Skip to main content
Erschienen in: Journal of Materials Science 23/2018

02.08.2018 | Energy materials

Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylate-in situ reduced graphene oxide nanocomposites

verfasst von: Nisha Bagotia, Veena Choudhary, D. K. Sharma

Erschienen in: Journal of Materials Science | Ausgabe 23/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fabrication of the polymer/graphene nanocomposites with high electro-mechanical properties is very challenging approach these days against the electromagnetic pollution. This paper mainly focused on the preparation of in situ reduced graphene oxide (IrGO) during melt blending of polycarbonate/ethylene-methyl acrylate [PC/EMA (95/5 wt/wt)] blend and graphene oxide to achieve enhanced electro-mechanical properties of the nanocomposites. It involves the reduction mechanism of graphene oxide with in the polymer matrix. The nanocomposites showed a significant improvement in mechanical stiffness owing to efficient stress transfer from matrix to filler. PC/EMA–IrGO nanocomposites with 15 phr loading of GO showed highest electromagnetic shielding effectiveness (− 30 dB) over the frequency range of X-band (8.2–12.4 GHz). This promising strategy of developing single-step PC/EMA–IrGO nanocomposites with enhanced electro-mechanical properties can also be used in large-scale technical and commercial applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef
2.
Zurück zum Zitat Liu J, Xue Y, Zhang M, Dai L (2012) Graphene-based materials for energy applications. MRS Bull 37(12):1265–1272CrossRef Liu J, Xue Y, Zhang M, Dai L (2012) Graphene-based materials for energy applications. MRS Bull 37(12):1265–1272CrossRef
3.
Zurück zum Zitat Ovid’Ko I (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34(1):1–11 Ovid’Ko I (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34(1):1–11
4.
Zurück zum Zitat Ferrari AC, Bonaccorso F, Fal’Ko V, Novoselov KS, Roche S, Bøggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11):4598–4810CrossRef Ferrari AC, Bonaccorso F, Fal’Ko V, Novoselov KS, Roche S, Bøggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11):4598–4810CrossRef
5.
Zurück zum Zitat Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef
6.
Zurück zum Zitat Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Sci Rep 3:1–7 Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Sci Rep 3:1–7
7.
Zurück zum Zitat Yooness M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4(12):7211–7220CrossRef Yooness M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4(12):7211–7220CrossRef
8.
Zurück zum Zitat Zhang X, Zhou Z, Lu C (2015) Reductant-and stabilizer-free synthesis of graphene–polyaniline aqueous colloids for potential waterborne conductive coating application. RSC Adv 5(26):20186–20192CrossRef Zhang X, Zhou Z, Lu C (2015) Reductant-and stabilizer-free synthesis of graphene–polyaniline aqueous colloids for potential waterborne conductive coating application. RSC Adv 5(26):20186–20192CrossRef
9.
Zurück zum Zitat Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z et al (2011) Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 115(17):8753–8758CrossRef Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z et al (2011) Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 115(17):8753–8758CrossRef
10.
Zurück zum Zitat Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y et al (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927CrossRef Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y et al (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927CrossRef
11.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450CrossRef Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450CrossRef
12.
Zurück zum Zitat Cao J, Zhang X, Wu X, Wang S, Lu C (2016) Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohydr Polym 140:88–95CrossRef Cao J, Zhang X, Wu X, Wang S, Lu C (2016) Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohydr Polym 140:88–95CrossRef
13.
Zurück zum Zitat Zhou Z, Zhang X, Wu X, Lu C (2016) Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application. Compos Sci Technol 125:1–8CrossRef Zhou Z, Zhang X, Wu X, Lu C (2016) Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application. Compos Sci Technol 125:1–8CrossRef
14.
Zurück zum Zitat Colonna S, Bernal M, Gavoci G, Gomez J, Novara C, Saracco G et al (2017) Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization. Mater Des 119:124–132CrossRef Colonna S, Bernal M, Gavoci G, Gomez J, Novara C, Saracco G et al (2017) Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization. Mater Des 119:124–132CrossRef
15.
Zurück zum Zitat Lee B-I, Jeong H, Byeon S-H (2013) Tunable color generation of transparent composite films reinforced with luminescent nanofillers. Chem Commun 49(97):11397–11399CrossRef Lee B-I, Jeong H, Byeon S-H (2013) Tunable color generation of transparent composite films reinforced with luminescent nanofillers. Chem Commun 49(97):11397–11399CrossRef
16.
