Skip to main content

2016 | OriginalPaper | Buchkapitel

23. Surface Flame Spread

verfasst von : Yuji Hasemi

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface flame spread is a process of a moving flame in the vicinity of a pyrolyzing region on the surface of a solid or liquid that acts as a fuel source. It is distinct from flame propagation in a premixed fuel and oxygen system in that the surface spread of flame occurs as a result of the heating of the surface due to the direct or remote heating by the flame generated from the burning surface. The surface flame spread is very often critical to the destiny of fires in natural and built environments. This spread applies whether the fire is an urban conflagration or is the first growth after ignition of a room’s draperies. This chapter provides fire safety engineers with an overview of surface flame spread during the growth of a fire and the modeling of different modes of flame spread to improve understanding of their effects on the outcomes of fires.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
Nomenclature
a
\( {k}_f{\dot{Q}}_{\ell}^{{\prime\prime} } \)
b
flame spread acceleration factor (= (a − 1) − t ig */t b )
c
specific heat of solid
c g
specific heat of gas
c p
specific heat of air
δ
fuel thickness
δ fc
characteristic preheat distance
D
characteristic length of the burning area (height, etc.)
Da
Damköhler number
Δ
distance from the pyrolysis front
ΔH
heat of combustion
ΔH ox
ΔH/r
g
gravitational acceleration
k
\( {x}_f/{\dot{Q}}_{\ell}^{*n} \)
k′
constant \( {\left({\mathrm{k}}^{3/2}/{c}_p{T}_o{g}^{1/2}\right)}^{2/3}{\dot{Q}}_{\ell}^{2/3} \)
k
\( {x}_f/{\dot{Q}}_{\ell } \)
k g
gas thermal conductivity
L
heat of gasification
μ
viscosity
q″
heat flux due to gas-phase conduction
q f ″
flame heat flux
q fc ″
characteristic flame heat flux
\( {\dot{Q}}_{\ell } \)
heat release rate per unit width
\( {\dot{Q}}_{\ell}^{*} \)
dimensionless heat release rate per unit width
\( {\dot{Q}}_{\ell e}^{*} \)
effective heat release rate per unit width
r
stoichiometric mass ratio oxygen/fuel
ρ
density
ϕ
impulse response function
Φ
opposed-flow preheat factor (numerator in n)
σ
surface tension
t
time
t b
time to local burnout
t c
characteristic decay time of pyrolysis
t ig *
characteristic time to ignition
τ
time
T f
flame temperature
T ig
ignition temperature
T o
initial surface temperature
T r
reference temperature
T s
surface temperature
T ∞
ambient temperature
V g
gas velocity
V p
flame spread velocity
x f
flame length
x p
pyrolysis front length
x po
pilot flame length
x poff
maximum pyrolysis front length
Y ox,∞
mass fraction of oxygen
x, y
coordinates
Superscripts
·
per unit time
per unit length
per unit area
Literatur
1.
Zurück zum Zitat T. Hirano, S. Noreikis, and T. Waterman, “Measured Velocity and Temperature Profiles of Flames Spreading over a Thin Combustible Solid,” Combustion and Flame, 23, p. 83 (1974).CrossRef T. Hirano, S. Noreikis, and T. Waterman, “Measured Velocity and Temperature Profiles of Flames Spreading over a Thin Combustible Solid,” Combustion and Flame, 23, p. 83 (1974).CrossRef
2.
Zurück zum Zitat D.D. Drysdale, A.J.R. Macmillan, and D. Shilitto, “King’s Cross Fire: Experimental Verification of the “Trench Effect,” Fire Safety Journal, 18 (1992). D.D. Drysdale, A.J.R. Macmillan, and D. Shilitto, “King’s Cross Fire: Experimental Verification of the “Trench Effect,” Fire Safety Journal, 18 (1992).
3.
