP with mechanical properties in a wide range of strain rates of 3 × 10–3–6 × 105 s–1 has been established. In conclusion, the principles of the creation of SMC and NC of fcc materials with different energy of stacking fault defects of aluminum, copper and their alloys and titanium by methods of severe plastic deformation (SPD) are described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. V. Kozlov, A. M. Glezer, N. A. Koneva, N. A. Popova, and I. A. Kurzina, Fundamentals of Plastic Deformation of Nanostructured Materials (Fizmatlit, Moscow, 2016) [in Russian]. E. V. Kozlov, A. M. Glezer, N. A. Koneva, N. A. Popova, and I. A. Kurzina, Fundamentals of Plastic Deformation of Nanostructured Materials (Fizmatlit, Moscow, 2016) [in Russian].
2.
Zurück zum Zitat V. V. Rybin, Large Plastic Deformations and Destruction of Metals (Metallurgiya, Moscow, 1986) [in Russian]. V. V. Rybin, Large Plastic Deformations and Destruction of Metals (Metallurgiya, Moscow, 1986) [in Russian].
3.
Zurück zum Zitat R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Materials: Manufacturing, Structure, Properties (IKTs Akademkniga, Moscow, 2007) [in Russian]. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Materials: Manufacturing, Structure, Properties (IKTs Akademkniga, Moscow, 2007) [in Russian].
4.
Zurück zum Zitat T. G. Langdon, “The principles of grain refinement in equal-channel angular pressing,” Mater. Sci. Eng., A 462, 3–11 (2007). T. G. Langdon, “The principles of grain refinement in equal-channel angular pressing,” Mater. Sci. Eng., A 462, 3–11 (2007).
5.
Zurück zum Zitat M. J. Zehetbauer and R. Z. Valiev, Nanomaterials by Severe Plastic Deformation (Wiley, Weinheim, 2004). M. J. Zehetbauer and R. Z. Valiev, Nanomaterials by Severe Plastic Deformation (Wiley, Weinheim, 2004).
6.
Zurück zum Zitat Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013). Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).
7.
Zurück zum Zitat E. V. Shorokhov, I. N. Zhgilev, and R. Z. Valiev, RF Patent No. 2283717 (27 April 2006). E. V. Shorokhov, I. N. Zhgilev, and R. Z. Valiev, RF Patent No. 2283717 (27 April 2006).
8.
Zurück zum Zitat V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, V. M. Gundyrev, E. V. Shorokhov, and I. N. Zhgilev, “High-strain-rate deformation of titanium using dynamic equal-channel angular pressing,” Phys. Met. Metallogr. 105, 402–408 (2008). V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, V. M. Gundyrev, E. V. Shorokhov, and I. N. Zhgilev, “High-strain-rate deformation of titanium using dynamic equal-channel angular pressing,” Phys. Met. Metallogr. 105, 402–408 (2008).
9.
Zurück zum Zitat I. G. Brodova, I. G. Shirinkina, O. V. Antonova, E. V. Shorokhov, and I. I. Zhgilev, “Formation of a submicro-crystalline structure upon dynamic deformation of aluminum alloys,” Mater. Sci. Eng., A 503, 103–105 (2009). I. G. Brodova, I. G. Shirinkina, O. V. Antonova, E. V. Shorokhov, and I. I. Zhgilev, “Formation of a submicro-crystalline structure upon dynamic deformation of aluminum alloys,” Mater. Sci. Eng., A 503, 103–105 (2009).
10.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, E. V. Shorokhov, I. N. Zhgilev, and A. E. Kheifets, “A metallographic and electron-microscopic study of the structure of copper after dynamic pressing,” Russ. J. Phys. Chem. A 1, 630–634 (2007). I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, E. V. Shorokhov, I. N. Zhgilev, and A. E. Kheifets, “A metallographic and electron-microscopic study of the structure of copper after dynamic pressing,” Russ. J. Phys. Chem. A 1, 630–634 (2007).
11.
Zurück zum Zitat E. V. Shorokhov, I. N. Zhgilev, I. V. Khomskaya, I. G. Brodova, V. I. Zel’dovich, D. V. Gundepov, N. Yu. Fpolova, A. A. Gupov, N. P. Oglezneva, I. G. Shirinkina, A. E. Kheifets, and V. V. Astaf’ev, “High-rate deformation of metallic materials by channel angle pressing to obtain an ultrafine grained structure,” Deform. Razrush. Mater., No, 2, 36–41 (2009). E. V. Shorokhov, I. N. Zhgilev, I. V. Khomskaya, I. G. Brodova, V. I. Zel’dovich, D. V. Gundepov, N. Yu. Fpolova, A. A. Gupov, N. P. Oglezneva, I. G. Shirinkina, A. E. Kheifets, and V. V. Astaf’ev, “High-rate deformation of metallic materials by channel angle pressing to obtain an ultrafine grained structure,” Deform. Razrush. Mater., No, 2, 36–41 (2009).
12.
Zurück zum Zitat I. G. Brodova, A. N. Petrova, I. G. Shirinkina, E. V. Shorokhov, I. V. Minaev, I. N. Zhgilev, and A. V. Abramov, “Fragmentation of the structure in Al-based alloys upon high speed effect,” Rev. Adv. Mater. Sci. 25, 128–135 (2010). I. G. Brodova, A. N. Petrova, I. G. Shirinkina, E. V. Shorokhov, I. V. Minaev, I. N. Zhgilev, and A. V. Abramov, “Fragmentation of the structure in Al-based alloys upon high speed effect,” Rev. Adv. Mater. Sci. 25, 128–135 (2010).