Zurück zum Zitat Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J et al (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22(13):6088–6096CrossRef Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J et al (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22(13):6088–6096CrossRef
17.
Zurück zum Zitat Istrate OM, Paton KR, Khan U, O’Neill A, Bell AP, Coleman JN (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249CrossRef Istrate OM, Paton KR, Khan U, O’Neill A, Bell AP, Coleman JN (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249CrossRef
18.
Zurück zum Zitat Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl Mater Interfaces 3(8):3103–3109CrossRef Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through ππ stacking. ACS Appl Mater Interfaces 3(8):3103–3109CrossRef
19.
Zurück zum Zitat Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22(8):3637–3646CrossRef Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22(8):3637–3646CrossRef
20.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef
21.
22.
Zurück zum Zitat Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef
23.
Zurück zum Zitat Guo Q, Luo Y, Liu J, Zhang X, Lu C (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C 6(8):2139–2147CrossRef Guo Q, Luo Y, Liu J, Zhang X, Lu C (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C 6(8):2139–2147CrossRef
24.
Zurück zum Zitat Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669CrossRef Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669CrossRef
25.
Zurück zum Zitat Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32(22):1771–1789CrossRef Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32(22):1771–1789CrossRef
26.
Zurück zum Zitat Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H et al (2011) Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J Nanopart Res 13(2):869–878CrossRef Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H et al (2011) Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J Nanopart Res 13(2):869–878CrossRef
27.
Zurück zum Zitat Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30(4–5):316–327CrossRef Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30(4–5):316–327CrossRef
28.
Zurück zum Zitat Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301CrossRef Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301CrossRef
29.
Zurück zum Zitat Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15):3538–3543CrossRef Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15):3538–3543CrossRef
30.
Zurück zum Zitat Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233CrossRef Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233CrossRef
31.
Zurück zum Zitat Bielawski C, Dreyer D, Park S, Ruoff R (2010) The chemistry of grapheme oxide. Chem Soc Rev 39(1):228–240CrossRef Bielawski C, Dreyer D, Park S, Ruoff R (2010) The chemistry of grapheme oxide. Chem Soc Rev 39(1):228–240CrossRef
32.
Zurück zum Zitat Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef
33.
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7):2118–2122CrossRef Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7):2118–2122CrossRef
34.
Zurück zum Zitat Joshi A, Bajaj A, Singh R, Anand A, Alegaonkar P, Datar S (2015) Processing of graphene nanoribbon based hybrid composite for electromagnetic shielding. Compos B Eng 69:472–477CrossRef Joshi A, Bajaj A, Singh R, Anand A, Alegaonkar P, Datar S (2015) Processing of graphene nanoribbon based hybrid composite for electromagnetic shielding. Compos B Eng 69:472–477CrossRef
35.
Zurück zum Zitat Li M, Gao C, Hu H, Zhao Z (2013) Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure. Carbon 65:371–373CrossRef Li M, Gao C, Hu H, Zhao Z (2013) Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure. Carbon 65:371–373CrossRef
36.
Zurück zum Zitat Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F et al (2011) Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J Mater Chem 21(24):8612–8617CrossRef Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F et al (2011) Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J Mater Chem 21(24):8612–8617CrossRef
37.
Zurück zum Zitat Zheng D, Tang G, Zhang H-B, Yu Z-Z, Yavari F, Koratkar N et al (2012) In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos Sci Technol 72(2):284–289CrossRef Zheng D, Tang G, Zhang H-B, Yu Z-Z, Yavari F, Koratkar N et al (2012) In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos Sci Technol 72(2):284–289CrossRef
38.
Zurück zum Zitat Tang H, Ehlert GJ, Lin Y, Sodano HA (2011) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12(1):84–90CrossRef Tang H, Ehlert GJ, Lin Y, Sodano HA (2011) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12(1):84–90CrossRef
39.
Zurück zum Zitat Shen Y, Jing T, Ren W, Zhang J, Jiang Z-G, Yu Z-Z et al (2012) Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos Sci Technol 72(12):1430–1435CrossRef Shen Y, Jing T, Ren W, Zhang J, Jiang Z-G, Yu Z-Z et al (2012) Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos Sci Technol 72(12):1430–1435CrossRef