Zurück zum Zitat D.D. Drysdale, An Introduction to Fire Dynamics, 2nd ed., John Wiley and Sons, New York (1999). D.D. Drysdale, An Introduction to Fire Dynamics, 2nd ed., John Wiley and Sons, New York (1999).
4.
Zurück zum Zitat J.G. Quintiere, Fundamentals of Fire Phenomena, John Wiley and Sons, New York (2006).CrossRef J.G. Quintiere, Fundamentals of Fire Phenomena, John Wiley and Sons, New York (2006).CrossRef
5.
Zurück zum Zitat A.C. Fernandez-Pello and T. Hirano, “Controlling Mechanism of Flame Spread,” Combustion Science and Technology, 32, pp. 1–31 (1983).CrossRef A.C. Fernandez-Pello and T. Hirano, “Controlling Mechanism of Flame Spread,” Combustion Science and Technology, 32, pp. 1–31 (1983).CrossRef
6.
Zurück zum Zitat T. Hirano, “Physical Aspects of Combustion in Fires,” in Proceedings of the 3rd International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 27–44 (1991). T. Hirano, “Physical Aspects of Combustion in Fires,” in Proceedings of the 3rd International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 27–44 (1991).
7.
Zurück zum Zitat F. Williams, “Mechanism of Fire Spread,” in Proceedings of the 16th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1281–1294 (1976). F. Williams, “Mechanism of Fire Spread,” in Proceedings of the 16th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1281–1294 (1976).
8.
Zurück zum Zitat M.A. Delichatsios, “Modeling of Aircraft Cabin Fires,” Technical Report, Factory Mutual Research Corp. (1984). M.A. Delichatsios, “Modeling of Aircraft Cabin Fires,” Technical Report, Factory Mutual Research Corp. (1984).
9.
Zurück zum Zitat Y. Hasemi, “Thermal Modeling of Upward Wall Flame Spread,” in Proceedings of the First International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 87–96 (1985). Y. Hasemi, “Thermal Modeling of Upward Wall Flame Spread,” in Proceedings of the First International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 87–96 (1985).
10.
Zurück zum Zitat T.I. Eklund, “A Vortex Model for Wall Flame Height,” Journal of Fire Science, 4, pp. 4–14 (1986). T.I. Eklund, “A Vortex Model for Wall Flame Height,” Journal of Fire Science, 4, pp. 4–14 (1986).
11.
Zurück zum Zitat M. Kokkala, D. Baroudi, and W.J. Parker, “Upward Flame Spread on Wooden Surface Products: Experiments and Numerical Modelling,” in Proceedings of the 5th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 309–320 (1997). M. Kokkala, D. Baroudi, and W.J. Parker, “Upward Flame Spread on Wooden Surface Products: Experiments and Numerical Modelling,” in Proceedings of the 5th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 309–320 (1997).
12.
Zurück zum Zitat J.S. Newman and C.J. Wieczorek, “Chemical Flame Heights,” Fire Safety Journal, 39, pp. 375–382 (2004).CrossRef J.S. Newman and C.J. Wieczorek, “Chemical Flame Heights,” Fire Safety Journal, 39, pp. 375–382 (2004).CrossRef
13.
Zurück zum Zitat K.-M. Tu and J.G. Quintiere, “Wall Flame Heights with External Radiation,” Fire Technology, pp. 195–203 (Aug. 1991). K.-M. Tu and J.G. Quintiere, “Wall Flame Heights with External Radiation,” Fire Technology, pp. 195–203 (Aug. 1991).
14.
Zurück zum Zitat J.G. Quintiere and M. Harkleroad, “New Concepts for Measuring Flame Spread Properties,” in Proceedings of Fire Safety: Science and Engineering, a symposium sponsored by ASTM Committee E-5 on Fire Standards and the Society of Fire Protection Engineers, ASTM STP 882, ASTM International, W. Conshohocken, PA, pp. 239–267 (1985). J.G. Quintiere and M. Harkleroad, “New Concepts for Measuring Flame Spread Properties,” in Proceedings of Fire Safety: Science and Engineering, a symposium sponsored by ASTM Committee E-5 on Fire Standards and the Society of Fire Protection Engineers, ASTM STP 882, ASTM International, W. Conshohocken, PA, pp. 239–267 (1985).
