Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Synergetic Effect of Graphene Oxide and Metal Organic Framework Nanocomposites as Electrocatalysts for Hydrogen Evolution Reaction

verfasst von : Mogwasha D. Makhafola, Mpitloane J. Hato, Kabelo E. Ramohlola, Phuti S. Ramaripa, Thabiso C. Maponya, Gobeng R. Monama, Kerileng M. Molapo, Emmanuel I. Iwuoha, Lebogang M. Katata-Seru, Katlego Makgopa, Kwena D. Modibane

Erschienen in: Carbon Related Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exploiting low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER) is an important route to solve the energy crisis and environmental pollution. HER process plays a vital role in many energy storage and conversion systems including water splitting, rechargeable metal–air batteries and the unitised regenerative fuel cells. The platinum-based catalysts are regarded as best electrocatalysts for the HER; nevertheless, they are very exorbitant and scarce. Therefore, it is necessary to develop efficient electrocatalysts based on carbon materials. Graphene oxide (GO), for instance, is a monolayer structure with a high contribution of sp2 hybridised carbon atoms, and various oxygen-containing surface functional groups have attracted the attention of a worldwide research community in the last decades due to its various potential applications linked to the unique combination of properties, such as hardness, physical and chemical stability, high specific surface area, electron mobility and heat transfer. It can be easily manufactured by simple and scalable chemical oxidation approaches from graphite, the reduction of GO into reduced GO (rGO) is a widely used method to obtain graphene. In HER, GO can also be incorporated with metals and porous materials for synergetic effect as co-catalysts for enhancement of electrocatalytic activities. On the other hand, metal–organic frameworks (MOFs) are crystalline materials with porous network structure. They possess various compositions, large surface area, tunable pore structures and are easily functionalised. Recently, MOF‐based electrocatalysts have been rapidly developed with excellent catalytic performance, demonstrating a promising application prospect in HER. In this chapter, the background on hydrogen energy and HER structure, category and synthesis of GO and MOFs are discussed. The application of GO- and MOF-based electrocatalysts for HER is discussed in detail. Their HER parameters such as Tafel slope (b) and exchange current density (i0) are emphatically discussed and followed by the synergetic effect of HER studies of GO/MOF composites as an alternative electrocatalyst for future hydrogen production and storage via HER mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.K. Ahluwalia, T.Q. Hua, J.K. Peng, S. Lasher, K. McKenney, J. Sinha, M. Gardiner, Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrogen Energy 35, 4171–4184 (2010)CrossRef R.K. Ahluwalia, T.Q. Hua, J.K. Peng, S. Lasher, K. McKenney, J. Sinha, M. Gardiner, Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrogen Energy 35, 4171–4184 (2010)CrossRef
2.
Zurück zum Zitat P. Amo-Ochoa, G. Givaja, P.J.S. Miguel, O. Castillo, F. Zamora, Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF. Inorg. Chem. Commun. 10, 921–924 (2007)CrossRef P. Amo-Ochoa, G. Givaja, P.J.S. Miguel, O. Castillo, F. Zamora, Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF. Inorg. Chem. Commun. 10, 921–924 (2007)CrossRef
3.
Zurück zum Zitat C.O. Ania, M. Seredych, E. Rodriguez-Castellon, T.J. Bandosz, New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: the role of unique Cu/rGO architecture. Appl. Catal. B Environ. 163, 424–435 (2015)CrossRef C.O. Ania, M. Seredych, E. Rodriguez-Castellon, T.J. Bandosz, New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: the role of unique Cu/rGO architecture. Appl. Catal. B Environ. 163, 424–435 (2015)CrossRef
4.
Zurück zum Zitat M. Asif, T. Muneer, Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 11, 1388–1413 (2007)CrossRef M. Asif, T. Muneer, Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 11, 1388–1413 (2007)CrossRef
5.
Zurück zum Zitat T.R.C. Van Assche, N. Campagnol, T. Muselle, H. Terryn, J. Fransaer, J.F.M. Denayer, On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks. Microporous Mesoporous Mater. 224, 302–310 (2016)CrossRef T.R.C. Van Assche, N. Campagnol, T. Muselle, H. Terryn, J. Fransaer, J.F.M. Denayer, On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks. Microporous Mesoporous Mater. 224, 302–310 (2016)CrossRef
6.
Zurück zum Zitat T. Autrey, Boron-nitrogen-hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy Enviro. Sci. 5, 9257–9268 (2012)CrossRef T. Autrey, Boron-nitrogen-hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy Enviro. Sci. 5, 9257–9268 (2012)CrossRef
7.
Zurück zum Zitat F.N. Azad, M. Ghaedi, K. Dashtian, S. Hajati, V. Pezeshkpour, Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrason. Sonochem. 31, 383–393 (2016)CrossRef F.N. Azad, M. Ghaedi, K. Dashtian, S. Hajati, V. Pezeshkpour, Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrason. Sonochem. 31, 383–393 (2016)CrossRef
8.
Zurück zum Zitat O. Azizi, M. Jafarian, F. Gobal, H. Heli, M.G. Mahjani, The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin. Int. J. Hydrogen Energy 32, 1755–1761 (2007)CrossRef O. Azizi, M. Jafarian, F. Gobal, H. Heli, M.G. Mahjani, The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin. Int. J. Hydrogen Energy 32, 1755–1761 (2007)CrossRef
9.
Zurück zum Zitat M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 33, 4013–4029 (2008)CrossRef M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 33, 4013–4029 (2008)CrossRef
10.
Zurück zum Zitat P.C. Banerjee, D.E. Lobo, R. Middag, W.K. Ng, M.E. Shaibani, M. Majumder, Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. ACS Appl. Mater. Interfaces 7, 3655–3664 (2015)CrossRef P.C. Banerjee, D.E. Lobo, R. Middag, W.K. Ng, M.E. Shaibani, M. Majumder, Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. ACS Appl. Mater. Interfaces 7, 3655–3664 (2015)CrossRef
11.
Zurück zum Zitat H. Barthelemy, M. Weber, F. Barbier, Hydrogen storage: recent improvements and industrial perspectives. Int. J. Hydrogen Energy 42, 7254–7262 (2017)CrossRef H. Barthelemy, M. Weber, F. Barbier, Hydrogen storage: recent improvements and industrial perspectives. Int. J. Hydrogen Energy 42, 7254–7262 (2017)CrossRef
12.
Zurück zum Zitat R. Bocutti, M.J. Saeki, A.O. Florentino, C.L.F. Oliveira, A.C.D. Ângelo, Hydrogen evolution reaction on codeposited Ni-hydrogen storage intermetallic particles in alkaline medium. Int. J. Hydrogen Energy 25, 1051–1058 (2000)CrossRef R. Bocutti, M.J. Saeki, A.O. Florentino, C.L.F. Oliveira, A.C.D. Ângelo, Hydrogen evolution reaction on codeposited Ni-hydrogen storage intermetallic particles in alkaline medium. Int. J. Hydrogen Energy 25, 1051–1058 (2000)CrossRef
13.
