Skip to main content

2020 | OriginalPaper | Buchkapitel

2. Studies on Machining of Hard Materials

verfasst von : Manjunath Patel G. C., Ganesh R. Chate, Mahesh B. Parappagoudar, Kapil Gupta

Erschienen in: Machining of Hard Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the years, machining industries are continuously striving to manufacture the parts at reduced cost and improved quality. This can be achieved by selecting appropriate set of tool–work materials and effective modelling and optimization of the process. Optimized grades of high-speed steel (HSS) are used to be treated as ultimate tool material till the 1930s [1]. However, American metalworking industry had shown three-time improvement in productivity with the use of same machines and manpower during the period 1939–1945.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRef I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRef
3.
Zurück zum Zitat Y. Huang, S.Y. Liang, Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning. Int. J. Mach. Tools Manuf. 43(3), 307–315 (2003)CrossRef Y. Huang, S.Y. Liang, Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning. Int. J. Mach. Tools Manuf. 43(3), 307–315 (2003)CrossRef
4.
Zurück zum Zitat Y. Huang, S.Y. Liang, Modeling of cutting forces under hard turning conditions considering tool wear effect. J. Manuf. Sci. Eng. 127(2), 262–270 (2005)CrossRef Y. Huang, S.Y. Liang, Modeling of cutting forces under hard turning conditions considering tool wear effect. J. Manuf. Sci. Eng. 127(2), 262–270 (2005)CrossRef
5.
Zurück zum Zitat P.J. Arrazola, T. Ozel, Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method. Int. J. Mach. Mach. Mater. 4(1), 14–25 (2008) P.J. Arrazola, T. Ozel, Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method. Int. J. Mach. Mach. Mater. 4(1), 14–25 (2008)
6.
Zurück zum Zitat C. Scheffer, H. Kratz, P.S. Heyns, F. Klocke, Development of a tool wear-monitoring system for hard turning. Int. J. Mach. Tools Manuf 43(10), 973–985 (2003)CrossRef C. Scheffer, H. Kratz, P.S. Heyns, F. Klocke, Development of a tool wear-monitoring system for hard turning. Int. J. Mach. Tools Manuf 43(10), 973–985 (2003)CrossRef
7.
Zurück zum Zitat J.S. Dureja, V.K. Gupta, V.S. Sharma, M. Dogra, M.S. Bhatti, A review of empirical modeling techniques to optimize machining parameters for hard turning applications. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(3), 389–404 (2016)CrossRef J.S. Dureja, V.K. Gupta, V.S. Sharma, M. Dogra, M.S. Bhatti, A review of empirical modeling techniques to optimize machining parameters for hard turning applications. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(3), 389–404 (2016)CrossRef
8.
Zurück zum Zitat F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, M.B. da Silva, Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 39(9), 7776–7787 (2012)CrossRef F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, M.B. da Silva, Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 39(9), 7776–7787 (2012)CrossRef
9.
Zurück zum Zitat A. Agrawal, S. Goel, W.B. Rashid, M. Price, Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Appl. Soft Comput. 30, 279–286 (2015)CrossRef A. Agrawal, S. Goel, W.B. Rashid, M. Price, Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Appl. Soft Comput. 30, 279–286 (2015)CrossRef
10.
Zurück zum Zitat M. Sayuti, A.A. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J. Clean. Prod. 67, 265–276 (2014)CrossRef M. Sayuti, A.A. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J. Clean. Prod. 67, 265–276 (2014)CrossRef
11.
Zurück zum Zitat K. Bouacha, M.A. Yallese, S. Khamel, S. Belhadi, Analysis and optimization of hard turning operation using cubic boron nitride tool. Int. J. Refract Metal Hard Mater. 45, 160–178 (2014)CrossRef K. Bouacha, M.A. Yallese, S. Khamel, S. Belhadi, Analysis and optimization of hard turning operation using cubic boron nitride tool. Int. J. Refract Metal Hard Mater. 45, 160–178 (2014)CrossRef
12.
Zurück zum Zitat F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)CrossRef F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)CrossRef
13.
Zurück zum Zitat B.P. Erdel, High-Speed Machining (Society of Manufacturing Engineers, 2003) B.P. Erdel, High-Speed Machining (Society of Manufacturing Engineers, 2003)
14.
Zurück zum Zitat R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, J.P. Davim, State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 191–209 (2013)CrossRef R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, J.P. Davim, State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 191–209 (2013)CrossRef
15.
Zurück zum Zitat V.P. Astakhov, Machining of hard materials–definitions and industrial applications, Machining of Hard Materials (Springer, London, 2011), pp. 1–32 V.P. Astakhov, Machining of hard materials–definitions and industrial applications, Machining of Hard Materials (Springer, London, 2011), pp. 1–32
16.
Zurück zum Zitat C. Daniel, One-at-a-time plans. J. Am. Stat. Assoc. 68(342), 353–360 (1973)CrossRef C. Daniel, One-at-a-time plans. J. Am. Stat. Assoc. 68(342), 353–360 (1973)CrossRef
17.
Zurück zum Zitat M. Friedman, L.J. Savage, Planning experiments seeking maxima. Tech. Stat. Anal. (1947), pp. 365–372 M. Friedman, L.J. Savage, Planning experiments seeking maxima. Tech. Stat. Anal. (1947), pp. 365–372
18.
