Skip to main content
Erschienen in: Journal of Materials Science 23/2018

30.07.2018 | Chemical routes to materials

Surface attachment of protonated polyimidazolium monolayer on titanate nanotubes as a novel proton conductor

verfasst von: Fangfang Zhang, Wei Li, Xi Zheng, Pengfei Fang, Haining Zhang

Erschienen in: Journal of Materials Science | Ausgabe 23/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel proton conductor has been designed by the surface immobilization of protonated polyimidazolium monolayer on titanate nanotubes (TiNTs) through a polymer brush strategy. 2,2′-Azobis(2-methylpropionitrile) (AIBN)-type initiators are first attached to TiNTs followed by a free radical polymerization of protonated 1-vinylimidazole (VyImBF4) on the surface. The chemical structure of the resulting poly(VyImBF4)-modified TiNTs is verified by Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). TGA curve indicates their good thermal stability. The maximum proton conductivity achieves 6.74 × 10−4 S cm−1 at 200 °C under dry condition and 3.60 × 10−2 S cm−1 at 120 °C under 100% humidity, respectively, when the polymerization is carried out under a polymerization time of 3 h and an immobilized initiator concentration of approximately 42.4 mmol L−1. The proposed preparation of poly(VyImBF4)-modified TiNTs would give a new idea for the design of other ion conductors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim SY, Kim S, Park MJ (2010) Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions. Nat Commun 1:88CrossRef Kim SY, Kim S, Park MJ (2010) Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions. Nat Commun 1:88CrossRef
2.
Zurück zum Zitat Goswami S, Dutta A (2013) Conductivity studies of plasticized proton conducting PVA-PVIM blend doped with NH4BF4. Ionics 19:1125–1134CrossRef Goswami S, Dutta A (2013) Conductivity studies of plasticized proton conducting PVA-PVIM blend doped with NH4BF4. Ionics 19:1125–1134CrossRef
3.
Zurück zum Zitat Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41:2382–2394CrossRef Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41:2382–2394CrossRef
4.
Zurück zum Zitat Wu HY, Saikia D, Lin CP, Wu FS, Fey GTK, Kao HM (2010) Synthesis, structure characterization and ionic conductivity of star-branched organic-inorganic hybrid electrolytes based on cyanuric chloride, diamine-capped poly(oxyalkylene) and alkoxysilane. Polymer 51:4351–4361CrossRef Wu HY, Saikia D, Lin CP, Wu FS, Fey GTK, Kao HM (2010) Synthesis, structure characterization and ionic conductivity of star-branched organic-inorganic hybrid electrolytes based on cyanuric chloride, diamine-capped poly(oxyalkylene) and alkoxysilane. Polymer 51:4351–4361CrossRef
5.
Zurück zum Zitat Druger SD, Nitzan A, Ratner MA (1983) Dynamic bond percolation theory: a microscopic model for diffusion in dynamically disordered systems. I Definition and one-dimensional case. J Chem Phys 79:3133–3142CrossRef Druger SD, Nitzan A, Ratner MA (1983) Dynamic bond percolation theory: a microscopic model for diffusion in dynamically disordered systems. I Definition and one-dimensional case. J Chem Phys 79:3133–3142CrossRef
6.
Zurück zum Zitat He R, Kyu T (2016) Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes. Macromolecules 49:5637–5648CrossRef He R, Kyu T (2016) Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes. Macromolecules 49:5637–5648CrossRef
7.
Zurück zum Zitat Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ion 178:885–888CrossRef Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ion 178:885–888CrossRef
8.
Zurück zum Zitat Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745CrossRef Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745CrossRef
9.
Zurück zum Zitat Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef
10.