13.
Zurück zum Zitat V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, E. V. Shorokhov, P. A. Nasonov, A. A. Ushakov, and S. V. Dobatkin, “Structure and mechanical properties of titanium subjected to high-rate channel angular pressing and deformation by rolling,” Phys. Met. Metallogr. 111, 421–429 (2011). V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, E. V. Shorokhov, P. A. Nasonov, A. A. Ushakov, and S. V. Dobatkin, “Structure and mechanical properties of titanium subjected to high-rate channel angular pressing and deformation by rolling,” Phys. Met. Metallogr. 111, 421–429 (2011).
14.
Zurück zum Zitat V. I. Zel’dovich, S. V. Dobatkin, N. Yu. Frolova, I. V. Khomskaya, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging,” Phys. Met. Metallogr. 117, 74–82 (2016). V. I. Zel’dovich, S. V. Dobatkin, N. Yu. Frolova, I. V. Khomskaya, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging,” Phys. Met. Metallogr. 117, 74–82 (2016).
15.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, A. V. Makarov, A. E. Kheifets, N. Yu. Frolova, and E. V. Shorokhov, “Study of the structure, physico-mechanical properties and thermal stability of nanostructured copper and bronze obtained by the DCAP method,” Pis’ma o Materialakh. 3, 150–154 (2013). I. V. Khomskaya, V. I. Zel’dovich, A. V. Makarov, A. E. Kheifets, N. Yu. Frolova, and E. V. Shorokhov, “Study of the structure, physico-mechanical properties and thermal stability of nanostructured copper and bronze obtained by the DCAP method,” Pis’ma o Materialakh. 3, 150–154 (2013).
16.
Zurück zum Zitat I. G. Brodova, A. N. Petrova, S. V. Razorenov, O. P. Plekhov, and E. V. Shorokhov, “Deformation behavior of submicrocrystalline aluminum alloys under dynamic loading conditions,” Deform. Razrush. Mater., No. 11, 27–33 (2015). I. G. Brodova, A. N. Petrova, S. V. Razorenov, O. P. Plekhov, and E. V. Shorokhov, “Deformation behavior of submicrocrystalline aluminum alloys under dynamic loading conditions,” Deform. Razrush. Mater., No. 11, 27–33 (2015).
17.
Zurück zum Zitat I. G. Brodova, A. N. Petrova, O. B. Naimark, O. A. Plekhov, S. V. Razorenov, and E. V. Shorokhov, “The influence of the structure of ultrafine-grained aluminium alloys on their mechanical properties under dynamic compression and shock-wave loading,” J. Phys.: Conf. Series. 894, 12016–12025 (2017). I. G. Brodova, A. N. Petrova, O. B. Naimark, O. A. Plekhov, S. V. Razorenov, and E. V. Shorokhov, “The influence of the structure of ultrafine-grained aluminium alloys on their mechanical properties under dynamic compression and shock-wave loading,” J. Phys.: Conf. Series. 894, 12016–12025 (2017).
18.
Zurück zum Zitat I. V. Khomskaya, E. V. Shorokhov, V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, I. V. Minaev, and A. V. Abramov, “The use of dynamic channel-angle pressing to obtain nanostructured copper and brass,” Deform. Razrush. Mater., No. 1, 17–24 (2012). I. V. Khomskaya, E. V. Shorokhov, V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, I. V. Minaev, and A. V. Abramov, “The use of dynamic channel-angle pressing to obtain nanostructured copper and brass,” Deform. Razrush. Mater., No. 1, 17–24 (2012).
19.
Zurück zum Zitat G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Matter (Yanus-K, Moscow, 1996) [in Russian]. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Matter (Yanus-K, Moscow, 1996) [in Russian].
20.
Zurück zum Zitat G. I. Kanel’, S. V. Razorenov, and V. E. Fortov, “Submicrosecond strength of materials,” Izv. RAN. Mech. Tverd. Tela, No. 4, 86–111 (2005). G. I. Kanel’, S. V. Razorenov, and V. E. Fortov, “Submicrosecond strength of materials,” Izv. RAN. Mech. Tverd. Tela, No. 4, 86–111 (2005).
21.
Zurück zum Zitat G. V. Garkushin, O. N. Ignatova, G. I. Kanel’, L. Meier, and S. V. Razorenov, “Submicrosecond strength of ultrafine-grained materials,” Mech. Solids 45, 624−632 (2010). G. V. Garkushin, O. N. Ignatova, G. I. Kanel’, L. Meier, and S. V. Razorenov, “Submicrosecond strength of ultrafine-grained materials,” Mech. Solids 45, 624−632 (2010).
22.
Zurück zum Zitat S. V. Razorenov and G. N. Garkushin, “Hardening of metals and alloys during shock compression,” Tech. Phys. 60, 1021−1026 (2015). S. V. Razorenov and G. N. Garkushin, “Hardening of metals and alloys during shock compression,” Tech. Phys. 60, 1021−1026 (2015).
23.