Zurück zum Zitat Z. Li, B. Chen, H. Wu, X. Ye, B. Zhang, A design of experiment aided stochastic parameterization method for modeling aquifer NAPL contamination. Environ. Model Softw. 101, 183–193 (2018)CrossRef Z. Li, B. Chen, H. Wu, X. Ye, B. Zhang, A design of experiment aided stochastic parameterization method for modeling aquifer NAPL contamination. Environ. Model Softw. 101, 183–193 (2018)CrossRef
19.
Zurück zum Zitat G.E. Box, P.Y. Liu, Statistics as a catalyst to learning by scientific method part I—an example. J. Qual. Technol. 31(1), 1–15 (1999)CrossRef G.E. Box, P.Y. Liu, Statistics as a catalyst to learning by scientific method part I—an example. J. Qual. Technol. 31(1), 1–15 (1999)CrossRef
20.
Zurück zum Zitat V. Czitrom, One-factor-at-a-time versus designed experiments. Am. Stat. 53(2), 126–131 (1999) V. Czitrom, One-factor-at-a-time versus designed experiments. Am. Stat. 53(2), 126–131 (1999)
21.
Zurück zum Zitat C.J. Wu, M.S. Hamada, Experiments: Planning, Analysis, and Optimization, vol. 552 (Wiley & Sons, 2011) C.J. Wu, M.S. Hamada, Experiments: Planning, Analysis, and Optimization, vol. 552 (Wiley & Sons, 2011)
22.
Zurück zum Zitat D.D. Frey, H. Wang, Adaptive one-factor-at-a-time experimentation and expected value of improvement. Technometrics 48(3), 418–431 (2006)MathSciNetCrossRef D.D. Frey, H. Wang, Adaptive one-factor-at-a-time experimentation and expected value of improvement. Technometrics 48(3), 418–431 (2006)MathSciNetCrossRef
23.
Zurück zum Zitat G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm. Aust. J. Mech. Eng. 14(3), 182–198 (2016)CrossRef G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm. Aust. J. Mech. Eng. 14(3), 182–198 (2016)CrossRef
24.
Zurück zum Zitat G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling in squeeze casting process-present state and future perspectives. Adv. Autom. Eng. 4(1), 1–9 (2015) G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling in squeeze casting process-present state and future perspectives. Adv. Autom. Eng. 4(1), 1–9 (2015)
25.
Zurück zum Zitat R.T. Coelho, E.G. Ng, M.A. Elbestawi, Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions. Int. J. Mach. Tools Manuf. 47(2), 263–272 (2007)CrossRef R.T. Coelho, E.G. Ng, M.A. Elbestawi, Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions. Int. J. Mach. Tools Manuf. 47(2), 263–272 (2007)CrossRef
26.
Zurück zum Zitat J.L. Li, L.L. Jing, M. Chen, An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11. J. Mater. Process. Technol. 209(9), 4515–4520 (2009)CrossRef J.L. Li, L.L. Jing, M. Chen, An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11. J. Mater. Process. Technol. 209(9), 4515–4520 (2009)CrossRef
27.
Zurück zum Zitat J. Lorentzon, N. Järvstråt, Modelling tool wear in cemented-carbide machining alloy 718. Int. J. Mach. Tools Manuf. 48(10), 1072–1080 (2008)CrossRef J. Lorentzon, N. Järvstråt, Modelling tool wear in cemented-carbide machining alloy 718. Int. J. Mach. Tools Manuf. 48(10), 1072–1080 (2008)CrossRef
28.
Zurück zum Zitat H.J. Hu, W.J. Huang, Studies on wears of ultrafine-grained ceramic tool and common ceramic tool during hard turning using Archard wear model. Int. J. Adv. Manuf. Technol. 69(1–4), 31–39 (2013)CrossRef H.J. Hu, W.J. Huang, Studies on wears of ultrafine-grained ceramic tool and common ceramic tool during hard turning using Archard wear model. Int. J. Adv. Manuf. Technol. 69(1–4), 31–39 (2013)CrossRef
29.
Zurück zum Zitat D.M. Kim, V. Bajpai, B.H. Kim, H.W. Park, Finite element modeling of hard turning process via a micro-textured tool. Int. J. Adv. Manuf. Technol. 78(9–12), 1393–1405 (2015)CrossRef D.M. Kim, V. Bajpai, B.H. Kim, H.W. Park, Finite element modeling of hard turning process via a micro-textured tool. Int. J. Adv. Manuf. Technol. 78(9–12), 1393–1405 (2015)CrossRef
30.
Zurück zum Zitat C.S. Kumar, S.K. Patel, Application of surface modification techniques during hard turning: present work and future prospects. Int. J. Refract Metal Hard Mater. 76, 112–127 (2018)CrossRef C.S. Kumar, S.K. Patel, Application of surface modification techniques during hard turning: present work and future prospects. Int. J. Refract Metal Hard Mater. 76, 112–127 (2018)CrossRef
31.
Zurück zum Zitat C.S. Kumar, S.K. Patel, Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surf. Coat. Technol. 334, 509–525 (2018)CrossRef C.S. Kumar, S.K. Patel, Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surf. Coat. Technol. 334, 509–525 (2018)CrossRef
32.