Zurück zum Zitat Han H, Li HQ, Liu M, Xu L, Xu J, Wang S, Ni H, Wang Z (2017) Effect of “bridge” on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550. J Power Sources 340:126–138CrossRef Han H, Li HQ, Liu M, Xu L, Xu J, Wang S, Ni H, Wang Z (2017) Effect of “bridge” on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550. J Power Sources 340:126–138CrossRef
11.
Zurück zum Zitat Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhang H (2015) Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/Nafion composite membranes. Electrochim Acta 160:185–194CrossRef Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhang H (2015) Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/Nafion composite membranes. Electrochim Acta 160:185–194CrossRef
12.
Zurück zum Zitat Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanoparticle membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560CrossRef Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanoparticle membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560CrossRef
13.
Zurück zum Zitat Li Q, Xiao C, Li W, Zhang H, Chen F, Fang P, Pan M (2010) Enhanced proton conductivity of polymer electrolyte membrane doped with titanate nanotubes. Colloid Polym Sci 288:1369–1374CrossRef Li Q, Xiao C, Li W, Zhang H, Chen F, Fang P, Pan M (2010) Enhanced proton conductivity of polymer electrolyte membrane doped with titanate nanotubes. Colloid Polym Sci 288:1369–1374CrossRef
14.
Zurück zum Zitat Yamada M, Wei M, Honma I, Zhou H (2006) One-dimensional proton conductor under high vapor pressure condition employing titanate nanotube. Electrochem Commun 8:1549–1552CrossRef Yamada M, Wei M, Honma I, Zhou H (2006) One-dimensional proton conductor under high vapor pressure condition employing titanate nanotube. Electrochem Commun 8:1549–1552CrossRef
15.
Zurück zum Zitat Li Q, Xiao C, Zhang H, Chen F, Fang P, Pan M (2011) Polymer electrolyte membranes containing titanate nanotubes for elevated temperature fuel cells under low relative humidity. J Power Sources 196:8250–8256CrossRef Li Q, Xiao C, Zhang H, Chen F, Fang P, Pan M (2011) Polymer electrolyte membranes containing titanate nanotubes for elevated temperature fuel cells under low relative humidity. J Power Sources 196:8250–8256CrossRef
16.
Zurück zum Zitat Jothi PR, Dharmalingam S (2014) An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J Membr Sci 450:389–396CrossRef Jothi PR, Dharmalingam S (2014) An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J Membr Sci 450:389–396CrossRef
17.
Zurück zum Zitat Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288CrossRef Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288CrossRef
18.
Zurück zum Zitat Mamlouk M, Ocon P, Scott K (2014) Preparation and characterization of polybenzimidazole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. J Power Source 245:915–926CrossRef Mamlouk M, Ocon P, Scott K (2014) Preparation and characterization of polybenzimidazole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. J Power Source 245:915–926CrossRef
19.
Zurück zum Zitat Erdemi H, Akbey Ü, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ion 181:1586–1595CrossRef Erdemi H, Akbey Ü, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ion 181:1586–1595CrossRef
20.
Zurück zum Zitat Scharfenberger G, Meyer WH, Wegner G, Schuster M, Kreuer KD, Maier J (2006) Anhydrous polymeric proton conductors based on imidazole functionalized polysiloxane. Fuel Cells 6:237–250CrossRef Scharfenberger G, Meyer WH, Wegner G, Schuster M, Kreuer KD, Maier J (2006) Anhydrous polymeric proton conductors based on imidazole functionalized polysiloxane. Fuel Cells 6:237–250CrossRef
21.
Zurück zum Zitat Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396CrossRef Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396CrossRef
22.
Zurück zum Zitat Evans CM, Sanoja GE, Popere BC, Segalman RA (2016) Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49:395–404CrossRef Evans CM, Sanoja GE, Popere BC, Segalman RA (2016) Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49:395–404CrossRef
23.