Zurück zum Zitat R.K. Brow, M.L. Schmitt, A survey of energy and environmental applications of glass. J. Eur. Ceram. Soc. 29, 1193–1201 (2009)CrossRef R.K. Brow, M.L. Schmitt, A survey of energy and environmental applications of glass. J. Eur. Ceram. Soc. 29, 1193–1201 (2009)CrossRef
14.
Zurück zum Zitat D.D. Burnette, G.G. Kremer, D.J. Bayless, The use of hydrogen-depleted coal syngas in solid oxide fuel cells. J. Power Sourc. 182, 329–333 (2008)CrossRef D.D. Burnette, G.G. Kremer, D.J. Bayless, The use of hydrogen-depleted coal syngas in solid oxide fuel cells. J. Power Sourc. 182, 329–333 (2008)CrossRef
15.
Zurück zum Zitat J.A.S.B. Cardoso, L. Amaral, O. Metin, D.S.P. Cardoso, M. Sevim, T. Sener, C.A.C. Sequeira, D.M.F. Santos, Reduced graphene oxide assembled Pd-based nanoalloys for hydrogen evolution reaction. Int. J. Hydrogen Energy 42, 3916–3925 (2017)CrossRef J.A.S.B. Cardoso, L. Amaral, O. Metin, D.S.P. Cardoso, M. Sevim, T. Sener, C.A.C. Sequeira, D.M.F. Santos, Reduced graphene oxide assembled Pd-based nanoalloys for hydrogen evolution reaction. Int. J. Hydrogen Energy 42, 3916–3925 (2017)CrossRef
16.
Zurück zum Zitat V. Chabot, D. Higgins, A. Yu, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564–1596 (2014)CrossRef V. Chabot, D. Higgins, A. Yu, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564–1596 (2014)CrossRef
17.
Zurück zum Zitat Y. Chen, D. Ni, X. Yang, C. Liu, J. Yin, K. Cai, Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim. Acta 278, 114–123 (2018)CrossRef Y. Chen, D. Ni, X. Yang, C. Liu, J. Yin, K. Cai, Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim. Acta 278, 114–123 (2018)CrossRef
18.
Zurück zum Zitat X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, Synthesis of ‘clean’ and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 133, 3693–3695 (2011)CrossRef X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, Synthesis of ‘clean’ and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 133, 3693–3695 (2011)CrossRef
19.
Zurück zum Zitat J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRef J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRef
20.
Zurück zum Zitat Y.Z. Chen, R. Zhang, L. Jiao, H.L. Jiang, Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 362, 1–23 (2018)CrossRef Y.Z. Chen, R. Zhang, L. Jiao, H.L. Jiang, Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 362, 1–23 (2018)CrossRef
21.
Zurück zum Zitat D. Chen, J. Zhao, P. Zhang, S. Dai, Mechanochemical synthesis of metal–organic frameworks. Polyhedron 162, 59–64 (2019)CrossRef D. Chen, J. Zhao, P. Zhang, S. Dai, Mechanochemical synthesis of metal–organic frameworks. Polyhedron 162, 59–64 (2019)CrossRef
22.
Zurück zum Zitat J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 39, 390–394 (2018)CrossRef J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 39, 390–394 (2018)CrossRef
23.
Zurück zum Zitat J.Y. Choi, J. Kim, S.H. Jhung, H. Kim, J. Chang, H.K. Chae, Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5. Bull. Korean Chem. Soc. 27, 1523–1524 (2006)CrossRef J.Y. Choi, J. Kim, S.H. Jhung, H. Kim, J. Chang, H.K. Chae, Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5. Bull. Korean Chem. Soc. 27, 1523–1524 (2006)CrossRef
24.
Zurück zum Zitat C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)CrossRef C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)CrossRef
25.
Zurück zum Zitat Y. Cui, B. Chen, G. Qian, Lanthanide metal-organic frameworks for luminiscent sensing and light-emitting applications. Coordination Chem. Rev. 273–274, 76–86 (2014)CrossRef Y. Cui, B. Chen, G. Qian, Lanthanide metal-organic frameworks for luminiscent sensing and light-emitting applications. Coordination Chem. Rev. 273–274, 76–86 (2014)CrossRef
26.
Zurück zum Zitat D. Braga, S.L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi, M. Polito, Dalton Trans. 37, 1249 (2006) D. Braga, S.L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi, M. Polito, Dalton Trans. 37, 1249 (2006)
27.
Zurück zum Zitat D.P. Broom, C.J. Webb, K.E. Hurst, P.A. Parilla, T. Gennett, C.M. Brown, R. Zacharia, E. Tylianakis, E. Klontzas, G.E. GFroudakis, T.A. Steriotis, P.N. Trikalitis, D.L. Anton, B. Hardy, D. Tamburello, C. Corgnale, B.A. van Hassel, D. Cossement, R. Chahine, M. Hirscher, Outlook and challenges for hydrogen storage in nanoporous materials. Appl. Phys. A Mater. Sci. Process 122, 1–21 (2016) D.P. Broom, C.J. Webb, K.E. Hurst, P.A. Parilla, T. Gennett, C.M. Brown, R. Zacharia, E. Tylianakis, E. Klontzas, G.E. GFroudakis, T.A. Steriotis, P.N. Trikalitis, D.L. Anton, B. Hardy, D. Tamburello, C. Corgnale, B.A. van Hassel, D. Cossement, R. Chahine, M. Hirscher, Outlook and challenges for hydrogen storage in nanoporous materials. Appl. Phys. A Mater. Sci. Process 122, 1–21 (2016)
28.
Zurück zum Zitat A. Demirbaş, Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 42, 1357–1378 (2001)CrossRef A. Demirbaş, Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 42, 1357–1378 (2001)CrossRef
29.
Zurück zum Zitat D.R. Dreyer, S. Park, W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Revs. 39, 228–240 (2010)CrossRef D.R. Dreyer, S. Park, W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Revs. 39, 228–240 (2010)CrossRef
30.
Zurück zum Zitat S. Dunn, Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 27, 235–264 (2002)CrossRef S. Dunn, Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 27, 235–264 (2002)CrossRef
31.
Zurück zum Zitat O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)CrossRef O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)CrossRef
32.
Zurück zum Zitat H. Fayaz, R. Saidur, N. Razali, F.S. Anuar, A.R. Saleman, M.R. Islam, An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 16, 5511–5528 (2012)CrossRef H. Fayaz, R. Saidur, N. Razali, F.S. Anuar, A.R. Saleman, M.R. Islam, An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 16, 5511–5528 (2012)CrossRef
33.
Zurück zum Zitat G. Wang. Y. Ma, L. Zhang, J. Mu, Z. Zhang, X. Zhang, H. Che, Y. Bai, H.Y., Hou, Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery. J. Magn. Magn. Mater. 401, 647–650 (2016) G. Wang. Y. Ma, L. Zhang, J. Mu, Z. Zhang, X. Zhang, H. Che, Y. Bai, H.Y., Hou, Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery. J. Magn. Magn. Mater. 401, 647–650 (2016)
34.