Zurück zum Zitat H. Kolsky, “An investigation of the mechanical properties of material at very high rates of loading,” Proc. Phys. Soc., London 62, 676–700 (1949). H. Kolsky, “An investigation of the mechanical properties of material at very high rates of loading,” Proc. Phys. Soc., London 62, 676–700 (1949).
24.
Zurück zum Zitat O. A. Plekhov, V. Chudinov, V. Leont’ev, and O. B. Naimark, “Experimental study of the laws of energy dissipation during dynamic deformation of nanocrystalline titanium,” Pis’ma ZhTF 35, 82–89 (2009). O. A. Plekhov, V. Chudinov, V. Leont’ev, and O. B. Naimark, “Experimental study of the laws of energy dissipation during dynamic deformation of nanocrystalline titanium,” Pis’ma ZhTF 35, 82–89 (2009).
25.
Zurück zum Zitat S. P. Marsh, LASL Shock Hugoniot Data (University of California, Berkeley, 1980). S. P. Marsh, LASL Shock Hugoniot Data (University of California, Berkeley, 1980).
26.
Zurück zum Zitat T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003). T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).
27.
Zurück zum Zitat S. V. Razorenov, “Influence of structural factors on the strength properties of aluminum alloys under shock wave loading,” Matter Radiat. Exstremes 3, 1–54 (2018). S. V. Razorenov, “Influence of structural factors on the strength properties of aluminum alloys under shock wave loading,” Matter Radiat. Exstremes 3, 1–54 (2018).
28.
Zurück zum Zitat L. M. Barker and R. E. Hollenbach, “Laser interferometry for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972). L. M. Barker and R. E. Hollenbach, “Laser interferometry for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).
29.
Zurück zum Zitat M. B. Al’tman, S. M. Ambartsumyan, N. A. Aristova, and Z. N. Archakova, Industrial Deformed, Sintered and Cast Aluminum Alloys (Metallurgiya, Moscow, 1972) [in Russian]. M. B. Al’tman, S. M. Ambartsumyan, N. A. Aristova, and Z. N. Archakova, Industrial Deformed, Sintered and Cast Aluminum Alloys (Metallurgiya, Moscow, 1972) [in Russian].
30.
Zurück zum Zitat I. G. Brodova, I. G. Shirinkina, A. N. Petrova, O. V. Antonova, and V. P. Pilyugin, “Evolution of the structure of V95 aluminum alloy upon high-pressure torsion,” Phys. Met. Metallogr. 111, 630–638 (2011). I. G. Brodova, I. G. Shirinkina, A. N. Petrova, O. V. Antonova, and V. P. Pilyugin, “Evolution of the structure of V95 aluminum alloy upon high-pressure torsion,” Phys. Met. Metallogr. 111, 630–638 (2011).
31.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, and E. V. Shorokhov, “Refinement of the structure of Al–Mg–Mn alloy by dynamic channel-angular pressing,” Perspekt. Mater., No. 12, 72–78 (2015). A. N. Petrova, I. G. Brodova, and E. V. Shorokhov, “Refinement of the structure of Al–Mg–Mn alloy by dynamic channel-angular pressing,” Perspekt. Mater., No. 12, 72–78 (2015).
32.
Zurück zum Zitat R. Z. Valiev, M. Y. Murashkin, E. V. Bobruk, and G. I. Raab, “Grain refinement and mechanical behavior of the Al alloy, subjected to the new SPD technique,” Mater. Trans. 50, 87–91 (2009). R. Z. Valiev, M. Y. Murashkin, E. V. Bobruk, and G. I. Raab, “Grain refinement and mechanical behavior of the Al alloy, subjected to the new SPD technique,” Mater. Trans. 50, 87–91 (2009).
33.
Zurück zum Zitat M. V. Markushev and M. Yu. Murashkin, “Structure and mechanical properties of commercial Al–Mg 1560 alloy after equal-channel angular extrusion and annealing,” Mater. Sci. Eng., A 367, 234–242 (2004). M. V. Markushev and M. Yu. Murashkin, “Structure and mechanical properties of commercial Al–Mg 1560 alloy after equal-channel angular extrusion and annealing,” Mater. Sci. Eng., A 367, 234–242 (2004).
34.
Zurück zum Zitat V. E. Fortov, Extreme States of Substances (Fizmatlit, Moscow, 2009) [in Russian]. V. E. Fortov, Extreme States of Substances (Fizmatlit, Moscow, 2009) [in Russian].
35.
Zurück zum Zitat Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and of High-Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966). Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and of High-Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966).
36.
Zurück zum Zitat V. S. Ivanova, L. K. Gordienko, and V. N. Geminov, Role of Dislocations in Strengthening and Destruction of Metals (Nauka, Moscow, 1965). V. S. Ivanova, L. K. Gordienko, and V. N. Geminov, Role of Dislocations in Strengthening and Destruction of Metals (Nauka, Moscow, 1965).
37.
Zurück zum Zitat V. M. Bykov, V. A. Likhachev, Yu. A. Nikonov, L. L. Serbina, and L. I. Shibalova, “Fragmentation and dynamic recrystallization in copper at large and very large plastic deformations,” Fiz. Met. Metalloved. 45, 163–169 (1978). V. M. Bykov, V. A. Likhachev, Yu. A. Nikonov, L. L. Serbina, and L. I. Shibalova, “Fragmentation and dynamic recrystallization in copper at large and very large plastic deformations,” Fiz. Met. Metalloved. 45, 163–169 (1978).