Zurück zum Zitat Fan F, Wang Y, Hong T, Heres MF, Saito T, Sokolov AP (2015) Ion conduction in polymerized ionic liquids with different pendant groups. Macromolecules 48:4461–4470CrossRef Fan F, Wang Y, Hong T, Heres MF, Saito T, Sokolov AP (2015) Ion conduction in polymerized ionic liquids with different pendant groups. Macromolecules 48:4461–4470CrossRef
24.
Zurück zum Zitat Schneider Y, Modestino MA, McCulloch BL, Hoarfrost ML, Hess RW, Segalman RA (2013) Ionic conduction in nanostructured membranes based on polymerized protic ionic liquids. Macromolecules 46:1543–1548CrossRef Schneider Y, Modestino MA, McCulloch BL, Hoarfrost ML, Hess RW, Segalman RA (2013) Ionic conduction in nanostructured membranes based on polymerized protic ionic liquids. Macromolecules 46:1543–1548CrossRef
25.
Zurück zum Zitat Feng J, Huang Y, Tu Z, Zhang H, Pan M, Tang H (2014) Proton conduction of polyAMPS brushes on titanate nanotubes. Sci Rep 4:6225CrossRef Feng J, Huang Y, Tu Z, Zhang H, Pan M, Tang H (2014) Proton conduction of polyAMPS brushes on titanate nanotubes. Sci Rep 4:6225CrossRef
26.
Zurück zum Zitat Prucker O, Ruhe J (1998) Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 31:592–601CrossRef Prucker O, Ruhe J (1998) Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 31:592–601CrossRef
27.
Zurück zum Zitat Zhang H, Ruhe J (2005) Swelling of poly(methacrylic acid) brushes: influence of monovalent salts in the environment. Macromolecules 38:4855–4860CrossRef Zhang H, Ruhe J (2005) Swelling of poly(methacrylic acid) brushes: influence of monovalent salts in the environment. Macromolecules 38:4855–4860CrossRef
28.
Zurück zum Zitat Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294CrossRef Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294CrossRef
29.
Zurück zum Zitat Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238CrossRef Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238CrossRef
30.
Zurück zum Zitat Ye Y, Elabd YA (2011) Anion exchanged polymerized ionic liquids: high free volume single ion conductors. Polymer 52:1309–1317CrossRef Ye Y, Elabd YA (2011) Anion exchanged polymerized ionic liquids: high free volume single ion conductors. Polymer 52:1309–1317CrossRef
31.
Zurück zum Zitat Li W, Liang X, Niu H, Tu Z, Feng J, Pan M, Zhang H (2014) Decorating titanate nanotubes with protonated 1,2,4-triazole moieties for anhydrous proton conduction. J Colloid Interface Sci 432:26–30CrossRef Li W, Liang X, Niu H, Tu Z, Feng J, Pan M, Zhang H (2014) Decorating titanate nanotubes with protonated 1,2,4-triazole moieties for anhydrous proton conduction. J Colloid Interface Sci 432:26–30CrossRef
32.
Zurück zum Zitat Shaplov AS, Marcilla R, Mecerreyes D (2015) Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 175:18–34CrossRef Shaplov AS, Marcilla R, Mecerreyes D (2015) Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 175:18–34CrossRef
33.
Zurück zum Zitat Herz HG, Kreuer KD, Maier J, Scharfenberger G, Schuster MFH, Meyer WH (2003) New fully polymeric proton solvents with high proton mobility. Electrochim Acta 48:2165–2171CrossRef Herz HG, Kreuer KD, Maier J, Scharfenberger G, Schuster MFH, Meyer WH (2003) New fully polymeric proton solvents with high proton mobility. Electrochim Acta 48:2165–2171CrossRef
34.
Zurück zum Zitat Schuster M, Meyer WH, Wegner G, Herz HG, Ise M, Schuster M, Kreuer KD, Maier J (2001) Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ion 145:85–92CrossRef Schuster M, Meyer WH, Wegner G, Herz HG, Ise M, Schuster M, Kreuer KD, Maier J (2001) Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ion 145:85–92CrossRef
Metadaten
Titel
Surface attachment of protonated polyimidazolium monolayer on titanate nanotubes as a novel proton conductor
verfasst von
Fangfang Zhang
Wei Li
Xi Zheng
Pengfei Fang
Haining Zhang
Publikationsdatum
30.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2739-9

Weitere Artikel der Ausgabe 23/2018

Journal of Materials Science 23/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.