Zurück zum Zitat S.G.C. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Chem. Soc. Rev. 27, 213–223 (1998)CrossRef S.G.C. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Chem. Soc. Rev. 27, 213–223 (1998)CrossRef
35.
Zurück zum Zitat B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313, 199–207 (2013)CrossRef B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313, 199–207 (2013)CrossRef
36.
Zurück zum Zitat M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 1–7 (2015)CrossRef M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 1–7 (2015)CrossRef
37.
Zurück zum Zitat Y. Gao, D. Ma, C. Wang, J. Guan, X. Bao, Reduced graphene oxide as catalyst for hydrogenation of nitrobenzene. Structure 47, 2432–2434 (2011) Y. Gao, D. Ma, C. Wang, J. Guan, X. Bao, Reduced graphene oxide as catalyst for hydrogenation of nitrobenzene. Structure 47, 2432–2434 (2011)
38.
Zurück zum Zitat V. Gargiulo, L. Lisi, R. Di, M. Alf, Synthesis and characterization of conductive copper-based metal-organic framework/graphene-like composites. Mater. Chem. Phys. 147, 744–750 (2014)CrossRef V. Gargiulo, L. Lisi, R. Di, M. Alf, Synthesis and characterization of conductive copper-based metal-organic framework/graphene-like composites. Mater. Chem. Phys. 147, 744–750 (2014)CrossRef
39.
Zurück zum Zitat J. Gascon, S. Aguado, F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132–138 (2008)CrossRef J. Gascon, S. Aguado, F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132–138 (2008)CrossRef
40.
Zurück zum Zitat V. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh, Higher oxidation level in graphene oxide. Optik (Stuttg). 143, 115–124 (2017)CrossRef V. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh, Higher oxidation level in graphene oxide. Optik (Stuttg). 143, 115–124 (2017)CrossRef
41.
Zurück zum Zitat H. Yang, H. Du, L. Zhang, W. Liang Zli, Electrosynthesis and electrochemical mechanism of Zn-based metal-organic frameworks. Int. J. Electrochem. Sci. 10, 1420–1433 (2015) H. Yang, H. Du, L. Zhang, W. Liang Zli, Electrosynthesis and electrochemical mechanism of Zn-based metal-organic frameworks. Int. J. Electrochem. Sci. 10, 1420–1433 (2015)
42.
Zurück zum Zitat I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 13, 513–1522 (2009)CrossRef I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 13, 513–1522 (2009)CrossRef
43.
Zurück zum Zitat S.M. Haile, Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003)CrossRef S.M. Haile, Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003)CrossRef
44.
Zurück zum Zitat Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 283, 329–339 (2015)CrossRef Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 283, 329–339 (2015)CrossRef
45.
Zurück zum Zitat A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, Lower-defect graphene oxide nanotubes. ACS Nano 4, 2059–2069 (2010)CrossRef A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, Lower-defect graphene oxide nanotubes. ACS Nano 4, 2059–2069 (2010)CrossRef
46.
Zurück zum Zitat X. Hou, Y. Li, L. Cheng, X. Feng, H. Zhang, S. Han, Cobalt-molybednum disulfide supported on nitrogen-doped graphene towards an efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 44, 11664–11674 (2019)CrossRef X. Hou, Y. Li, L. Cheng, X. Feng, H. Zhang, S. Han, Cobalt-molybednum disulfide supported on nitrogen-doped graphene towards an efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 44, 11664–11674 (2019)CrossRef
47.
Zurück zum Zitat R.J.T. Houk, B.W. Jacobs, F.E. Gabaly, N.N. Chang, A.A. Talin, D.D. Graham, S.D. House, I.M. Robertson, M.D. Allendorf, Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. Nano Lett. 9, 3413–3418 (2009)CrossRef R.J.T. Houk, B.W. Jacobs, F.E. Gabaly, N.N. Chang, A.A. Talin, D.D. Graham, S.D. House, I.M. Robertson, M.D. Allendorf, Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. Nano Lett. 9, 3413–3418 (2009)CrossRef
48.
Zurück zum Zitat J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodríguez, C. Belver, A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysis 9, 1–43 (2019) J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodríguez, C. Belver, A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysis 9, 1–43 (2019)
49.
Zurück zum Zitat M. Jahan, Z. Liu, K.P. Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013)CrossRef M. Jahan, Z. Liu, K.P. Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013)CrossRef
50.
Zurück zum Zitat T. Jesionowski, Influence of aminosilane surface modification and dyes adsorption on zeta potential of spherical silica particles formed in emulsion system. Colloids Surf. Physicochem. Eng. Asp. 222, 87–94 (2003)CrossRef T. Jesionowski, Influence of aminosilane surface modification and dyes adsorption on zeta potential of spherical silica particles formed in emulsion system. Colloids Surf. Physicochem. Eng. Asp. 222, 87–94 (2003)CrossRef
51.
Zurück zum Zitat L. Jiao, Y.-X. Zhou, H.-L. Jiang, Metla-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 7, 1690–1695 (2016)CrossRef L. Jiao, Y.-X. Zhou, H.-L. Jiang, Metla-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 7, 1690–1695 (2016)CrossRef
52.
Zurück zum Zitat K. O’Malley, G. Ordaz, J. Adams, K. Randolph, C.C. Ahn, N.T. Stetson, Applied hydrogen storage research and development: a perspective from the U.S. Department of Energy. J. Alloys Compd. 645, S419–S422 (2015) K. O’Malley, G. Ordaz, J. Adams, K. Randolph, C.C. Ahn, N.T. Stetson, Applied hydrogen storage research and development: a perspective from the U.S. Department of Energy. J. Alloys Compd. 645, S419–S422 (2015)
53.
Zurück zum Zitat P.E. Karthik, K.A. Raja, S.S. Kumar, K.L.N. Phani, Y. Liu, S.X. Guo, J. Zhang, A.M. Bond, Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2− on an anodized Au surface: application to electrocatalysis of the oxygen evolution reaction. RSC Adv. 5, 3196–3199 (2015)CrossRef P.E. Karthik, K.A. Raja, S.S. Kumar, K.L.N. Phani, Y. Liu, S.X. Guo, J. Zhang, A.M. Bond, Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2− on an anodized Au surface: application to electrocatalysis of the oxygen evolution reaction. RSC Adv. 5, 3196–3199 (2015)CrossRef
54.
Zurück zum Zitat F. Ke, L.G. Qiu, Y.P. Yuan, F.M. Peng, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J. Hazard. Mater. 196, 36–43 (2011)CrossRef F. Ke, L.G. Qiu, Y.P. Yuan, F.M. Peng, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J. Hazard. Mater. 196, 36–43 (2011)CrossRef
55.
Zurück zum Zitat S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan, K. Kim, Metal—organic framework composites as electrocatalysts for electrochemical sensing applications. Coord. Chem. Rev. 357, 105–129 (2018)CrossRef S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan, K. Kim, Metal—organic framework composites as electrocatalysts for electrochemical sensing applications. Coord. Chem. Rev. 357, 105–129 (2018)CrossRef
56.