Zurück zum Zitat L. Ma, C. Li, J. Chen, W. Li, Y. Tan, C. Wang, Y. Zhou, Prediction model and simulation of cutting force in turning hard-brittle materials. Int. J. Adv. Manuf. Technol. 91(1–4), 165–174 (2017)CrossRef L. Ma, C. Li, J. Chen, W. Li, Y. Tan, C. Wang, Y. Zhou, Prediction model and simulation of cutting force in turning hard-brittle materials. Int. J. Adv. Manuf. Technol. 91(1–4), 165–174 (2017)CrossRef
33.
Zurück zum Zitat C. Shet, X. Deng, Residual stresses and strains in orthogonal metal cutting. Int. J. Mach. Tools Manuf. 43(6), 573–587 (2003)CrossRef C. Shet, X. Deng, Residual stresses and strains in orthogonal metal cutting. Int. J. Mach. Tools Manuf. 43(6), 573–587 (2003)CrossRef
34.
Zurück zum Zitat K. Li, X.L. Gao, J.W. Sutherland, Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J. Mater. Process. Technol. 127(3), 309–324 (2002)CrossRef K. Li, X.L. Gao, J.W. Sutherland, Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J. Mater. Process. Technol. 127(3), 309–324 (2002)CrossRef
35.
Zurück zum Zitat F. Akbar, P.T. Mativenga, M.A. Sheikh, An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. Int. J. Adv. Manuf. Technol. 46(5–8), 491–507 (2010)CrossRef F. Akbar, P.T. Mativenga, M.A. Sheikh, An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. Int. J. Adv. Manuf. Technol. 46(5–8), 491–507 (2010)CrossRef
36.
Zurück zum Zitat A. Qasim, S. Nisar, A. Shah, M.S. Khalid, M.A. Sheikh, Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simul. Model. Pract. Theory 59, 36–51 (2015)CrossRef A. Qasim, S. Nisar, A. Shah, M.S. Khalid, M.A. Sheikh, Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simul. Model. Pract. Theory 59, 36–51 (2015)CrossRef
37.
Zurück zum Zitat M.E. Korkmaz, M. Günay, Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arab. J. Sci. Eng. (2018), pp. 1–8 M.E. Korkmaz, M. Günay, Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arab. J. Sci. Eng. (2018), pp. 1–8
38.
Zurück zum Zitat S. Benlahmidi, H. Aouici, F. Boutaghane, A. Khellaf, B. Fnides, M.A. Yallese, Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools. Int. J. Adv. Manuf. Technol. 89(1–4), 803–820 (2017)CrossRef S. Benlahmidi, H. Aouici, F. Boutaghane, A. Khellaf, B. Fnides, M.A. Yallese, Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools. Int. J. Adv. Manuf. Technol. 89(1–4), 803–820 (2017)CrossRef
39.
Zurück zum Zitat P. Kumar, S. Chauhan, C. Pruncu, M. Gupta, D. Pimenov, M. Mia, H. Gill, Influence of different grades of CBN inserts on cutting force and surface roughness of AISI H13 die tool steel during hard turning operation. Materials 12(1), 177 (2019)CrossRef P. Kumar, S. Chauhan, C. Pruncu, M. Gupta, D. Pimenov, M. Mia, H. Gill, Influence of different grades of CBN inserts on cutting force and surface roughness of AISI H13 die tool steel during hard turning operation. Materials 12(1), 177 (2019)CrossRef
40.
Zurück zum Zitat G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces (Wiley & Sons, 1987) G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces (Wiley & Sons, 1987)
41.
Zurück zum Zitat E. Budak, Y. Altintas, E.J.A. Armarego, Prediction of milling force coefficients from orthogonal cutting data. J. Manuf. Sci. Eng. 118(2), 216–224 (1996)CrossRef E. Budak, Y. Altintas, E.J.A. Armarego, Prediction of milling force coefficients from orthogonal cutting data. J. Manuf. Sci. Eng. 118(2), 216–224 (1996)CrossRef
42.
Zurück zum Zitat A.S. More, W. Jiang, W.D. Brown, A.P. Malshe, Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. J. Mater. Process. Technol. 180(1–3), 253–262 (2006)CrossRef A.S. More, W. Jiang, W.D. Brown, A.P. Malshe, Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. J. Mater. Process. Technol. 180(1–3), 253–262 (2006)CrossRef
43.
Zurück zum Zitat J.A. Arsecularatne, L.C. Zhang, C. Montross, P. Mathew, On machining of hardened AISI D2 steel with PCBN tools. J. Mater. Process. Technol. 171(2), 244–252 (2006)CrossRef J.A. Arsecularatne, L.C. Zhang, C. Montross, P. Mathew, On machining of hardened AISI D2 steel with PCBN tools. J. Mater. Process. Technol. 171(2), 244–252 (2006)CrossRef
44.
Zurück zum Zitat Y.K. Chou, C.J. Evans, M.M. Barash, Experimental investigation on CBN turning of hardened AISI 52100 steel. J. Mater. Process. Technol. 124(3), 274–283 (2002)CrossRef Y.K. Chou, C.J. Evans, M.M. Barash, Experimental investigation on CBN turning of hardened AISI 52100 steel. J. Mater. Process. Technol. 124(3), 274–283 (2002)CrossRef
45.
Zurück zum Zitat T.G. Dawson, T.R. Kurfess, Machining hardened steel with ceramic-coated and uncoated CBN cutting tools. Soc. Manuf. Eng. 156, 1–7 (2002) T.G. Dawson, T.R. Kurfess, Machining hardened steel with ceramic-coated and uncoated CBN cutting tools. Soc. Manuf. Eng. 156, 1–7 (2002)
46.