38.
Zurück zum Zitat R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Miner. Met. Mater. Soc. 58, 33–38 (2006). R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Miner. Met. Mater. Soc. 58, 33–38 (2006).
39.
Zurück zum Zitat Y. H. Zhao, Z. Jin, X. Z. Liao, R. Z. Valiev, and Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing,” Acta Mater. 52, 4589–4599 (2004). Y. H. Zhao, Z. Jin, X. Z. Liao, R. Z. Valiev, and Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing,” Acta Mater. 52, 4589–4599 (2004).
40.
Zurück zum Zitat R. K. Islamgaliev, N. F. Yanusova, I. N. Sabirov, A. V. Sergueeva, and R. Z. Valiev, “Deformation behavior of nanosrructured aluminum alloy processed by severe plastic deformation,” Mater. Sci. Eng., A 319–321, 874–878 (2001). R. K. Islamgaliev, N. F. Yanusova, I. N. Sabirov, A. V. Sergueeva, and R. Z. Valiev, “Deformation behavior of nanosrructured aluminum alloy processed by severe plastic deformation,” Mater. Sci. Eng., A 319321, 874–878 (2001).
41.
Zurück zum Zitat Y. S. Park, K. H. Chung, N. J. Kim, and E. J. Lavernia, “Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion,” Mater. Sci. Eng., A 374, 211–216 (2004). Y. S. Park, K. H. Chung, N. J. Kim, and E. J. Lavernia, “Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion,” Mater. Sci. Eng., A 374, 211–216 (2004).
42.
Zurück zum Zitat Y. Wang, M. Chen, F. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal,” Acta Mater. 52, 1699–1709 (2004). Y. Wang, M. Chen, F. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal,” Acta Mater. 52, 1699–1709 (2004).
43.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, O. A. Plekhov, O. B. Naimark, and E. V. Shorokhov, “Mechanical properties and energy dissipation in ultrafine-grained AMTs and V95 aluminum alloys during dynamic compression, Tech. Phys. 84, 989–996 (2014). A. N. Petrova, I. G. Brodova, O. A. Plekhov, O. B. Naimark, and E. V. Shorokhov, “Mechanical properties and energy dissipation in ultrafine-grained AMTs and V95 aluminum alloys during dynamic compression, Tech. Phys. 84, 989–996 (2014).
44.
Zurück zum Zitat I. G. Brodova and A. N. Petrova, “Dynamic properties of submicrocrystalline aluminum alloys,” Phys. Met. Metallogr. 119, 1342–1345 (2018). I. G. Brodova and A. N. Petrova, “Dynamic properties of submicrocrystalline aluminum alloys,” Phys. Met. Metallogr. 119, 1342–1345 (2018).
45.
Zurück zum Zitat R. Z. Valiev, E. V. Kozlov, and Yu. F. Ivanov, “Deformation behavior of ultra-fine-grained copper,” Acta Metall. Mater. 42, 2467–2475 (1994). R. Z. Valiev, E. V. Kozlov, and Yu. F. Ivanov, “Deformation behavior of ultra-fine-grained copper,” Acta Metall. Mater. 42, 2467–2475 (1994).
46.
Zurück zum Zitat I. G. Brodova, A. N. Petrova, S. V. Razorenov, and E. V. Shorokhov, “Resistance of submicrocrystalline aluminum alloys to high-rate deformation and fracture after dynamic channel angular pressing,” Phys. Met. Metallogr. 116, 519–526 (2015). I. G. Brodova, A. N. Petrova, S. V. Razorenov, and E. V. Shorokhov, “Resistance of submicrocrystalline aluminum alloys to high-rate deformation and fracture after dynamic channel angular pressing,” Phys. Met. Metallogr. 116, 519–526 (2015).
47.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, and S. V. Razorenov, “Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression,” Phys. Met. Metallogr. 118, 601–607 (2017). A. N. Petrova, I. G. Brodova, and S. V. Razorenov, “Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression,” Phys. Met. Metallogr. 118, 601–607 (2017).
48.
Zurück zum Zitat S. V. Razorenov, G. I. Kanel’, and G. N. Garkushin, “Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures,” Phys. Solid State 54, 790–797 (2012). S. V. Razorenov, G. I. Kanel’, and G. N. Garkushin, “Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures,” Phys. Solid State 54, 790–797 (2012).
49.
Zurück zum Zitat G. I. Kanel’, S. V. Razorenov, V. S. Savinykh, E. B. Zaretskii, and Yu. R. Kolobov, Study of Structural Levels That Determine the Resistance to Deformation and Fracture of Metals and Alloys (OIVT RAN, Moscow, 2004). G. I. Kanel’, S. V. Razorenov, V. S. Savinykh, E. B. Zaretskii, and Yu. R. Kolobov, Study of Structural Levels That Determine the Resistance to Deformation and Fracture of Metals and Alloys (OIVT RAN, Moscow, 2004).
50.
Zurück zum Zitat G. V. Garkushin, S. V. Razorenov, and G. I. Kanel’, “Effect of structural factors on submicrosecond strength of D16T aluminum alloy,” Tech. Phys. 53, 1441–1446 (2008). G. V. Garkushin, S. V. Razorenov, and G. I. Kanel’, “Effect of structural factors on submicrosecond strength of D16T aluminum alloy,” Tech. Phys. 53, 1441–1446 (2008).