Zurück zum Zitat A.M. Kler, E.A. Tyurina, Y.M. Potanina, A.S. Mednikov, Estimation of efficiency of using hydrogen and aluminum as environmentally-friendly energy carriers. Int. J. Hydrogen Energy 40, 14775–14783 (2015)CrossRef A.M. Kler, E.A. Tyurina, Y.M. Potanina, A.S. Mednikov, Estimation of efficiency of using hydrogen and aluminum as environmentally-friendly energy carriers. Int. J. Hydrogen Energy 40, 14775–14783 (2015)CrossRef
57.
Zurück zum Zitat V. Kumar, K.H. Kim, J.W. Park, J. Hong, S. Kumar, Graphene and its nanocomposites as a platform for environmental applications. Chem. Eng. J. 315, 210–232 (2017)CrossRef V. Kumar, K.H. Kim, J.W. Park, J. Hong, S. Kumar, Graphene and its nanocomposites as a platform for environmental applications. Chem. Eng. J. 315, 210–232 (2017)CrossRef
58.
Zurück zum Zitat P. Laha, B. Chakraborty, Energy model—a tool for preventing energy dysfunction. Renew. Sustain. Energy Rev. 73, 95–114 (2017)CrossRef P. Laha, B. Chakraborty, Energy model—a tool for preventing energy dysfunction. Renew. Sustain. Energy Rev. 73, 95–114 (2017)CrossRef
59.
Zurück zum Zitat H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: a review. Electrochim. Acta 128, 368–392 (2014)CrossRef H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: a review. Electrochim. Acta 128, 368–392 (2014)CrossRef
60.
Zurück zum Zitat J. Lee, H.R. Chae, Y.J. Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim, J.M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Memb. Sci. 448, 223–230 (2013)CrossRef J. Lee, H.R. Chae, Y.J. Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim, J.M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Memb. Sci. 448, 223–230 (2013)CrossRef
61.
Zurück zum Zitat S. Lee, S. Hun, J. Suk, S. Hyun, Large-scale production of high-quality reduced graphene oxide. Chem. Eng. J. 233, 297–304 (2013)CrossRef S. Lee, S. Hun, J. Suk, S. Hyun, Large-scale production of high-quality reduced graphene oxide. Chem. Eng. J. 233, 297–304 (2013)CrossRef
62.
Zurück zum Zitat C.F. Leung, Y.Z. Chen, H.Q. Yu, S.M. Yiu, C.C. Ko, T.C. Lau, Electro- and photocatalytic hydrogen generation in acetonitrile and aqueous solutions by a cobalt macrocyclic Schiff-base complex. Int. J. Hydrogen Energy 36, 11640–11645 (2011)CrossRef C.F. Leung, Y.Z. Chen, H.Q. Yu, S.M. Yiu, C.C. Ko, T.C. Lau, Electro- and photocatalytic hydrogen generation in acetonitrile and aqueous solutions by a cobalt macrocyclic Schiff-base complex. Int. J. Hydrogen Energy 36, 11640–11645 (2011)CrossRef
63.
Zurück zum Zitat R. Li, Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin. J. Catal. 38, 5–12 (2017)CrossRef R. Li, Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin. J. Catal. 38, 5–12 (2017)CrossRef
64.
Zurück zum Zitat F. Li, X. Jiang, J. Zhao, S. Zhang, Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015)CrossRef F. Li, X. Jiang, J. Zhao, S. Zhang, Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015)CrossRef
65.
Zurück zum Zitat D.N. Li, A.J. Wang, J. Wei, Q.L. Zhang, J.J. Feng, Facile synthesis of flower-like Au@AuPd nanocrystals with highly electrocatalytic activity for formic acid oxidation and hydrogen evolution reactions. Int. J. Hydrogen Energy 42, 19894–19902 (2017)CrossRef D.N. Li, A.J. Wang, J. Wei, Q.L. Zhang, J.J. Feng, Facile synthesis of flower-like Au@AuPd nanocrystals with highly electrocatalytic activity for formic acid oxidation and hydrogen evolution reactions. Int. J. Hydrogen Energy 42, 19894–19902 (2017)CrossRef
66.
Zurück zum Zitat L. Li, M. Yang, Y. Dong, P. Mei, H. Cheng, Hydrogen storage and release from a new promising liquid organic hydrogen storage carrier (LOHC): 2-methylindole. Int. J. Hydrogen Energy 41, 16129–16134 (2016)CrossRef L. Li, M. Yang, Y. Dong, P. Mei, H. Cheng, Hydrogen storage and release from a new promising liquid organic hydrogen storage carrier (LOHC): 2-methylindole. Int. J. Hydrogen Energy 41, 16129–16134 (2016)CrossRef
67.
Zurück zum Zitat P.Q. Liao, J.Q. Shen, J.P. Zhang, Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 373, 22–48 (2018)CrossRef P.Q. Liao, J.Q. Shen, J.P. Zhang, Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 373, 22–48 (2018)CrossRef
68.
Zurück zum Zitat J.T.P. Lidstroma, B. Watheyb, J. Westmana, Tetrahedron 57, 9225–9283 (2001)CrossRef J.T.P. Lidstroma, B. Watheyb, J. Westmana, Tetrahedron 57, 9225–9283 (2001)CrossRef
69.
Zurück zum Zitat K.A. Lin, S. Chen, A.P. Jochems, Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine. Mater. Chem. Phys. 160, 168–176 (2015)CrossRef K.A. Lin, S. Chen, A.P. Jochems, Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine. Mater. Chem. Phys. 160, 168–176 (2015)CrossRef
70.
Zurück zum Zitat J. Lin, J. He, F. Qi, B. Zheng, X. Wang, B. Yu, K. Zhou, W. Zhang, Y. Li, Y. Chen, In-situ selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 247, 258–264 (2017)CrossRef J. Lin, J. He, F. Qi, B. Zheng, X. Wang, B. Yu, K. Zhou, W. Zhang, Y. Li, Y. Chen, In-situ selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 247, 258–264 (2017)CrossRef
71.
Zurück zum Zitat R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chem. Commun. 50, 8533–8535 (2014)CrossRef R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chem. Commun. 50, 8533–8535 (2014)CrossRef
72.
Zurück zum Zitat J. Liu, H. Jeong, J. Liu, K. Lee, J.Y. Park, Y.H. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48, 2282–2289 (2010)CrossRef J. Liu, H. Jeong, J. Liu, K. Lee, J.Y. Park, Y.H. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48, 2282–2289 (2010)CrossRef
73.
Zurück zum Zitat S.Y. Liu, P. Kundu, T.W. Huang, Y.J. Chuang, F.G. Tseng, Y. Lu, M.L. Sui, F.R. Chen, Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 31, 218–224 (2017)CrossRef S.Y. Liu, P. Kundu, T.W. Huang, Y.J. Chuang, F.G. Tseng, Y. Lu, M.L. Sui, F.R. Chen, Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 31, 218–224 (2017)CrossRef
74.