15.
Zurück zum Zitat B. Karlsson, “Models for Calculating Flame Spread on Wall Lining Materials and the Resulting Heat Release Rate in a Room,” Fire Safety Journal, 23, pp. 365–386 (1994).CrossRef B. Karlsson, “Models for Calculating Flame Spread on Wall Lining Materials and the Resulting Heat Release Rate in a Room,” Fire Safety Journal, 23, pp. 365–386 (1994).CrossRef
16.
Zurück zum Zitat D. Baroudi, “A Discrete Dynamical Model for Flame Spread over Combustible Flat Solid Surfaces Subject to Pyrolysis with Charring—An Application Example to Upward Flame Spread,” Fire Safety Journal, 38, pp. 53–84 (2003).CrossRef D. Baroudi, “A Discrete Dynamical Model for Flame Spread over Combustible Flat Solid Surfaces Subject to Pyrolysis with Charring—An Application Example to Upward Flame Spread,” Fire Safety Journal, 38, pp. 53–84 (2003).CrossRef
17.
Zurück zum Zitat J.G. Quintiere, M. Harkleroad, and Y. Hasemi, “Wall Flames and Implications for Upward Flame Spread,” Combustion Science and Technology, 48, 3–4, pp. 191–222 (1986).CrossRef J.G. Quintiere, M. Harkleroad, and Y. Hasemi, “Wall Flames and Implications for Upward Flame Spread,” Combustion Science and Technology, 48, 3–4, pp. 191–222 (1986).CrossRef
18.
Zurück zum Zitat L. Orloff, A.T. Modak, and R.L. Alpert, “Burning of Large-Scale Vertical Surfaces,” in Proceedings of the 16th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1345–1354 (1976). L. Orloff, A.T. Modak, and R.L. Alpert, “Burning of Large-Scale Vertical Surfaces,” in Proceedings of the 16th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1345–1354 (1976).
19.
Zurück zum Zitat T. Ahmad and G.M. Faeth, “Turbulent Wall Fires,” in Proceedings of the 17th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1149–1160 (1979). T. Ahmad and G.M. Faeth, “Turbulent Wall Fires,” in Proceedings of the 17th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1149–1160 (1979).
20.
Zurück zum Zitat M. Sibulkin and J. Kim, “The Dependence of Flame Propagation on Surface Heat Transfer ii. Upward Burning,” Combustion Science and Technology, 17, pp. 39–49 (1977).CrossRef M. Sibulkin and J. Kim, “The Dependence of Flame Propagation on Surface Heat Transfer ii. Upward Burning,” Combustion Science and Technology, 17, pp. 39–49 (1977).CrossRef
21.
Zurück zum Zitat K. Saito, J.G. Quintiere, and F.A. Williams, “Upward Turbulent Flame Spread,” in Proceedings of the 1st International Symposium on Fire Safety Science, International Association for Fire Safety Science, London, pp. 75–86 (1985). K. Saito, J.G. Quintiere, and F.A. Williams, “Upward Turbulent Flame Spread,” in Proceedings of the 1st International Symposium on Fire Safety Science, International Association for Fire Safety Science, London, pp. 75–86 (1985).
22.
Zurück zum Zitat D. Baroudi and M. Kokkala, “Analysis of Upward Flame Spread,” VTT Publications, 89 (1992). D. Baroudi and M. Kokkala, “Analysis of Upward Flame Spread,” VTT Publications, 89 (1992).
23.