51.
Zurück zum Zitat G. V. Garkushin, G. E. Ivanchikhina, S. V. Razorenov, O. N. Ignatova, I. I. Kaganova, A. N. Malyshev, A. M. Podurets, V. A. Raevskii, V. I. Skokov, and O. A. Tyupanova, “Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading durations,” Phys. Met. Metallogr. 111, 197–206 (2011). G. V. Garkushin, G. E. Ivanchikhina, S. V. Razorenov, O. N. Ignatova, I. I. Kaganova, A. N. Malyshev, A. M. Podurets, V. A. Raevskii, V. I. Skokov, and O. A. Tyupanova, “Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading durations,” Phys. Met. Metallogr. 111, 197–206 (2011).
52.
Zurück zum Zitat S. V. Razorenov, G. I. Kanel’, and V. E. Fortov, “Submicrosecond strength of aluminum and an aluminum-magnesium alloy AMg6M at normal and enhanced temperatures,” Phys. Met. Metallogr. 95, 86–91 (2003). S. V. Razorenov, G. I. Kanel’, and V. E. Fortov, “Submicrosecond strength of aluminum and an aluminum-magnesium alloy AMg6M at normal and enhanced temperatures,” Phys. Met. Metallogr. 95, 86–91 (2003).
53.
Zurück zum Zitat R. Z. Valiev, I. P. Semenova, V. V. Latysh, and A. V. Shcherbakov, “Nanostructured titanium for biomedical applications: New developments and challenges for commercialization,” Nanotechnol. Russ. 3, 593–601 (2008). R. Z. Valiev, I. P. Semenova, V. V. Latysh, and A. V. Shcherbakov, “Nanostructured titanium for biomedical applications: New developments and challenges for commercialization,” Nanotechnol. Russ. 3, 593–601 (2008).
54.
Zurück zum Zitat E. B. Yakushina, I. P. Semenova, and R. Z. Valiev, “Nanostructural titanium for biomedical application,” Tsvetn. Met., No. 7, 81–83 (2010). E. B. Yakushina, I. P. Semenova, and R. Z. Valiev, “Nanostructural titanium for biomedical application,” Tsvetn. Met., No. 7, 81–83 (2010).
55.
Zurück zum Zitat E. V. Shorokhov, I. N. Zhgiliev, D. V. Gunderov, and A. A. Gurov, “Dynamic deformation of titanium for producing ultrafine-grained structure,” Proceedings of Intern. conference “Shock waves in condensed matter” (St.-Petersburg, 2006), pp. 281–283. E. V. Shorokhov, I. N. Zhgiliev, D. V. Gunderov, and A. A. Gurov, “Dynamic deformation of titanium for producing ultrafine-grained structure,” Proceedings of Intern. conference “Shock waves in condensed matter” (St.-Petersburg, 2006), pp. 281–283.
56.
Zurück zum Zitat S. R. Agnew, P. Mehrotra, and T. M. Lillo, G. M. Stoica, and P. K. Liaw, “Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations,” Acta Mater. 53, 3135–3146 (2005). S. R. Agnew, P. Mehrotra, and T. M. Lillo, G. M. Stoica, and P. K. Liaw, “Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations,” Acta Mater. 53, 3135–3146 (2005).
57.
Zurück zum Zitat V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, “Plastic treatment of metals by common shear,” Izv. AN SSSR. Met., No. 1, 115–123 (1981). V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, “Plastic treatment of metals by common shear,” Izv. AN SSSR. Met., No. 1, 115–123 (1981).
58.
Zurück zum Zitat U. Zwicker, Titanium and Titanlegierungen (Springer, Berlin, 1974; Metallurgiya, Moscow, 1979). U. Zwicker, Titanium and Titanlegierungen (Springer, Berlin, 1974; Metallurgiya, Moscow, 1979).
59.
Zurück zum Zitat M. A. Meyers and H-r. Pak, “Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy,” Acta Metall. 34, 2493–2499 (1986). M. A. Meyers and H-r. Pak, “Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy,” Acta Metall. 34, 2493–2499 (1986).
60.
Zurück zum Zitat Y. Yang, Z. Xinming, L. Zhenghua, and L. Qingyun, “Adiabatic shear band on the titanium side in the Ti/mild steel explosive cladding interface,” Acta Mater. 44, 561–565 (1996). Y. Yang, Z. Xinming, L. Zhenghua, and L. Qingyun, “Adiabatic shear band on the titanium side in the Ti/mild steel explosive cladding interface,” Acta Mater. 44, 561–565 (1996).
61.
Zurück zum Zitat S. P. Timothy and I. M. Hutchings, “The structure of adiabatic shear bands in a titanium alloy,” Acta Metall. 33, 667–676 (1985). S. P. Timothy and I. M. Hutchings, “The structure of adiabatic shear bands in a titanium alloy,” Acta Metall. 33, 667–676 (1985).
62.