Zurück zum Zitat S. Loera-serna, M.A. Oliver-Telentino, M.L. Lopez-Nunez, A. Santana-Cruz, A. Guzman-Vargas, R. Cabrera-Sierra, H.I. Beltran, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J. Alloys Compd. 540, 113–120 (2012)CrossRef S. Loera-serna, M.A. Oliver-Telentino, M.L. Lopez-Nunez, A. Santana-Cruz, A. Guzman-Vargas, R. Cabrera-Sierra, H.I. Beltran, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J. Alloys Compd. 540, 113–120 (2012)CrossRef
75.
Zurück zum Zitat C.M. Lu, J. Liu, K. Xiao, A.T. Harris, Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem. Eng. J. 156, p465–p470 (2010)CrossRef C.M. Lu, J. Liu, K. Xiao, A.T. Harris, Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem. Eng. J. 156, p465–p470 (2010)CrossRef
76.
Zurück zum Zitat H. Lund, Renewable energy strategies for sustainable development. Energy 32, 912–919 (2007)CrossRef H. Lund, Renewable energy strategies for sustainable development. Energy 32, 912–919 (2007)CrossRef
77.
Zurück zum Zitat H. Lund, B.V. Mathiesen, Energy system analysis of 100% renewable energy systems-the case of Denmark in years 2030 and 2050. Energy 34, 524–531 (2009)CrossRef H. Lund, B.V. Mathiesen, Energy system analysis of 100% renewable energy systems-the case of Denmark in years 2030 and 2050. Energy 34, 524–531 (2009)CrossRef
78.
Zurück zum Zitat M. Sohail, M. Saleem, S. Ullah, N. Saeed., A. Afridi, M. Khan, M. Arif, Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications. Mod. Electron. Mater. 3, 110–116 (2017) M. Sohail, M. Saleem, S. Ullah, N. Saeed., A. Afridi, M. Khan, M. Arif, Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications. Mod. Electron. Mater. 3, 110–116 (2017)
79.
Zurück zum Zitat M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, T.M. O’keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2016) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, T.M. O’keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2016)
80.
Zurück zum Zitat M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, T.M. O’keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001) M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, T.M. O’keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001)
81.
Zurück zum Zitat M. Ma, L. Wang, Y. Wang, W. Xiang, P. Lyu, B. Tang, X. Tan, Effect of hydrogen content on hydrogen desorption kinetics of titanium hydride. J. Alloys Compd. 709, 445–452 (2017)CrossRef M. Ma, L. Wang, Y. Wang, W. Xiang, P. Lyu, B. Tang, X. Tan, Effect of hydrogen content on hydrogen desorption kinetics of titanium hydride. J. Alloys Compd. 709, 445–452 (2017)CrossRef
82.
Zurück zum Zitat S.S. Maktedar, S.S. Mehetre, M. Singh, R.K. Kale, Ultrasound irradiation: a robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects. Ultrason. Sonochem. 21, 1407–1416 (2014)CrossRef S.S. Maktedar, S.S. Mehetre, M. Singh, R.K. Kale, Ultrasound irradiation: a robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects. Ultrason. Sonochem. 21, 1407–1416 (2014)CrossRef
83.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 183–191 (2010)CrossRef D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 183–191 (2010)CrossRef
84.
Zurück zum Zitat G. Mashao, K.E. Ramohlola, S.B. Mdluli, G.R. Monama, M.J. Hato, K. Makgopa, M.M. Molapo, M.E. Ramoroka, E.I. Iwuoha, K.D. Modibane, Zinc-based zeolitic benzimidazolate framework/polyaniline nanocomposite for electrochemical sensing of hydrogen gas Mat. Chem. Phys. 230, 287–298 (2019) G. Mashao, K.E. Ramohlola, S.B. Mdluli, G.R. Monama, M.J. Hato, K. Makgopa, M.M. Molapo, M.E. Ramoroka, E.I. Iwuoha, K.D. Modibane, Zinc-based zeolitic benzimidazolate framework/polyaniline nanocomposite for electrochemical sensing of hydrogen gas Mat. Chem. Phys. 230, 287–298 (2019)
85.
Zurück zum Zitat K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033 (2012)CrossRef K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033 (2012)CrossRef
86.
Zurück zum Zitat J.R. Mckone, S.C. Marinescu, B.S. Brunschwig, J.R. JWinkler, H.B. Gray, Earth-abundant hydrogen evolution electrocatalysts. Chem Sci 5, 865–878 (2014)CrossRef J.R. Mckone, S.C. Marinescu, B.S. Brunschwig, J.R. JWinkler, H.B. Gray, Earth-abundant hydrogen evolution electrocatalysts. Chem Sci 5, 865–878 (2014)CrossRef
87.
Zurück zum Zitat F. Mindivan, The synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO). Mach. Technol. Mater. 6, 32–35 (2017) F. Mindivan, The synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO). Mach. Technol. Mater. 6, 32–35 (2017)
88.
Zurück zum Zitat M. Momirlan, T. Veziroglu, Current status of hydrogen energy. Renew. Sustain. Energy Rev. 6, 141–179 (2002)CrossRef M. Momirlan, T. Veziroglu, Current status of hydrogen energy. Renew. Sustain. Energy Rev. 6, 141–179 (2002)CrossRef
89.
Zurück zum Zitat G.R. Monama, S.B. Mdluli, G. Mashao, M.D. Makhafola, K.E. Ramohlola, K.M. Molapo, M.J. Hato, K. Makgopa, E.I. Iwuoha, K.D. Modibane, Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction. Renew. Energy 119, 62–72 (2018)CrossRef G.R. Monama, S.B. Mdluli, G. Mashao, M.D. Makhafola, K.E. Ramohlola, K.M. Molapo, M.J. Hato, K. Makgopa, E.I. Iwuoha, K.D. Modibane, Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction. Renew. Energy 119, 62–72 (2018)CrossRef
90.
Zurück zum Zitat A. Mukherjee, S. Chakrabarty, W.N. Su, S. Basu, Nanostructured nickel ferrite embedded in reduced graphene oxide for electrocatalytic hydrogen evolution reaction. Mater. Today Energy 8, 118–124 (2018)CrossRef A. Mukherjee, S. Chakrabarty, W.N. Su, S. Basu, Nanostructured nickel ferrite embedded in reduced graphene oxide for electrocatalytic hydrogen evolution reaction. Mater. Today Energy 8, 118–124 (2018)CrossRef
91.
Zurück zum Zitat R. Nivetha, S. Chella, P. Kollu, S.K. Jeong, A. Bhatnagar, N.G. Andrews, Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution. J. Magn. Magn. Mater. 448, 165–171 (2018)CrossRef R. Nivetha, S. Chella, P. Kollu, S.K. Jeong, A. Bhatnagar, N.G. Andrews, Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution. J. Magn. Magn. Mater. 448, 165–171 (2018)CrossRef
92.
Zurück zum Zitat J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005)CrossRef J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005)CrossRef
93.