Zurück zum Zitat V.G. Navas, I. Ferreres, J.A. Marañón, C. Garcia-Rosales, J.G. Sevillano, Electro-discharge machining (EDM) versus hard turning and grinding—Comparison of residual stresses and surface integrity generated in AISI O1 tool steel. J. Mater. Process. Technol. 195(1–3), 186–194 (2008)CrossRef V.G. Navas, I. Ferreres, J.A. Marañón, C. Garcia-Rosales, J.G. Sevillano, Electro-discharge machining (EDM) versus hard turning and grinding—Comparison of residual stresses and surface integrity generated in AISI O1 tool steel. J. Mater. Process. Technol. 195(1–3), 186–194 (2008)CrossRef
47.
Zurück zum Zitat M.A. Kamely, M.Y. Noordin, V.C. Venkatesh, The effect of multiple pass cutting on surface integrity when hard turning of AISI D2 cold work tool steel. Int. J. Precis. Technol. 1(1), 97–105 (2007)CrossRef M.A. Kamely, M.Y. Noordin, V.C. Venkatesh, The effect of multiple pass cutting on surface integrity when hard turning of AISI D2 cold work tool steel. Int. J. Precis. Technol. 1(1), 97–105 (2007)CrossRef
48.
Zurück zum Zitat H.A. Kishawy, M.A. Elbestawi, Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 215(6), 755–767 (2001)CrossRef H.A. Kishawy, M.A. Elbestawi, Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 215(6), 755–767 (2001)CrossRef
49.
Zurück zum Zitat M. Liu, J.I. Takagi, A. Tsukuda, Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J. Mater. Process. Technol. 150(3), 234–241 (2004)CrossRef M. Liu, J.I. Takagi, A. Tsukuda, Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J. Mater. Process. Technol. 150(3), 234–241 (2004)CrossRef
50.
Zurück zum Zitat S.K. Khrais, Y.J. Lin, Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear 262(1–2), 64–69 (2007)CrossRef S.K. Khrais, Y.J. Lin, Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear 262(1–2), 64–69 (2007)CrossRef
51.
Zurück zum Zitat C.K. Toh, Tool life and tool wear during high-speed rough milling using alternative cutter path strategies. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 217(9), 1295–1304 (2003)CrossRef C.K. Toh, Tool life and tool wear during high-speed rough milling using alternative cutter path strategies. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 217(9), 1295–1304 (2003)CrossRef
52.
Zurück zum Zitat T. Ozel, T.K. Hsu, E. Zeren, Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manuf. Technol. 25(3–4), 262–269 (2005)CrossRef T. Ozel, T.K. Hsu, E. Zeren, Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manuf. Technol. 25(3–4), 262–269 (2005)CrossRef
53.
Zurück zum Zitat J.M. Zhou, H. Walter, M. Andersson, J.E. Stahl, Effect of chamfer angle on wear of PCBN cutting tool. Int. J. Mach. Tools Manuf. 43(3), 301–305 (2003)CrossRef J.M. Zhou, H. Walter, M. Andersson, J.E. Stahl, Effect of chamfer angle on wear of PCBN cutting tool. Int. J. Mach. Tools Manuf. 43(3), 301–305 (2003)CrossRef
54.
Zurück zum Zitat R. Meyer, J. Köhler, B. Denkena, Influence of the tool corner radius on the tool wear and process forces during hard turning. Int. J. Adv. Manuf. Technol. 58(9–12), 933–940 (2012)CrossRef R. Meyer, J. Köhler, B. Denkena, Influence of the tool corner radius on the tool wear and process forces during hard turning. Int. J. Adv. Manuf. Technol. 58(9–12), 933–940 (2012)CrossRef
55.
Zurück zum Zitat J. Bhaskaran, M. Murugan, N. Balashanmugam, M. Chellamalai, Monitoring of hard turning using acoustic emission signal. J. Mech. Sci. Technol. 26(2), 609–615 (2012)CrossRef J. Bhaskaran, M. Murugan, N. Balashanmugam, M. Chellamalai, Monitoring of hard turning using acoustic emission signal. J. Mech. Sci. Technol. 26(2), 609–615 (2012)CrossRef
56.
Zurück zum Zitat K. Aslantas, I. Ucun, A. Cicek, Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel. Wear 274, 442–451 (2012)CrossRef K. Aslantas, I. Ucun, A. Cicek, Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel. Wear 274, 442–451 (2012)CrossRef
57.
Zurück zum Zitat W.B. Rashid, S. Goel, X. Luo, J.M. Ritchie, An experimental investigation for the improvement of attainable surface roughness during hard turning process. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 338–342 (2013)CrossRef W.B. Rashid, S. Goel, X. Luo, J.M. Ritchie, An experimental investigation for the improvement of attainable surface roughness during hard turning process. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 338–342 (2013)CrossRef
58.
Zurück zum Zitat A.K. Sahoo, B. Sahoo, Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement 45(8), 2153–2165 (2012)CrossRef A.K. Sahoo, B. Sahoo, Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement 45(8), 2153–2165 (2012)CrossRef
59.