40.
Zurück zum Zitat Kim C-J, Khan W, Park S-Y (2011) Structural evolution of graphite oxide during heat treatment. Chem Phys Lett 511(1–3):110–115CrossRef Kim C-J, Khan W, Park S-Y (2011) Structural evolution of graphite oxide during heat treatment. Chem Phys Lett 511(1–3):110–115CrossRef
41.
Zurück zum Zitat You F, Wang D, Cao J, Li X, Dang ZM, Hu GH (2014) In situ thermal reduction of graphene oxide in a styrene–ethylene/butylene–styrene triblock copolymer via melt blending. Polym Int 63(1):93–99CrossRef You F, Wang D, Cao J, Li X, Dang ZM, Hu GH (2014) In situ thermal reduction of graphene oxide in a styrene–ethylene/butylene–styrene triblock copolymer via melt blending. Polym Int 63(1):93–99CrossRef
42.
Zurück zum Zitat Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2(01):58–63 Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2(01):58–63
43.
Zurück zum Zitat Bagotia N, Singh BP, Choudhary V, Sharma DK (2015) Excellent impact strength of ethylene-methyl acrylate copolymer toughened polycarbonate. RSC Adv 5(106):87589–87597CrossRef Bagotia N, Singh BP, Choudhary V, Sharma DK (2015) Excellent impact strength of ethylene-methyl acrylate copolymer toughened polycarbonate. RSC Adv 5(106):87589–87597CrossRef
44.
Zurück zum Zitat Bhawal P, Ganguly S, Das TK, Mondal S, Choudhury S, Das N (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA–IRGO nanocomposites through the in situ reduction of GO from melt blended EMA–GO composites. Compos B Eng 134:46–60CrossRef Bhawal P, Ganguly S, Das TK, Mondal S, Choudhury S, Das N (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA–IRGO nanocomposites through the in situ reduction of GO from melt blended EMA–GO composites. Compos B Eng 134:46–60CrossRef
45.
Zurück zum Zitat Li N, Huang Y, Du F, He X, Lin X, Gao H et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145CrossRef Li N, Huang Y, Du F, He X, Lin X, Gao H et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145CrossRef
46.
Zurück zum Zitat Park SH, Theilmann P, Yang K, Rao AM, Bandaru PR (2010) The influence of coiled nanostructure on the enhancement of dielectric constants and electromagnetic shielding efficiency in polymer composites. Appl Phys Lett 96(4):1–3 Park SH, Theilmann P, Yang K, Rao AM, Bandaru PR (2010) The influence of coiled nanostructure on the enhancement of dielectric constants and electromagnetic shielding efficiency in polymer composites. Appl Phys Lett 96(4):1–3
47.
Zurück zum Zitat Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196CrossRef Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196CrossRef
48.
Zurück zum Zitat Bagotia N, Choudhary V, Sharma D (2018) A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym Adv Technol 29(6):1547–1567CrossRef Bagotia N, Choudhary V, Sharma D (2018) A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym Adv Technol 29(6):1547–1567CrossRef
49.
Zurück zum Zitat Bagotia N, Choudhary V, Sharma DK (2017) Studies on toughened polycarbonate/multiwalled carbon nanotubes nanocomposites. Compos B Eng 124:101–110CrossRef Bagotia N, Choudhary V, Sharma DK (2017) Studies on toughened polycarbonate/multiwalled carbon nanotubes nanocomposites. Compos B Eng 124:101–110CrossRef
50.
Zurück zum Zitat Das N, Khastgir D, Chaki T, Chakraborty A (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos A Appl Sci Manuf 31(10):1069–1081CrossRef Das N, Khastgir D, Chaki T, Chakraborty A (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos A Appl Sci Manuf 31(10):1069–1081CrossRef
51.
Zurück zum Zitat Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5(41):32880–32890CrossRef Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5(41):32880–32890CrossRef
52.
Zurück zum Zitat Huang C-Y, Wu C-C (2000) The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites. Eur Polym J 36(12):2729–2737CrossRef Huang C-Y, Wu C-C (2000) The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites. Eur Polym J 36(12):2729–2737CrossRef
53.
Zurück zum Zitat Kum CK, Sung Y-T, Han MS, Kim WN, Lee HS, Lee S-J et al (2006) Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macromol Res 14(4):456–460CrossRef Kum CK, Sung Y-T, Han MS, Kim WN, Lee HS, Lee S-J et al (2006) Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macromol Res 14(4):456–460CrossRef
54.
Zurück zum Zitat Krueger QJ, King JA (2003) Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6, 6-and polycarbonate-based resins. Adv Polym Technol 22(2):96–111CrossRef Krueger QJ, King JA (2003) Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6, 6-and polycarbonate-based resins. Adv Polym Technol 22(2):96–111CrossRef
Metadaten
Titel
Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylate-in situ reduced graphene oxide nanocomposites
verfasst von
Nisha Bagotia
Veena Choudhary
D. K. Sharma
Publikationsdatum
02.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2749-7

Weitere Artikel der Ausgabe 23/2018

Journal of Materials Science 23/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.