Zurück zum Zitat C.R.P. Patel, P. Tripathi, A.K. Vishwakarma, M. Talat, P.K. Soni, T.P. Yadav, O.N. Srivastava, Enhanced hydrogen generation by water electrolysis employing carbon nano-structure composites. Int. J. Hydrogen Energy 43, 3180–3189 (2018)CrossRef C.R.P. Patel, P. Tripathi, A.K. Vishwakarma, M. Talat, P.K. Soni, T.P. Yadav, O.N. Srivastava, Enhanced hydrogen generation by water electrolysis employing carbon nano-structure composites. Int. J. Hydrogen Energy 43, 3180–3189 (2018)CrossRef
94.
Zurück zum Zitat C. Petit, T.J. Bandosz, Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites. J. Colloid Interface Sci. 447, 139–151 (2015)CrossRef C. Petit, T.J. Bandosz, Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites. J. Colloid Interface Sci. 447, 139–151 (2015)CrossRef
95.
Zurück zum Zitat C. Petit, J. Burress, T.J. Bandosz, The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites. Carbon 49, 563–572 (2011)CrossRef C. Petit, J. Burress, T.J. Bandosz, The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites. Carbon 49, 563–572 (2011)CrossRef
96.
Zurück zum Zitat C. Petit, M. Seredych, T.J. Bandosz, Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19, 9176–9185 (2009)CrossRef C. Petit, M. Seredych, T.J. Bandosz, Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19, 9176–9185 (2009)CrossRef
97.
Zurück zum Zitat A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of microporous metal-organic framework. Cryst. Eng. Comm. 8, 211–214 (2006)CrossRef A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of microporous metal-organic framework. Cryst. Eng. Comm. 8, 211–214 (2006)CrossRef
98.
Zurück zum Zitat M. Pilloni, F. Padella, G. Ennas, S. Lai, M. Bellusci, E. Rombi, F. Sini, M. Pentimalli, C. Delitala, A. Scano, V. Cabras, Liquid-assisted mechanochemical synthesis of an iron carboxylate metal organic framework and its evaluation in diesel fuel desulfurization. Microporous Mesoporous Mater. 213, 14–21 (2015)CrossRef M. Pilloni, F. Padella, G. Ennas, S. Lai, M. Bellusci, E. Rombi, F. Sini, M. Pentimalli, C. Delitala, A. Scano, V. Cabras, Liquid-assisted mechanochemical synthesis of an iron carboxylate metal organic framework and its evaluation in diesel fuel desulfurization. Microporous Mesoporous Mater. 213, 14–21 (2015)CrossRef
99.
Zurück zum Zitat A.V. Puga, Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord. Chem. Rev. 315, 1–66 (2016)CrossRef A.V. Puga, Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord. Chem. Rev. 315, 1–66 (2016)CrossRef
100.
Zurück zum Zitat R.M.N.M. Rathnayake, H.W.M.A.C. Wijayasinghe, H.M.T.G.A. Pitawala, M. Yoshimura, H.H. Huang, Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite. Appl. Surf. Sci. 393, 309–315 (2017) R.M.N.M. Rathnayake, H.W.M.A.C. Wijayasinghe, H.M.T.G.A. Pitawala, M. Yoshimura, H.H. Huang, Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite. Appl. Surf. Sci. 393, 309–315 (2017)
101.
Zurück zum Zitat K.E. Ramohlola, M. Masikini, S.B. Mdluli, G.R. Monama, M.J. Hato, K.M. Molapo, E.I. Iwuoha, K.D. Modibane, Electrocatalytic hydrogen production properties of poly(3- aminobenzoic acid) doped with metal organic frameworks. Int. J. Electrochem. Sci. 12, 4392–4405 (2017)CrossRef K.E. Ramohlola, M. Masikini, S.B. Mdluli, G.R. Monama, M.J. Hato, K.M. Molapo, E.I. Iwuoha, K.D. Modibane, Electrocatalytic hydrogen production properties of poly(3- aminobenzoic acid) doped with metal organic frameworks. Int. J. Electrochem. Sci. 12, 4392–4405 (2017)CrossRef
102.
Zurück zum Zitat K.E. Ramohlola, M. Masikini, S.B. Mdluli, G.R. Monama, M.J. Hato, K.M. Molapo, K.D. Modibane, E.I. Iwuoha, Electrocatalytic hydrogen evolution reaction of metal organic frameworks decorated with poly(3-aminobenzoic acid). Electrochim. Acta 246, 1174–1182 (2017)CrossRef K.E. Ramohlola, M. Masikini, S.B. Mdluli, G.R. Monama, M.J. Hato, K.M. Molapo, K.D. Modibane, E.I. Iwuoha, Electrocatalytic hydrogen evolution reaction of metal organic frameworks decorated with poly(3-aminobenzoic acid). Electrochim. Acta 246, 1174–1182 (2017)CrossRef
103.
Zurück zum Zitat K.E. Ramohlola, G.R. Monama, M.J. Hato, K.D. Modibane, K.M. Molapo, M. Masikini, S.B. Mdluli, E.I. Iwuoha, Polyaniline-metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos. Part B Eng. 137, 129–139 (2018)CrossRef K.E. Ramohlola, G.R. Monama, M.J. Hato, K.D. Modibane, K.M. Molapo, M. Masikini, S.B. Mdluli, E.I. Iwuoha, Polyaniline-metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos. Part B Eng. 137, 129–139 (2018)CrossRef
104.
Zurück zum Zitat J.B. Raoof, R. Ojani, S.A. Esfeden, S.R. Nadimi, Fabrication of bimetallic Cu/Pt nanoparticles modified glassy carbon electrode and its catalytic activity toward hydrogen evolution reaction. Int. J. Hydrogen Energy 35, 3937–3944 (2010)CrossRef J.B. Raoof, R. Ojani, S.A. Esfeden, S.R. Nadimi, Fabrication of bimetallic Cu/Pt nanoparticles modified glassy carbon electrode and its catalytic activity toward hydrogen evolution reaction. Int. J. Hydrogen Energy 35, 3937–3944 (2010)CrossRef
105.
Zurück zum Zitat F. Rosalbino, G. Borzone, E. Angelini, R. Raggio, Hydrogen evolution reaction on Ni-RE (RE = rare earth) crystalline alloys. Electrochim. Acta 48, 3939–3944 (2003)CrossRef F. Rosalbino, G. Borzone, E. Angelini, R. Raggio, Hydrogen evolution reaction on Ni-RE (RE = rare earth) crystalline alloys. Electrochim. Acta 48, 3939–3944 (2003)CrossRef
106.
Zurück zum Zitat F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Electrocatalytic behaviour of Co-Ni-R (R = Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen Energy 33, 6696–6703 (2008)CrossRef F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Electrocatalytic behaviour of Co-Ni-R (R = Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen Energy 33, 6696–6703 (2008)CrossRef
107.
Zurück zum Zitat D. Ross, Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80, 1084–1089 (2006)CrossRef D. Ross, Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80, 1084–1089 (2006)CrossRef
108.