Zurück zum Zitat R. Ferreira, J. Řehoř, C.H. Lauro, D. Carou, J.P. Davim, Analysis of the hard turning of AISI H13 steel with ceramic tools based on tool geometry: surface roughness, tool wear and their relation. J. Braz. Soc. Mech. Sci. Eng. 38(8), 2413–2420 (2016)CrossRef R. Ferreira, J. Řehoř, C.H. Lauro, D. Carou, J.P. Davim, Analysis of the hard turning of AISI H13 steel with ceramic tools based on tool geometry: surface roughness, tool wear and their relation. J. Braz. Soc. Mech. Sci. Eng. 38(8), 2413–2420 (2016)CrossRef
60.
Zurück zum Zitat G. Zheng, R. Xu, X. Cheng, G. Zhao, L. Li, J. Zhao, Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement 125, 99–108 (2018)CrossRef G. Zheng, R. Xu, X. Cheng, G. Zhao, L. Li, J. Zhao, Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement 125, 99–108 (2018)CrossRef
61.
Zurück zum Zitat I. Lazoglu, K. Buyukhatipoglu, H. Kratz, F. Klocke, Forces and temperatures in hard turning. Mach. Sci. Technol. 10(2), 157–179 (2006)CrossRef I. Lazoglu, K. Buyukhatipoglu, H. Kratz, F. Klocke, Forces and temperatures in hard turning. Mach. Sci. Technol. 10(2), 157–179 (2006)CrossRef
62.
Zurück zum Zitat A. Srithar, K. Palanikumar, B. Durgaprasad, Experimental investigation and surface roughness analysis on hard turning of AISI D2 steel using coated carbide insert. Procedia Eng. 97, 72–77 (2014)CrossRef A. Srithar, K. Palanikumar, B. Durgaprasad, Experimental investigation and surface roughness analysis on hard turning of AISI D2 steel using coated carbide insert. Procedia Eng. 97, 72–77 (2014)CrossRef
63.
Zurück zum Zitat F. Puh, T. Šegota, Z. Jurković, Optimization of hard turning process parameters with PCBN tool based on the Taguchi method. Tehnički vjesnik 19(2), 415–419 (2012) F. Puh, T. Šegota, Z. Jurković, Optimization of hard turning process parameters with PCBN tool based on the Taguchi method. Tehnički vjesnik 19(2), 415–419 (2012)
64.
Zurück zum Zitat R. Suresh, S. Basavarajappa, G.L. Samuel, Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement 45(7), 1872–1884 (2012)CrossRef R. Suresh, S. Basavarajappa, G.L. Samuel, Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement 45(7), 1872–1884 (2012)CrossRef
65.
Zurück zum Zitat H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement 45(3), 344–353 (2012)CrossRef H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement 45(3), 344–353 (2012)CrossRef
66.
Zurück zum Zitat H. Aouici, M.A. Yallese, A. Belbah, M.F. Ameur, M. Elbah, Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool. Sadhana 38(3), 429–445 (2013)CrossRef H. Aouici, M.A. Yallese, A. Belbah, M.F. Ameur, M. Elbah, Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool. Sadhana 38(3), 429–445 (2013)CrossRef
67.
Zurück zum Zitat Z. Hessainia, A. Belbah, M.A. Yallese, T. Mabrouki, J.F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5), 1671–1681 (2013)CrossRef Z. Hessainia, A. Belbah, M.A. Yallese, T. Mabrouki, J.F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5), 1671–1681 (2013)CrossRef
68.
Zurück zum Zitat M. Elbah, M.A. Yallese, H. Aouici, T. Mabrouki, J.F. Rigal, Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement 46(9), 3041–3056 (2013)CrossRef M. Elbah, M.A. Yallese, H. Aouici, T. Mabrouki, J.F. Rigal, Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement 46(9), 3041–3056 (2013)CrossRef
69.
Zurück zum Zitat S. Saini, I.S. Ahuja, V.S. Sharma, Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int. J. Adv. Manuf. Technol. 65(5–8), 667–678 (2013)CrossRef S. Saini, I.S. Ahuja, V.S. Sharma, Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int. J. Adv. Manuf. Technol. 65(5–8), 667–678 (2013)CrossRef
70.
Zurück zum Zitat E. Yucel, M. Gunay, Modelling and optimization of the cutting conditions in hard turning of high-alloy white cast iron (Ni-Hard). Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 227(10), 2280–2290 (2013)CrossRef E. Yucel, M. Gunay, Modelling and optimization of the cutting conditions in hard turning of high-alloy white cast iron (Ni-Hard). Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 227(10), 2280–2290 (2013)CrossRef
71.
Zurück zum Zitat H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int. J. Adv. Manuf. Technol. 73(9–12), 1775–1788 (2014)CrossRef H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int. J. Adv. Manuf. Technol. 73(9–12), 1775–1788 (2014)CrossRef
72.
Zurück zum Zitat M.Y. Noordin, D. Kurniawan, Y.C. Tang, K. Muniswaran, Feasibility of mild hard turning of stainless steel using coated carbide tool. Int. J. Adv. Manuf. Technol. 60(9–12), 853–863 (2012)CrossRef M.Y. Noordin, D. Kurniawan, Y.C. Tang, K. Muniswaran, Feasibility of mild hard turning of stainless steel using coated carbide tool. Int. J. Adv. Manuf. Technol. 60(9–12), 853–863 (2012)CrossRef
73.