Zurück zum Zitat E. V. Shorokhov, V. I. Zel’dovich, I. N. Zhgilev, N. Yu. Frolova, A. E. Kheifets, and I. V. Khomskaya, “Dynamic deformation of titanium using common shear,” Fund. Probl. Sovr. Materialoved. 4, 24–29 (2007). E. V. Shorokhov, V. I. Zel’dovich, I. N. Zhgilev, N. Yu. Frolova, A. E. Kheifets, and I. V. Khomskaya, “Dynamic deformation of titanium using common shear,” Fund. Probl. Sovr. Materialoved. 4, 24–29 (2007).
63.
Zurück zum Zitat N. E. Paton and W. A. Backofen, “Plastic deformation of titanium at elevated temperatures,” Metall. Trans. A 1, 2839–2847 (1970). N. E. Paton and W. A. Backofen, “Plastic deformation of titanium at elevated temperatures,” Metall. Trans. A 1, 2839–2847 (1970).
64.
Zurück zum Zitat F. D. Rosi, F. C. Perkins, and L. L. Seigle, “Mechanism of plastic flow in titanium at low and high temperatures,” J. Met. 8, 115–122 (1956). F. D. Rosi, F. C. Perkins, and L. L. Seigle, “Mechanism of plastic flow in titanium at low and high temperatures,” J. Met. 8, 115–122 (1956).
65.
Zurück zum Zitat B. A. Kolachev, A. A. Livanov, and A. A. Bukhanova, Mechanical Properties of Titanium and Its Alloys (Metallurgiya, Moscow, 1974) [in Russian]. B. A. Kolachev, A. A. Livanov, and A. A. Bukhanova, Mechanical Properties of Titanium and Its Alloys (Metallurgiya, Moscow, 1974) [in Russian].
66.
Zurück zum Zitat V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov,” Structure of titanium after dynamic channel angular pressing at elevated temperatures,” Phys. Met. Metallogr. 108, 347–352 (2009). V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov,” Structure of titanium after dynamic channel angular pressing at elevated temperatures,” Phys. Met. Metallogr. 108, 347–352 (2009).
67.
Zurück zum Zitat Yu. P. Sharkeev, A. Yu. Eroshenko, and A. D. Bratchikov, “ Structure and mechanical properties of nanostructured titanium after pre-crystallization annealing,” Fiz. Mezomekh. 8 (Special Issue), 91–94 (2005). Yu. P. Sharkeev, A. Yu. Eroshenko, and A. D. Bratchikov, “ Structure and mechanical properties of nanostructured titanium after pre-crystallization annealing,” Fiz. Mezomekh. 8 (Special Issue), 91–94 (2005).
68.
Zurück zum Zitat S. P. Malysheva, G. A. Salishchev, and E. B. Yakushina, “Effect of cold rolling on the structure and mechanical properties of sheets from commercial titanium,” Met. Sci. Heat Treat. 50, 180–186 (2008). S. P. Malysheva, G. A. Salishchev, and E. B. Yakushina, “Effect of cold rolling on the structure and mechanical properties of sheets from commercial titanium,” Met. Sci. Heat Treat. 50, 180–186 (2008).
69.
Zurück zum Zitat I. P. Semenova, G. Kh. Salimgareeva, V. V. Latysh, S. A. Kunavin, and R. Z. Valiev, “ Fatigue resistance of titanium with ultrafine-grained structure,” Met. Sci. Heat Treat. 51, 87–91 (2009). I. P. Semenova, G. Kh. Salimgareeva, V. V. Latysh, S. A. Kunavin, and R. Z. Valiev, “ Fatigue resistance of titanium with ultrafine-grained structure,” Met. Sci. Heat Treat. 51, 87–91 (2009).
70.
Zurück zum Zitat I. V. Minaev, A. V. Abramov, E. V. Shorokhov, and I. N. Zhgilev, “Modeling of the process of intense plastic deformation under high-rate loading of metals,” Deform. Razrush. Met., No. 3, 17–20 (2009). I. V. Minaev, A. V. Abramov, E. V. Shorokhov, and I. N. Zhgilev, “Modeling of the process of intense plastic deformation under high-rate loading of metals,” Deform. Razrush. Met., No. 3, 17–20 (2009).
71.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and I. N. Zhgilev, “Structure formation in copper during dynamic channel-angular pressing,” Phys. Met. Metallogr. 105, 586–593 (2008). I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and I. N. Zhgilev, “Structure formation in copper during dynamic channel-angular pressing,” Phys. Met. Metallogr. 105, 586–593 (2008).
72.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, and N. Yu. Frolova, “Structure of copper after dynamic channel-angle extrusion,” Met. Sci. Heat Treat. 50, 242–247 (2008). I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, and N. Yu. Frolova, “Structure of copper after dynamic channel-angle extrusion,” Met. Sci. Heat Treat. 50, 242–247 (2008).
73.
Zurück zum Zitat I. V. Khomskaya, E. V. Shorokhov, V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, P. A. Nasonov, and I. N. Zhgilev, “Study of the structure and mechanical properties of submicrocrystalline and nanocrystalline copper produced by high-rate pressing,” Fiz. Met. Metalloved. 111, 612–622 (2011). I. V. Khomskaya, E. V. Shorokhov, V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, P. A. Nasonov, and I. N. Zhgilev, “Study of the structure and mechanical properties of submicrocrystalline and nanocrystalline copper produced by high-rate pressing,” Fiz. Met. Metalloved. 111, 612–622 (2011).
74.