Zurück zum Zitat Y. Hasemi and N. Yasui, “A Strategy to Develop Engineering Upward Flame Spread Evaluation Methodology Based on the Linearized Flame Height Approximation,” Fire Science and Technology, 15, 1–2, pp. 17–28 (1995).CrossRef Y. Hasemi and N. Yasui, “A Strategy to Develop Engineering Upward Flame Spread Evaluation Methodology Based on the Linearized Flame Height Approximation,” Fire Science and Technology, 15, 1–2, pp. 17–28 (1995).CrossRef
24.
Zurück zum Zitat G. Grant and D.D. Drysdale, “Numerical Modelling of Early Flame Spread in Warehouse Fires,” Fire Safety Journal, 24, pp. 247–278 (1995).CrossRef G. Grant and D.D. Drysdale, “Numerical Modelling of Early Flame Spread in Warehouse Fires,” Fire Safety Journal, 24, pp. 247–278 (1995).CrossRef
25.
Zurück zum Zitat A.C. Fernandez-Pello, “Upward Laminar Flame Spread Under the Influence of Externally Applied Thermal Radiation,” Combustion and Flame, 17, p. 87 (1977). A.C. Fernandez-Pello, “Upward Laminar Flame Spread Under the Influence of Externally Applied Thermal Radiation,” Combustion and Flame, 17, p. 87 (1977).
26.
Zurück zum Zitat H. Ingason and J. de Ris, “Flame Heat Transfer in Storage Geometries,” Fire Safety Journal, 31, pp. 39–60 (1998).CrossRef H. Ingason and J. de Ris, “Flame Heat Transfer in Storage Geometries,” Fire Safety Journal, 31, pp. 39–60 (1998).CrossRef
27.
Zurück zum Zitat Y. Hasemi, M. Yoshida, N. Yasui, and W.J. Parker, “Upward Flame Spread along a Vertical Solid for Transient Local Heat Release Rate,” in Proceedings of the 4th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 385–396 (1994). Y. Hasemi, M. Yoshida, N. Yasui, and W.J. Parker, “Upward Flame Spread along a Vertical Solid for Transient Local Heat Release Rate,” in Proceedings of the 4th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 385–396 (1994).
28.
Zurück zum Zitat M.M. Delichatsios, P. Wu, M.A. Delichatsios, G.D. Lougheed, G.P. Crampton, C. Qian, H. Ishida, and K. Saito, “Effect of External Radiant Heat Flux on Upward Fire Spread: Measurements on Plywood and Numerical Predictions,” in Proceedings of the 4th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 421–432 (1994). M.M. Delichatsios, P. Wu, M.A. Delichatsios, G.D. Lougheed, G.P. Crampton, C. Qian, H. Ishida, and K. Saito, “Effect of External Radiant Heat Flux on Upward Fire Spread: Measurements on Plywood and Numerical Predictions,” in Proceedings of the 4th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 421–432 (1994).
29.
Zurück zum Zitat B.Y. Lattimer, S.P. Hunt, M. Wright, and C. Beyler, “Corner Fire Growth in a Room with a Combustible Lining,” in Proceedings of the 7th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 419–430 (2002). B.Y. Lattimer, S.P. Hunt, M. Wright, and C. Beyler, “Corner Fire Growth in a Room with a Combustible Lining,” in Proceedings of the 7th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 419–430 (2002).
30.
Zurück zum Zitat Y. Hasemi, D. Nam, and M. Yoshida, “Experimental Flame Correlations and Dimensional Relations in Turbulent Ceiling Fires,” in Proceedings of the 5th Asia Oceania Symposium on Fire Science and Technology, International Association for Fire Safety Science, Boston, MA, pp. 379–390 (2001). Y. Hasemi, D. Nam, and M. Yoshida, “Experimental Flame Correlations and Dimensional Relations in Turbulent Ceiling Fires,” in Proceedings of the 5th Asia Oceania Symposium on Fire Science and Technology, International Association for Fire Safety Science, Boston, MA, pp. 379–390 (2001).
31.