Zurück zum Zitat J.S. Dureja, R. Singh, M.S. Bhatti, Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods. Prod. Manuf. Res. 2(1), 767–783 (2014) J.S. Dureja, R. Singh, M.S. Bhatti, Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods. Prod. Manuf. Res. 2(1), 767–783 (2014)
74.
Zurück zum Zitat I. Meddour, M.A. Yallese, R. Khattabi, M. Elbah, L. Boulanouar, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. Int. J. Adv. Manuf. Technol. 77(5–8), 1387–1399 (2015)CrossRef I. Meddour, M.A. Yallese, R. Khattabi, M. Elbah, L. Boulanouar, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. Int. J. Adv. Manuf. Technol. 77(5–8), 1387–1399 (2015)CrossRef
75.
Zurück zum Zitat S.R. Das, D. Dhupal, A. Kumar, Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts. J. Mech. Sci. Technol. 29(10), 4329–4340 (2015)CrossRef S.R. Das, D. Dhupal, A. Kumar, Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts. J. Mech. Sci. Technol. 29(10), 4329–4340 (2015)CrossRef
76.
Zurück zum Zitat F. Jafarian, H. Amirabadi, J. Sadri, Experimental measurement and optimization of tensile residual stress in turning process of Inconel718 superalloy. Measurement 63, 1–10 (2015)CrossRef F. Jafarian, H. Amirabadi, J. Sadri, Experimental measurement and optimization of tensile residual stress in turning process of Inconel718 superalloy. Measurement 63, 1–10 (2015)CrossRef
77.
Zurück zum Zitat H. Aouici, B. Fnides, M. Elbah, S. Benlahmidi, H. Bensouilah, M. Yallese, Surface roughness evaluation of various cutting materials in hard turning of AISI H11. Int. J. Ind. Eng. Comput. 7(2), 339–352 (2016) H. Aouici, B. Fnides, M. Elbah, S. Benlahmidi, H. Bensouilah, M. Yallese, Surface roughness evaluation of various cutting materials in hard turning of AISI H11. Int. J. Ind. Eng. Comput. 7(2), 339–352 (2016)
78.
Zurück zum Zitat P. Revel, N. Jouini, G. Thoquenne, F. Lefebvre, High precision hard turning of AISI 52100 bearing steel. Prec. Eng. 43, 24–33 (2016)CrossRef P. Revel, N. Jouini, G. Thoquenne, F. Lefebvre, High precision hard turning of AISI 52100 bearing steel. Prec. Eng. 43, 24–33 (2016)CrossRef
79.
Zurück zum Zitat M. Mia, N.R. Dhar, Response surface and neural network based predictive models of cutting temperature in hard turning. J. Adv. Res. 7(6), 1035–1044 (2016)CrossRef M. Mia, N.R. Dhar, Response surface and neural network based predictive models of cutting temperature in hard turning. J. Adv. Res. 7(6), 1035–1044 (2016)CrossRef
80.
Zurück zum Zitat H. Zahia, Y. Athmane, B. Lakhdar, M. Tarek, On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. Int. J. Ind. Eng. Comput. 6(2), 267–284 (2015) H. Zahia, Y. Athmane, B. Lakhdar, M. Tarek, On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. Int. J. Ind. Eng. Comput. 6(2), 267–284 (2015)
81.
Zurück zum Zitat L. Tang, Z. Cheng, J. Huang, C. Gao, W. Chang, Empirical models for cutting forces in finish dry hard turning of hardened tool steel at different hardness levels. Int. J. Adv. Manuf. Technol. 76(1–4), 691–703 (2015)CrossRef L. Tang, Z. Cheng, J. Huang, C. Gao, W. Chang, Empirical models for cutting forces in finish dry hard turning of hardened tool steel at different hardness levels. Int. J. Adv. Manuf. Technol. 76(1–4), 691–703 (2015)CrossRef
82.
Zurück zum Zitat M. Mia, N.R. Dhar, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. Int. J. Adv. Manuf. Technol. 88(1–4), 739–753 (2017)CrossRef M. Mia, N.R. Dhar, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. Int. J. Adv. Manuf. Technol. 88(1–4), 739–753 (2017)CrossRef
83.
Zurück zum Zitat A. Khellaf, H. Aouici, S. Smaiah, S. Boutabba, M.A. Yallese, M. Elbah, Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography. Int. J. Adv. Manuf. Technol. 89(1–4), 333–354 (2017)CrossRef A. Khellaf, H. Aouici, S. Smaiah, S. Boutabba, M.A. Yallese, M. Elbah, Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography. Int. J. Adv. Manuf. Technol. 89(1–4), 333–354 (2017)CrossRef
84.
Zurück zum Zitat A. Panda, S.R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation. Proc. Integr. Optimization Sustain. 1(4), 237–249 (2017)CrossRef A. Panda, S.R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation. Proc. Integr. Optimization Sustain. 1(4), 237–249 (2017)CrossRef
85.
Zurück zum Zitat O. Zerti, M.A. Yallese, R. Khettabi, K. Chaoui, T. Mabrouki, Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. Int. J. Adv. Manuf. Technol. 89(5–8), 1915–1934 (2017)CrossRef O. Zerti, M.A. Yallese, R. Khettabi, K. Chaoui, T. Mabrouki, Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. Int. J. Adv. Manuf. Technol. 89(5–8), 1915–1934 (2017)CrossRef
86.