Zurück zum Zitat J. Sakamoto, J. Nakayama, T. Nakarai, N. Kasai, T. Shibutani, A. Miyake, Effect of gasoline pool fire on liquid hydrogen storage tank in hybrid hydrogen-gasoline fueling station. Int. J. Hydrogen Energy 41, 2096–2104 (2016)CrossRef J. Sakamoto, J. Nakayama, T. Nakarai, N. Kasai, T. Shibutani, A. Miyake, Effect of gasoline pool fire on liquid hydrogen storage tank in hybrid hydrogen-gasoline fueling station. Int. J. Hydrogen Energy 41, 2096–2104 (2016)CrossRef
109.
Zurück zum Zitat B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32, 1121–1140 (2007)CrossRef B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32, 1121–1140 (2007)CrossRef
110.
Zurück zum Zitat M. Schalenbach, F.D. Speck, M. Ledendecker, O. Kasian, D. Goehl, A.M. Mingers, B. Breitbach, H. Springer, S. Cherevko, K.J.J. Mayrhofer, Nickel-Molybdenum alloy catalysts for the hydrogen evolution reaction: activity and stability revised. Electrochim. Acta 259, 1154–1161 (2018)CrossRef M. Schalenbach, F.D. Speck, M. Ledendecker, O. Kasian, D. Goehl, A.M. Mingers, B. Breitbach, H. Springer, S. Cherevko, K.J.J. Mayrhofer, Nickel-Molybdenum alloy catalysts for the hydrogen evolution reaction: activity and stability revised. Electrochim. Acta 259, 1154–1161 (2018)CrossRef
111.
Zurück zum Zitat L. Schlapbach, A. Züttel, Hydrogen storage materials for mobile applications. Nature 414, 353–358 (2001)CrossRef L. Schlapbach, A. Züttel, Hydrogen storage materials for mobile applications. Nature 414, 353–358 (2001)CrossRef
112.
Zurück zum Zitat K. Schoots, F. Ferioli, G.J. Kramer, B.C.C. van der Zwaan, Learning curves for hydrogen production technology: an assessment of observed cost reductions. Int. J. Hydrogen Energy 33, 2630–2645 (2008)CrossRef K. Schoots, F. Ferioli, G.J. Kramer, B.C.C. van der Zwaan, Learning curves for hydrogen production technology: an assessment of observed cost reductions. Int. J. Hydrogen Energy 33, 2630–2645 (2008)CrossRef
113.
Zurück zum Zitat M. Seredych, E. Rodriguez-Castellon, T.J. Bandosz, New CuxSy/nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. J. Mater. Chem. A 2, 20164–20176 (2014)CrossRef M. Seredych, E. Rodriguez-Castellon, T.J. Bandosz, New CuxSy/nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. J. Mater. Chem. A 2, 20164–20176 (2014)CrossRef
114.
Zurück zum Zitat L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified Hummers approach. Int. J. Renew. Energy Environ. Eng. 2, 58–63 (2014) L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified Hummers approach. Int. J. Renew. Energy Environ. Eng. 2, 58–63 (2014)
115.
Zurück zum Zitat A. Sharma, S.K. Arya, Hydrogen from algal biomass: a review of production process. Biotechnol. Rep. 15, 63–69 (2017)CrossRef A. Sharma, S.K. Arya, Hydrogen from algal biomass: a review of production process. Biotechnol. Rep. 15, 63–69 (2017)CrossRef
116.
Zurück zum Zitat S.A. Sherif, F. Barbir, T.N. Veziroglu, Towards a hydrogen economy. Electric. J. 18, 62–76 (2005)CrossRef S.A. Sherif, F. Barbir, T.N. Veziroglu, Towards a hydrogen economy. Electric. J. 18, 62–76 (2005)CrossRef
117.
Zurück zum Zitat N.K. Singh, S. Gupta, V.K. Pecharsky, V.P. Balema, Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks. J. Alloys Compd. 696, 118–122 (2017)CrossRef N.K. Singh, S. Gupta, V.K. Pecharsky, V.P. Balema, Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks. J. Alloys Compd. 696, 118–122 (2017)CrossRef
118.
Zurück zum Zitat J. Song, X. Wang, C.T. Chang, Preparation and characterization of graphene oxide paper. J. Nanomater. 448, 457–460 (2014) J. Song, X. Wang, C.T. Chang, Preparation and characterization of graphene oxide paper. J. Nanomater. 448, 457–460 (2014)
119.
Zurück zum Zitat Y.S. Song, B. Yan, Z.X. Chen, Hydrothermal synthesis, crystal structure and luminescence of four novel metal-organic frameworks”. J. Solid State Chem. 179, 4037–4046 (2006)CrossRef Y.S. Song, B. Yan, Z.X. Chen, Hydrothermal synthesis, crystal structure and luminescence of four novel metal-organic frameworks”. J. Solid State Chem. 179, 4037–4046 (2006)CrossRef
120.
Zurück zum Zitat S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Letters 442, 282–286 (2006) S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Letters 442, 282–286 (2006)
121.
Zurück zum Zitat S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruof, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruof, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef
122.
Zurück zum Zitat N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef
123.
Zurück zum Zitat Z. Sun, W. Fan, T. Liu, Graphene/graphene nanoribbon aerogels as tunable three-dimensional framework for efficient hydrogen evolution reaction. Electrochim. Acta 250, 91–98 (2017)CrossRef Z. Sun, W. Fan, T. Liu, Graphene/graphene nanoribbon aerogels as tunable three-dimensional framework for efficient hydrogen evolution reaction. Electrochim. Acta 250, 91–98 (2017)CrossRef
125.
Zurück zum Zitat J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015)CrossRef J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015)CrossRef
126.
Zurück zum Zitat J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A.S. Bandarenka, Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Nat. Commun. 7, 10990–10995 (2016)CrossRef J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A.S. Bandarenka, Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Nat. Commun. 7, 10990–10995 (2016)CrossRef
127.
Zurück zum Zitat R. Vakili, S. Xu, N. Al-Janabi, P. Gorgojo, S.M. Holmes, X. Fan, Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): optimization and gas adsorption. Microporous Mesoporous Mater. 260, 45–53 (2018)CrossRef R. Vakili, S. Xu, N. Al-Janabi, P. Gorgojo, S.M. Holmes, X. Fan, Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): optimization and gas adsorption. Microporous Mesoporous Mater. 260, 45–53 (2018)CrossRef
128.
Zurück zum Zitat B. Valizadeh, T.N. Nguyen, K.C. Stylianou, Shape engineering of metal–organic frameworks. Polyhedron 145, 1–15 (2018)CrossRef B. Valizadeh, T.N. Nguyen, K.C. Stylianou, Shape engineering of metal–organic frameworks. Polyhedron 145, 1–15 (2018)CrossRef
129.
Zurück zum Zitat L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015)CrossRef L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015)CrossRef
130.
Zurück zum Zitat G. Wang, X. Shen, B. Wang, J. Yao, J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364 (2009)CrossRef G. Wang, X. Shen, B. Wang, J. Yao, J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364 (2009)CrossRef
131.
