Skip to main content
Erschienen in: Numerical Algorithms 4/2019

01.05.2019 | Original Paper

Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation

verfasst von: Beibei Zhu, Yifa Tang, Ruili Zhang, Yihao Zhang

Erschienen in: Numerical Algorithms | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study symplectic simulation of dark solitons motion of nonlinear Schrödinger equation (NLSE). The Ablowitz-Ladik model (A-L model) of NLSE can be expressed as a non-canonical Hamiltonian system. By using splitting technique, we construct explicit splitting K-symplectic methods for the A-L model. On the other hand, the A-L model can be transformed into a canonical system and standard symplectic methods can be employed to perform numerical simulation. A second order K-symplectic method and a second order symplectic method are employed to simulate one dark soliton and two dark solitons motion for the A-L model and its canonicalized system respectively. By comparing with a third-order non-symplectic Runge-Kutta method, we show the superiorities of the two symplectic methods in long-term tracking the motion of dark solitons and preserving the invariants. We also compare the CPU times of K-symplectic methods and standard symplectic methods and show that the former ones are more efficient. The energy-preserving scheme is also applied for non-canonical Hamiltonian systems. The numerical results demonstrate that the K-symplectic methods can nearly preserve the energy, the discrete invariants of A-L model and conserved quantities of NLSE, but the energy-preserving scheme can only exactly preserve the energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)MathSciNetCrossRefMATH Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Abraham, R.E., Marsden, J.E.: Foundations of mechanics. Benjamin-Cummings, Reading (1978)MATH Abraham, R.E., Marsden, J.E.: Foundations of mechanics. Benjamin-Cummings, Reading (1978)MATH
3.
Zurück zum Zitat Arnold, V.I.: Mathematical methods of classical mechanics. Springer, New York (1978)CrossRef Arnold, V.I.: Mathematical methods of classical mechanics. Springer, New York (1978)CrossRef
4.
Zurück zum Zitat Barletti, L., Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy-conserving methods for the nonlinear Schrödinger equation. Appl. Math. Comput. 318, 3–18 (2018)MathSciNetMATH Barletti, L., Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy-conserving methods for the nonlinear Schrödinger equation. Appl. Math. Comput. 318, 3–18 (2018)MathSciNetMATH
5.
Zurück zum Zitat Blanes, S., Moan, P.C.: Practical symplectic Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)MathSciNetCrossRefMATH Blanes, S., Moan, P.C.: Practical symplectic Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Brugnano, L., Zhang, C.J., Li, D.F.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci. Numer. Simulat. 60, 33–49 (2018)CrossRef Brugnano, L., Zhang, C.J., Li, D.F.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci. Numer. Simulat. 60, 33–49 (2018)CrossRef
8.
Zurück zum Zitat Cai, J.X., Wang, Y.S.: Local structure-preserving algorithms for the “good” Boussinesq equation. J. Comput. Phys. 239, 72–89 (2013)MathSciNetCrossRefMATH Cai, J.X., Wang, Y.S.: Local structure-preserving algorithms for the “good” Boussinesq equation. J. Comput. Phys. 239, 72–89 (2013)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the Averaged Vector Field method. Math. Comp. 83, 1689–1700 (2014)MathSciNetCrossRefMATH Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the Averaged Vector Field method. Math. Comp. 83, 1689–1700 (2014)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dodd, R.K., Eibeck, J.C., Gibbon, J.D., Morris, H.: Solitons and nonlinear wave equation. Academic Press (1982) Dodd, R.K., Eibeck, J.C., Gibbon, J.D., Morris, H.: Solitons and nonlinear wave equation. Academic Press (1982)
13.
Zurück zum Zitat Feng, K.: On difference schemes and symplectic geometry Feng, K. (ed.) . Science Press, Beijing (1985) Feng, K.: On difference schemes and symplectic geometry Feng, K. (ed.) . Science Press, Beijing (1985)
14.
Zurück zum Zitat Ge, Z., Feng, K.: On the approximation of linear Hamiltonian systems. J. Computa. Math. 6(1), 88–97 (1988)MathSciNetMATH Ge, Z., Feng, K.: On the approximation of linear Hamiltonian systems. J. Computa. Math. 6(1), 88–97 (1988)MathSciNetMATH
15.
Zurück zum Zitat Hairer, E., Lubich, C.h., Wanner, G.: Geometric numerical integration. Springer, New York (2002)CrossRefMATH Hairer, E., Lubich, C.h., Wanner, G.: Geometric numerical integration. Springer, New York (2002)CrossRefMATH
16.
Zurück zum Zitat Hasegawa, A.: Optical solitons in fibers. Springer-Verlag, Berlin (1989)CrossRef Hasegawa, A.: Optical solitons in fibers. Springer-Verlag, Berlin (1989)CrossRef
17.