Zurück zum Zitat M. Mia, N.R. Dhar, Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arab. J. Sci. Eng. 43(3), 1125–1136 (2018)CrossRef M. Mia, N.R. Dhar, Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arab. J. Sci. Eng. 43(3), 1125–1136 (2018)CrossRef
88.
Zurück zum Zitat M. Kaladhar, Evaluation of hard coating materials performance on machinability issues and material removal rate during turning operations. Measurement 135, 493–502 (2019)CrossRef M. Kaladhar, Evaluation of hard coating materials performance on machinability issues and material removal rate during turning operations. Measurement 135, 493–502 (2019)CrossRef
89.
Zurück zum Zitat J. Jena, A. Panda, A.K. Behera, P.C. Jena, S.R. Das, D. Dhupal, Modeling and optimization of surface roughness in hard turning of AISI 4340 steel with coated ceramic tool, in Innovation in Materials Science and Engineering (Springer, Singapore, 2019), pp. 151–160 J. Jena, A. Panda, A.K. Behera, P.C. Jena, S.R. Das, D. Dhupal, Modeling and optimization of surface roughness in hard turning of AISI 4340 steel with coated ceramic tool, in Innovation in Materials Science and Engineering (Springer, Singapore, 2019), pp. 151–160
90.
Zurück zum Zitat A. Alok, M. Das, Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019)CrossRef A. Alok, M. Das, Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019)CrossRef
91.
Zurück zum Zitat M.S. Phadke, Quality Enginuring using Robust Design (Prentice Hall, New Jersey, 1989) M.S. Phadke, Quality Enginuring using Robust Design (Prentice Hall, New Jersey, 1989)
92.
Zurück zum Zitat G. Taguchi, Y. Wu, Introduction to off-line quality control, Central Japan quality control association. Avail. Am. Suppl. Inst., vol. 32100 (1980) G. Taguchi, Y. Wu, Introduction to off-line quality control, Central Japan quality control association. Avail. Am. Suppl. Inst., vol. 32100 (1980)
93.
Zurück zum Zitat K.L. Tsui, An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions 24(5), 44–57 (1992)CrossRef K.L. Tsui, An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions 24(5), 44–57 (1992)CrossRef
94.
Zurück zum Zitat P.J. Ross, P.J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter And Tolerance Design (No. TS156 R12) (McGraw-Hill, New York, 1988) P.J. Ross, P.J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter And Tolerance Design (No. TS156 R12) (McGraw-Hill, New York, 1988)
95.
Zurück zum Zitat R. Unal, E.B. Dean, Taguchi Approach To Design Optimization for Quality and Cost: An Overview R. Unal, E.B. Dean, Taguchi Approach To Design Optimization for Quality and Cost: An Overview
96.
Zurück zum Zitat W.M. Carlyle, D.C. Montgomery, G.C. Runger, Optimization problems and methods in quality control and improvement. J. Qual. Technol. 32(1), 1–17 (2000)CrossRef W.M. Carlyle, D.C. Montgomery, G.C. Runger, Optimization problems and methods in quality control and improvement. J. Qual. Technol. 32(1), 1–17 (2000)CrossRef
97.
Zurück zum Zitat G.E. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. Royal Stat. Soc. Ser. B (Methodol.) 13(1), 1–38 (1951)MathSciNetMATH G.E. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. Royal Stat. Soc. Ser. B (Methodol.) 13(1), 1–38 (1951)MathSciNetMATH
98.
Zurück zum Zitat D.C. Montgomery, Design and Analysis of Experiments, vol. 52 (Wiley & Sons, 2001), pp. 218–286 D.C. Montgomery, Design and Analysis of Experiments, vol. 52 (Wiley & Sons, 2001), pp. 218–286
99.
Zurück zum Zitat G.C.M. Patel, P. Krishna, M.B. Parappagoudar, Squeeze casting process modeling by a conventional statistical regression analysis approach. Appl. Math. Modell. 40(15–16), 6869–6888 (2016)MATHCrossRef G.C.M. Patel, P. Krishna, M.B. Parappagoudar, Squeeze casting process modeling by a conventional statistical regression analysis approach. Appl. Math. Modell. 40(15–16), 6869–6888 (2016)MATHCrossRef
100.
Zurück zum Zitat L.A. Trinca, S.G. Gilmour, Difference variance dispersion graphs for comparing response surface designs with applications in food technology. J. Royal Stat. Soc. Ser. C (Appl. Stat.) 48(4), 441–455 (1999)MATHCrossRef L.A. Trinca, S.G. Gilmour, Difference variance dispersion graphs for comparing response surface designs with applications in food technology. J. Royal Stat. Soc. Ser. C (Appl. Stat.) 48(4), 441–455 (1999)MATHCrossRef
101.
Zurück zum Zitat R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)CrossRef R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)CrossRef
102.
Zurück zum Zitat R.V. Rao, Single-and multi-objective optimization of casting processes using Jaya algorithm and its variants, in Jaya: An Advanced Optimization Algorithm and its Engineering Applications (Springer, Cham, 2019), pp. 273–289 R.V. Rao, Single-and multi-objective optimization of casting processes using Jaya algorithm and its variants, in Jaya: An Advanced Optimization Algorithm and its Engineering Applications (Springer, Cham, 2019), pp. 273–289
103.