Zurück zum Zitat I. V. Khomskaya, V. Zel’dovich, A. E. Kheifets, and N. P. Purygin, “Structure and properties of a Cu–37 wt % Zn alloy subjected to quasi–spherical explosive loading,” Lett. Mater. 5, 454–458 (2015). I. V. Khomskaya, V. Zel’dovich, A. E. Kheifets, and N. P. Purygin, “Structure and properties of a Cu–37 wt % Zn alloy subjected to quasi–spherical explosive loading,” Lett. Mater. 5, 454–458 (2015).
75.
Zurück zum Zitat R. Z. Valiev and R. Sh. Musalimov, “High resolution transmission electron microscopy of nanocrystalline materials,” Phys. Met. Metallogr. 78, 666–670 (1994). R. Z. Valiev and R. Sh. Musalimov, “High resolution transmission electron microscopy of nanocrystalline materials,” Phys. Met. Metallogr. 78, 666–670 (1994).
76.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, A. E. Kheifets, and N. Yu. Frolova, “Structure and properties of submicrocrystalline and nanocrystalline copper produced by dynamic channel angular pressing,” Russ. Metall. (Metally) 2012, 963–968 (2012). I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, A. E. Kheifets, and N. Yu. Frolova, “Structure and properties of submicrocrystalline and nanocrystalline copper produced by dynamic channel angular pressing,” Russ. Metall. (Metally) 2012, 963–968 (2012).
77.
Zurück zum Zitat R. R. Mulyukov, R. M. Imayev, and A. A. Nazarov, “Production, properties and application prospects of bulk nanostructured materials,” J. Mater. Sci. 43, 7257–7263 (2008). R. R. Mulyukov, R. M. Imayev, and A. A. Nazarov, “Production, properties and application prospects of bulk nanostructured materials,” J. Mater. Sci. 43, 7257–7263 (2008).
78.
Zurück zum Zitat S. V. Dobatkin, D. V. Shangina, N. R. Bochvar, and M. Janeček, “Effect of deformation schedules and initial states on structure and properties of Cu–0.18% Zr alloy after high-pressure torsion and heating,” Mater. Sci. Eng., A 598, 288–292 (2014). S. V. Dobatkin, D. V. Shangina, N. R. Bochvar, and M. Janeček, “Effect of deformation schedules and initial states on structure and properties of Cu–0.18% Zr alloy after high-pressure torsion and heating,” Mater. Sci. Eng., A 598, 288–292 (2014).
79.
Zurück zum Zitat A. P. Zhilyaev, A. Morozova, J. M. Cabrera, R. Kaibyshev, and T. G. Langdon, “Wear resistance and electroconductivity in a Cu–0.3Cr–0.5Zr alloy processed by ECAP,” J. Mater. Sci. 52, 305–313 (2017). A. P. Zhilyaev, A. Morozova, J. M. Cabrera, R. Kaibyshev, and T. G. Langdon, “Wear resistance and electroconductivity in a Cu–0.3Cr–0.5Zr alloy processed by ECAP,” J. Mater. Sci. 52, 305–313 (2017).
80.
Zurück zum Zitat G. Purcek, H. Yanar, D. V. Shangina, M. Demirtas, N. R. Bochvar, and S. V. Dobatkin, “Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu–Cr–Zr alloy,” J. Alloys Compd. 742, 325–333 (2018). G. Purcek, H. Yanar, D. V. Shangina, M. Demirtas, N. R. Bochvar, and S. V. Dobatkin, “Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu–Cr–Zr alloy,” J. Alloys Compd. 742, 325–333 (2018).
81.
Zurück zum Zitat V. V. Popov, A. V. Stolbovskii, E. N. Popova, R. M. Fala-khutdinov, and E. V. Shorokhov, “Evolution of the structure of tin bronze under dynamic channel-angular pressing,” Phys. Met. Metallogr. 118, 864–871 (2017). V. V. Popov, A. V. Stolbovskii, E. N. Popova, R. M. Fala-khutdinov, and E. V. Shorokhov, “Evolution of the structure of tin bronze under dynamic channel-angular pressing,” Phys. Met. Metallogr. 118, 864–871 (2017).
82.
Zurück zum Zitat O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys. Domestic and Foreign Brands. Handbook (Mashinostroenie, Moscow, 2004) [in Russian]. O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys. Domestic and Foreign Brands. Handbook (Mashinostroenie, Moscow, 2004) [in Russian].
83.
Zurück zum Zitat A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V. I. Kopylov, “Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing,” Acta Mater. 50, 1639–1651 (2002). A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V. I. Kopylov, “Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing,” Acta Mater. 50, 1639–1651 (2002).
84.
Zurück zum Zitat R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015). R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015).
85.
Zurück zum Zitat A. I. Belyaeva, I. V. Kolenov, A. A. Savchenko, A. A. Galuza, D. A. Aksenov, G. I. Raab, S. N. Faizova, V. S. Voitsenya, V. G. Konovalov, I. V. Ryzhkov, O. A. Skorik, S. I. Solodovchenko, and A. F. Bardamid, “Influence of grain size on resistance to ion sputtering of mirrors from low chromium-zirconium copper alloy,”, Vopr. Atomn. Nauki i Tekh., Ser. Termoyad. Sint., No. 4, 50–59 (2011). A. I. Belyaeva, I. V. Kolenov, A. A. Savchenko, A. A. Galuza, D. A. Aksenov, G. I. Raab, S. N. Faizova, V. S. Voitsenya, V. G. Konovalov, I. V. Ryzhkov, O. A. Skorik, S. I. Solodovchenko, and A. F. Bardamid, “Influence of grain size on resistance to ion sputtering of mirrors from low chromium-zirconium copper alloy,”, Vopr. Atomn. Nauki i Tekh., Ser. Termoyad. Sint., No. 4, 50–59 (2011).