Zurück zum Zitat Herbst, B.M., Varadi, F., Ablowitz, M.J.: Symplectic methods for the nonlinear Schrödinger equation. Math. Comput. Simul. 37, 353–369 (1994)CrossRefMATH Herbst, B.M., Varadi, F., Ablowitz, M.J.: Symplectic methods for the nonlinear Schrödinger equation. Math. Comput. Simul. 37, 353–369 (1994)CrossRefMATH
18.
Zurück zum Zitat Konotop, V.V., Vázquez, L.: Nonlinear random waves. World Scientific, Singapore (1994)CrossRefMATH Konotop, V.V., Vázquez, L.: Nonlinear random waves. World Scientific, Singapore (1994)CrossRefMATH
20.
Zurück zum Zitat Konotop, V.V., Tang, Y.F.: Personal communication (1996) Konotop, V.V., Tang, Y.F.: Personal communication (1996)
21.
Zurück zum Zitat McLachlan, R.I., Quispel, G.R., Robidoux, N.: Unified approach to Hamiltonian systems, poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399–2403 (1998)MathSciNetCrossRefMATH McLachlan, R.I., Quispel, G.R., Robidoux, N.: Unified approach to Hamiltonian systems, poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399–2403 (1998)MathSciNetCrossRefMATH
22.
Zurück zum Zitat McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)MathSciNetCrossRefMATH Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Chapman & Hall, London (1994)CrossRefMATH Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Chapman & Hall, London (1994)CrossRefMATH
27.
Zurück zum Zitat Schober, C.M.: Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. Phys. Lett. A 259, 140–151 (1999)MathSciNetCrossRefMATH Schober, C.M.: Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. Phys. Lett. A 259, 140–151 (1999)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Tang, Y.F., Cao, J.W., Liu, X.T., Sun, Y.C.: Symplectic methods for Ablowitz-Ladik discrete nonlinear Schrödinger equation. J. Phys. A: Math. Theor. 40(10), 2425–2437 (2007)CrossRefMATH Tang, Y.F., Cao, J.W., Liu, X.T., Sun, Y.C.: Symplectic methods for Ablowitz-Ladik discrete nonlinear Schrödinger equation. J. Phys. A: Math. Theor. 40(10), 2425–2437 (2007)CrossRefMATH
30.
Zurück zum Zitat Tang, Y.F., Pérez-García V.M., Vázquez, L.: Symplectic methods for the Ablowitz-Ladik model. Appli. Math. Comput. 82, 17–38 (1997)MathSciNetCrossRefMATH Tang, Y.F., Pérez-García V.M., Vázquez, L.: Symplectic methods for the Ablowitz-Ladik model. Appli. Math. Comput. 82, 17–38 (1997)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Zakharov, V.E., Shabat, A.B.: Interaction between solitions in a stable medium. Sov. Phys.-JETP 37(5), 823–828 (1973) Zakharov, V.E., Shabat, A.B.: Interaction between solitions in a stable medium. Sov. Phys.-JETP 37(5), 823–828 (1973)
32.
Zurück zum Zitat Zhang, F., Pérez-García V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71(2-3), 165–177 (1995)MathSciNetMATH Zhang, F., Pérez-García V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71(2-3), 165–177 (1995)MathSciNetMATH
33.
Zurück zum Zitat Zhang, R.L., Huang, J.F., Tang, Y.F., Vázquez, L.: Revertible and symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. In: Proceedings of the 2011 summer simulation multiconference (27–29 June — The Hague, Netherlands): Grand Challenges in Modeling and Simulation (GCMS’11), ISBN: 1-56555-345-4, The Society for Modeling and Simulation International (SCS), San Diego USA (2011) Zhang, R.L., Huang, J.F., Tang, Y.F., Vázquez, L.: Revertible and symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. In: Proceedings of the 2011 summer simulation multiconference (27–29 June — The Hague, Netherlands): Grand Challenges in Modeling and Simulation (GCMS’11), ISBN: 1-56555-345-4, The Society for Modeling and Simulation International (SCS), San Diego USA (2011)
34.
Zurück zum Zitat Zhou, Z.Q., He, Y., Sun, Y.J., Liu, J., Qin, H.: Explicit symplectic methods for solving charged particle trajectories. Phys. Plasmas 24, 87–94 (2017)CrossRef Zhou, Z.Q., He, Y., Sun, Y.J., Liu, J., Qin, H.: Explicit symplectic methods for solving charged particle trajectories. Phys. Plasmas 24, 87–94 (2017)CrossRef
35.
Zurück zum Zitat Zhu, B.B., Zhang, R.L., Tang, Y.F., Tu, X.B., Zhao, Y.: Splitting K-symplectic methods for non-canonical separable Hamiltonian problems. J. Computa. Phys. 322(10), 387–399 (2016)MathSciNetCrossRefMATH Zhu, B.B., Zhang, R.L., Tang, Y.F., Tu, X.B., Zhao, Y.: Splitting K-symplectic methods for non-canonical separable Hamiltonian problems. J. Computa. Phys. 322(10), 387–399 (2016)MathSciNetCrossRefMATH
Metadaten
Titel
Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation
verfasst von
Beibei Zhu
Yifa Tang
Ruili Zhang
Yihao Zhang
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Numerical Algorithms / Ausgabe 4/2019
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00708-8

Weitere Artikel der Ausgabe 4/2019

Numerical Algorithms 4/2019 Zur Ausgabe

Original Paper

Trees and B-series

Premium Partner