Zurück zum Zitat L. Wang, R.T. Yang, New sorbents for hydrogen storage by hydrogen spillover—a review. Energy Environ. Sci. 1, 268–279 (2008)CrossRef L. Wang, R.T. Yang, New sorbents for hydrogen storage by hydrogen spillover—a review. Energy Environ. Sci. 1, 268–279 (2008)CrossRef
132.
Zurück zum Zitat A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 128, 3494–3495 (2006)CrossRef A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 128, 3494–3495 (2006)CrossRef
133.
Zurück zum Zitat X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, S. Deng, Microwave synthesis and characterization of MOF-74 (M = Ni, Mg) for gas separation. Microporous Mesoporous Mater. 180, 114–122 (2013)CrossRef X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, S. Deng, Microwave synthesis and characterization of MOF-74 (M = Ni, Mg) for gas separation. Microporous Mesoporous Mater. 180, 114–122 (2013)CrossRef
134.
Zurück zum Zitat Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef
135.
Zurück zum Zitat B. Xiao, Q. Yuan, Nanoporous metal organic framework materials for hydrogen storage. Particuology 7, 129–140 (2009)CrossRef B. Xiao, Q. Yuan, Nanoporous metal organic framework materials for hydrogen storage. Particuology 7, 129–140 (2009)CrossRef
136.
Zurück zum Zitat Y. Yan, Y. Xia, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A Mater. Energy Sustain. 4, 17587–17603 (2016)CrossRef Y. Yan, Y. Xia, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A Mater. Energy Sustain. 4, 17587–17603 (2016)CrossRef
137.
Zurück zum Zitat J. Yang, F. Cheng, J. Liang, J. Chen, Hydrogen generation by hydrolysis of ammonia borane with a nanoporous cobalt-tungsten-boron-phosphorus catalyst supported on Ni foam. Int. J. Hydrogen Energy 36, 1411–1417 (2011)CrossRef J. Yang, F. Cheng, J. Liang, J. Chen, Hydrogen generation by hydrolysis of ammonia borane with a nanoporous cobalt-tungsten-boron-phosphorus catalyst supported on Ni foam. Int. J. Hydrogen Energy 36, 1411–1417 (2011)CrossRef
138.
Zurück zum Zitat H.M. Yang, X. Liu, X.L. Song, T.L. Yang, Z.H. Liang, C.M. Fan, In-situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferrous Met. Soc. China 25, 3987–3994 (2015)CrossRef H.M. Yang, X. Liu, X.L. Song, T.L. Yang, Z.H. Liang, C.M. Fan, In-situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferrous Met. Soc. China 25, 3987–3994 (2015)CrossRef
139.
Zurück zum Zitat F.H. Yang, R.T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes. Carbon 40, 437–444 (2002)CrossRef F.H. Yang, R.T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes. Carbon 40, 437–444 (2002)CrossRef
140.
Zurück zum Zitat Q. Ye, A. Chen, W. Huang, J. Zhang, X. Liu, G. Xu, Z. Zhou, Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation. Electrochem. Commun. 9, 1513–1518 (2007)CrossRef Q. Ye, A. Chen, W. Huang, J. Zhang, X. Liu, G. Xu, Z. Zhou, Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation. Electrochem. Commun. 9, 1513–1518 (2007)CrossRef
141.
Zurück zum Zitat F. Ye, C. Xua, G. Liub, J. Lid, X. Wangd, X. Dua, J.K. Leeb, A novel PtRuIr nanoclusters synthesized by selectively electrodepositing Ir on PtRu as highly active bifunctional electrocatalysts for oxygen evolution and reduction. Energy Convers. Manag. 155, 182–187 (2018)CrossRef F. Ye, C. Xua, G. Liub, J. Lid, X. Wangd, X. Dua, J.K. Leeb, A novel PtRuIr nanoclusters synthesized by selectively electrodepositing Ir on PtRu as highly active bifunctional electrocatalysts for oxygen evolution and reduction. Energy Convers. Manag. 155, 182–187 (2018)CrossRef
142.
Zurück zum Zitat A. Yilanci, I. Dincer, H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energy Combust. Sci. 35, 231–244 (2009)CrossRef A. Yilanci, I. Dincer, H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energy Combust. Sci. 35, 231–244 (2009)CrossRef
143.
Zurück zum Zitat K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010)CrossRef K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010)CrossRef
144.
Zurück zum Zitat P.F. Zhang, H. Li, G.M. Veith, S. Dai, Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation. Adv. Mater. 27, 234–239 (2015)CrossRef P.F. Zhang, H. Li, G.M. Veith, S. Dai, Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation. Adv. Mater. 27, 234–239 (2015)CrossRef
145.
Zurück zum Zitat W. Zhang, Y. Li, X. Zeng, S. Peng, Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Sci. Rep. 5, 1–12 (2015) W. Zhang, Y. Li, X. Zeng, S. Peng, Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Sci. Rep. 5, 1–12 (2015)
146.
Zurück zum Zitat Y. Zhang, J. Tan, F. Wen, Z. Zhou, M. Zhu, Platinum nanoparticles deposited nitrogen-doped carbon nanofiber derived from bacterial cellulose for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 6167–6176 (2018)CrossRef Y. Zhang, J. Tan, F. Wen, Z. Zhou, M. Zhu, Platinum nanoparticles deposited nitrogen-doped carbon nanofiber derived from bacterial cellulose for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 6167–6176 (2018)CrossRef
147.
Zurück zum Zitat W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)CrossRef W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)CrossRef
148.
Zurück zum Zitat H.C.J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014)CrossRef H.C.J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014)CrossRef
149.
Zurück zum Zitat H. Zhou, J. Zhang, D. Ji, A. Yuan, X. Shen, Effect of catalyst loading on hydrogen storage capacity of ZIF-8/graphene oxide doped with Pt or Pd via spillover. Microporous Mesoporous Mater. 229, 68–75 (2016)CrossRef H. Zhou, J. Zhang, D. Ji, A. Yuan, X. Shen, Effect of catalyst loading on hydrogen storage capacity of ZIF-8/graphene oxide doped with Pt or Pd via spillover. Microporous Mesoporous Mater. 229, 68–75 (2016)CrossRef
150.
Zurück zum Zitat H. Zhou, J. Zhang, J. Zhang, X. Yan, X. Shen, A. Yuan, Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method. INOCHE 54, 54–56 (2015) H. Zhou, J. Zhang, J. Zhang, X. Yan, X. Shen, A. Yuan, Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method. INOCHE 54, 54–56 (2015)
Metadaten
Titel
Synergetic Effect of Graphene Oxide and Metal Organic Framework Nanocomposites as Electrocatalysts for Hydrogen Evolution Reaction
verfasst von
Mogwasha D. Makhafola
Mpitloane J. Hato
Kabelo E. Ramohlola
Phuti S. Ramaripa
Thabiso C. Maponya
Gobeng R. Monama
Kerileng M. Molapo
Emmanuel I. Iwuoha
Lebogang M. Katata-Seru
Katlego Makgopa
Kwena D. Modibane
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7610-2_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.