Zurück zum Zitat G.R. Chate, G.C.M. Patel, A.S. Deshpande, M.B. Parappagoudar, Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 232(5), 579–598 (2018)CrossRef G.R. Chate, G.C.M. Patel, A.S. Deshpande, M.B. Parappagoudar, Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 232(5), 579–598 (2018)CrossRef
104.
Zurück zum Zitat G.R. Chate, G.C.M. Patel, S.B. Bhushan, M.B. Parappagoudar, A.S. Deshpande, Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive. J. Braz. Soc. Mech. Sci. Eng. 41(4), 183 (2019)CrossRef G.R. Chate, G.C.M. Patel, S.B. Bhushan, M.B. Parappagoudar, A.S. Deshpande, Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive. J. Braz. Soc. Mech. Sci. Eng. 41(4), 183 (2019)CrossRef
105.
Zurück zum Zitat G.C.M. Patel, P. Krishna, P.R. Vundavilli, M.B. Parappagoudar, Multi-objective optimization of squeeze casting process using genetic algorithm and particle swarm optimization. Arch. Foundry Eng. 16(3), 172–186 (2016)CrossRef G.C.M. Patel, P. Krishna, P.R. Vundavilli, M.B. Parappagoudar, Multi-objective optimization of squeeze casting process using genetic algorithm and particle swarm optimization. Arch. Foundry Eng. 16(3), 172–186 (2016)CrossRef
106.
Zurück zum Zitat G.C.M. Patel, P. Krishna, M.B. Parappagoudar, P.R. Vundavilli, Multi-objective optimization of squeeze casting process using evolutionary algorithms. Int. J. Swarm Intell. Res. (IJSIR) 7(1), 55–74 (2016)CrossRef G.C.M. Patel, P. Krishna, M.B. Parappagoudar, P.R. Vundavilli, Multi-objective optimization of squeeze casting process using evolutionary algorithms. Int. J. Swarm Intell. Res. (IJSIR) 7(1), 55–74 (2016)CrossRef
107.
Zurück zum Zitat K. Bouacha, M.A. Yallese, T. Mabrouki, J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int. J. Refract. Metals Hard Mater. 28(3), 349–361 (2010)CrossRef K. Bouacha, M.A. Yallese, T. Mabrouki, J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int. J. Refract. Metals Hard Mater. 28(3), 349–361 (2010)CrossRef
108.
Zurück zum Zitat G. Bartarya, S.K. Choudhury, Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1, 651–656 (2012)CrossRef G. Bartarya, S.K. Choudhury, Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1, 651–656 (2012)CrossRef
109.
Zurück zum Zitat V.S. Sharma, S. Dhiman, R. Sehgal, S.K. Sharma, Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 19(4), 473–483 (2008)CrossRef V.S. Sharma, S. Dhiman, R. Sehgal, S.K. Sharma, Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 19(4), 473–483 (2008)CrossRef
110.
Zurück zum Zitat P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J. Mater. Process. Technol. 147(2), 181–184 (2004)CrossRef P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J. Mater. Process. Technol. 147(2), 181–184 (2004)CrossRef
111.
Zurück zum Zitat V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater. Manuf. Process. 24(12), 1373–1382 (2009)CrossRef V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater. Manuf. Process. 24(12), 1373–1382 (2009)CrossRef
112.
Zurück zum Zitat J. Hua, R. Shivpuri, X. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, T.R. Watkins, Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mater. Sci. Eng. A 394(1–2), 238–248 (2005)CrossRef J. Hua, R. Shivpuri, X. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, T.R. Watkins, Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mater. Sci. Eng. A 394(1–2), 238–248 (2005)CrossRef
113.
Zurück zum Zitat A. Madariaga, J.A. Esnaola, E. Fernandez, P.J. Arrazola, A. Garay, F. Morel, Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int. J. Adv. Manuf. Technol. 71(9–12), 1587–1598 (2014)CrossRef A. Madariaga, J.A. Esnaola, E. Fernandez, P.J. Arrazola, A. Garay, F. Morel, Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int. J. Adv. Manuf. Technol. 71(9–12), 1587–1598 (2014)CrossRef
114.
Zurück zum Zitat M. Dogra, V.S. Sharma, J. Dureja, Effect of tool geometry variation on finish turning-a review. J. Eng. Sci. Technol. Rev. 4(1), 10–13 (2011)CrossRef M. Dogra, V.S. Sharma, J. Dureja, Effect of tool geometry variation on finish turning-a review. J. Eng. Sci. Technol. Rev. 4(1), 10–13 (2011)CrossRef
115.
Zurück zum Zitat W. König, R. Komanduri, H.K. Toenshoff, G. Ackershott, Machining of hard materials. CIRP Annals 33(2), 417–427 (1984)CrossRef W. König, R. Komanduri, H.K. Toenshoff, G. Ackershott, Machining of hard materials. CIRP Annals 33(2), 417–427 (1984)CrossRef
116.
Zurück zum Zitat T. Ozel, Y. Karpat, A. Srivastava, Hard turning with variable micro-geometry PcBN tools. CIRP Ann. 57(1), 73–76 (2008)CrossRef T. Ozel, Y. Karpat, A. Srivastava, Hard turning with variable micro-geometry PcBN tools. CIRP Ann. 57(1), 73–76 (2008)CrossRef
Metadaten
Titel
Studies on Machining of Hard Materials
verfasst von
Manjunath Patel G. C.
Ganesh R. Chate
Mahesh B. Parappagoudar
Kapil Gupta
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40102-3_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.