86.
Zurück zum Zitat V. I. Zel’dovich, N. Yu. Frolova, I. V. Khomskaya, and A. E. Kheifets, “Electron microscopic investigation of aging in the Cu–0.06% Zr alloy,” Phys. Met. Metallogr. 117, 710–718 (2016). V. I. Zel’dovich, N. Yu. Frolova, I. V. Khomskaya, and A. E. Kheifets, “Electron microscopic investigation of aging in the Cu–0.06% Zr alloy,” Phys. Met. Metallogr. 117, 710–718 (2016).
87.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, D. N. Abdullina, and A. E. Kheifets, “Investigation of Cu5Zr particles precipitation in Cu–Zr and Cu–Cr–Zr alloys subjected to quenching and high strain rate deformation,” Lett. Mater. 9, 400–404 (2019). I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, D. N. Abdullina, and A. E. Kheifets, “Investigation of Cu5Zr particles precipitation in Cu–Zr and Cu–Cr–Zr alloys subjected to quenching and high strain rate deformation,” Lett. Mater. 9, 400–404 (2019).
88.
Zurück zum Zitat V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Structure of chromium-zirconium bronze subjected to dynamic channel-angular pressing and aging,” Phys. Met. Metallogr. 114, 411–418 (2013). V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Structure of chromium-zirconium bronze subjected to dynamic channel-angular pressing and aging,” Phys. Met. Metallogr. 114, 411–418 (2013).
89.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and D. N. Abdullina, “Effect of high-speed dynamic channel angular pressing and aging on the microstructure and properties of Cu–Cr–Zr alloys,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 12007–12012 (2018). I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and D. N. Abdullina, “Effect of high-speed dynamic channel angular pressing and aging on the microstructure and properties of Cu–Cr–Zr alloys,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 12007–12012 (2018).
90.
Zurück zum Zitat I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, A. E. Kheifets, and V. P. Dyakina, “The effect of high-rate deformation on the structure, properties, and thermal stability of copper alloyed with chromium and zirconium,” Deform. Razrush. Mater., No. 4, 22–29 (2017). I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, A. E. Kheifets, and V. P. Dyakina, “The effect of high-rate deformation on the structure, properties, and thermal stability of copper alloyed with chromium and zirconium,” Deform. Razrush. Mater., No. 4, 22–29 (2017).
91.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel,” AIP Conf. Proc. 1785, 40035–40035 (2016). A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel,” AIP Conf. Proc. 1785, 40035–40035 (2016).
92.
Zurück zum Zitat L. G. Korshunov, N. L. Chernenko, and A. V. Korznikov, “Effect of the severe plastic deformation and aging temperature on the strengthening, structure, and wear resistance of a beryllium bronze,” Phys. Met. Metallogr. 111, 395–402 (2011). L. G. Korshunov, N. L. Chernenko, and A. V. Korznikov, “Effect of the severe plastic deformation and aging temperature on the strengthening, structure, and wear resistance of a beryllium bronze,” Phys. Met. Metallogr. 111, 395–402 (2011).
93.
Zurück zum Zitat A. E. Kheifets, I. V. Khomskaya, L. G. Korshunov, V. I. Zel’dovich, and N. Yu. Frolova, “Effect of high strain-rate deformation and aging temperature on the evolution of structure, microhardness, and wear resistance of low-alloyed Cu–Cr–Zr alloy,” Phys. Met. Metallogr. 119, 402–411 (2018). A. E. Kheifets, I. V. Khomskaya, L. G. Korshunov, V. I. Zel’dovich, and N. Yu. Frolova, “Effect of high strain-rate deformation and aging temperature on the evolution of structure, microhardness, and wear resistance of low-alloyed Cu–Cr–Zr alloy,” Phys. Met. Metallogr. 119, 402–411 (2018).
94.
Zurück zum Zitat I. V. Khomskaya, A. E. Kheifets, V. I. Zel’dovich, L. G. Korshunov, N. Yu. Frolova, and D. N. Abdullina, “The formation of friction-induced nanocrystalline structure in submicrocrystalline Cu–Cr–Zr alloy processed by DCAP,” Lett. Mater. 8, 410–414 (2018). I. V. Khomskaya, A. E. Kheifets, V. I. Zel’dovich, L. G. Korshunov, N. Yu. Frolova, and D. N. Abdullina, “The formation of friction-induced nanocrystalline structure in submicrocrystalline Cu–Cr–Zr alloy processed by DCAP,” Lett. Mater. 8, 410–414 (2018).
Metadaten
Titel
Structure–Phase Transformations and Properties of Non-Ferrous Metals and Alloys under Extreme Conditions
verfasst von
I. G. Brodova
V. I. Zel’dovich
I. V. Khomskaya
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20070029

Weitere Artikel der Ausgabe 7/2020

Physics of Metals and Metallography 7/2020 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Single- and Multistage Crystallization of Amorphous Alloys