Zurück zum Zitat Y. Hasemi, M. Yoshida, Y. Yokobayashi, and T. Wakamatsu, “Flame Heat Transfer and Concurrent Flame Spread in a Ceiling Fire,” in Proceedings of the 5th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 379–390 (1997). Y. Hasemi, M. Yoshida, Y. Yokobayashi, and T. Wakamatsu, “Flame Heat Transfer and Concurrent Flame Spread in a Ceiling Fire,” in Proceedings of the 5th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 379–390 (1997).
32.
Zurück zum Zitat V. Stenstad and B. Karlsson, “Flame Spread on a Solid Wooden Ceiling,” Conference Proceedings of Interflam 2007, 1, Interscience Communications, London, UK, pp. 45–57 (2007). V. Stenstad and B. Karlsson, “Flame Spread on a Solid Wooden Ceiling,” Conference Proceedings of Interflam 2007, 1, Interscience Communications, London, UK, pp. 45–57 (2007).
33.
Zurück zum Zitat A.C. Fernandez-Pello, S.R. Ray, and I. Glassman, in Proceedings of the 18th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1981). A.C. Fernandez-Pello, S.R. Ray, and I. Glassman, in Proceedings of the 18th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1981).
34.
Zurück zum Zitat J. de Ris, “Spread of a Laminar Diffusion Flame,” in Proceedings of the 12th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 241–252 (1968). J. de Ris, “Spread of a Laminar Diffusion Flame,” in Proceedings of the 12th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 241–252 (1968).
35.
Zurück zum Zitat F.A. Albini, “An Overview of Research on Wildland Fire,” in Proceedings of the 5th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 59–74 (1997). F.A. Albini, “An Overview of Research on Wildland Fire,” in Proceedings of the 5th International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, MA, pp. 59–74 (1997).
36.
Zurück zum Zitat H. Hayasaka, “Recent Large-Scale Fires in Boreal and Tropical Forests,” Journal of Disaster Research, 2, 4, pp. 276–283 (2007).CrossRef H. Hayasaka, “Recent Large-Scale Fires in Boreal and Tropical Forests,” Journal of Disaster Research, 2, 4, pp. 276–283 (2007).CrossRef
37.
Zurück zum Zitat P.H. Thomas, “Rates of Spread of Some Wind-Driven Fires,” Forestry, 44, 2 (1971).CrossRef P.H. Thomas, “Rates of Spread of Some Wind-Driven Fires,” Forestry, 44, 2 (1971).CrossRef
38.
Zurück zum Zitat K. Kawagoe (ed.), Fire Safety in Buildings, Architectural Studies and Engineering Series, 21, Shokokusha (1970) (in Japanese). K. Kawagoe (ed.), Fire Safety in Buildings, Architectural Studies and Engineering Series, 21, Shokokusha (1970) (in Japanese).
39.
Zurück zum Zitat I. Glassman and F.L. Dryer, “Flame Spreading Across Liquid Fuels,” Fire Safety Journal, 3, pp. 123–138 (1980).CrossRef I. Glassman and F.L. Dryer, “Flame Spreading Across Liquid Fuels,” Fire Safety Journal, 3, pp. 123–138 (1980).CrossRef
40.
Zurück zum Zitat K. Akita, “Some Problems of Flame Spread Along a Liquid Surface,” in Proceedings of the 14th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1075–1083 (1973). K. Akita, “Some Problems of Flame Spread Along a Liquid Surface,” in Proceedings of the 14th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1075–1083 (1973).
41.
Zurück zum Zitat A. Ito and K. Kashiwagi, “Characterization of Flame Spread over PMMA Using Holographic Interferometry Sample Orientation Effects,” Combustion and Flame, 71, pp. 189–204 (1988).CrossRef A. Ito and K. Kashiwagi, “Characterization of Flame Spread over PMMA Using Holographic Interferometry Sample Orientation Effects,” Combustion and Flame, 71, pp. 189–204 (1988).CrossRef
Metadaten
Titel
Surface Flame Spread
verfasst von
Yuji Hasemi
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_23