Skip to main content
Erschienen in: Journal of Polymer Research 2/2016

01.02.2016 | Original Paper

Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure

verfasst von: Peng-Gang Ren, Xiao-Huan Si, Zhen-Feng Sun, Fang Ren, Lu Pei, Si-Yu Hou

Erschienen in: Journal of Polymer Research | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermal conductivity of ultra-high-molecular-weight polyethylene (UHMWPE)/boron nitride particle (BNp), UHMWPE/BN sheet (BNs), and UHMWPE/(BN+MWCNT) hybrid filler composites with segregated structures was investigated using a powder mixture and hot-pressing process. The morphology of the fillers and composites was observed by optical microscopy, atomic force microscopy, and scanning electron microscopy, respectively. The results showed that the torispherical BNp filler contained particles of various dimensions, ranging from 200 to 500 nm, while the saucer-shaped BNs filler with irregular prominence on the edge exhibited uniformity of size, with widths of 100–150 nm and height of 3–5 nm. The networks of thermally conductive fillers and the interfacial thermal resistance at the filler boundaries played a major role in the thermal conductivity of the segregated composites, as revealed in an almost linear enhancement of conductivity with increasing filler content. In comparison to the 2D saucer-shaped BNs fillers, the varied size of the 0D BNp was more conducive to the formation of effective filler stacks, as the gaps between larger BNp fillers facilitated access by the smaller BNp fillers. The thermal conductivity of the UHMWPE composite with the addition of 50 wt% BNp increased from 0.4591 to 1.385 W/m·K, approximately 16.2 % higher than that of the UHMWPE/BNs composite (1.192 W/m·K). The synergistic effect of the BN+MWCNT hybrid fillers helped to improve the thermal conductivity of the UHMWPE composites. Compared with the 0D BNp filler, the 2D BNs was more readily entangled with 1D MWCNT and formed compact and overlapping thermally conductive networks. As such, the thermal conductivity of the UHMWPE/(BNs+MWCNT) hybrid filler composite (1.641 W/m·K for 50 wt% filler content) was superior to that of the UHMWPE/(BNp+MWCNT) composite (1.533 W/m·K). Additionally, the crystallization behavior and thermal stability of UHMWPE was almost unchanged in the presence of BN and BN+MWCNT hybrid fillers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef
2.
Zurück zum Zitat Zhou WY, Qi SH, Zhao HZ, Liu NL (2007) Thermally conductive silicone rubber reinforced with boron nitride particle. Polym Compos 28:23–28CrossRef Zhou WY, Qi SH, Zhao HZ, Liu NL (2007) Thermally conductive silicone rubber reinforced with boron nitride particle. Polym Compos 28:23–28CrossRef
3.
Zurück zum Zitat Hou ZL, Song WL, Wang P, Meziani MJ, Kong CY, Anderson A, Maimaiti H, LeCroy GE, Qian HJ, Sun YP (2014) Flexible graphene−graphene composites of superior thermal and electrical transport properties. ACS Appl Mater Interfaces 6:15026–15032 Hou ZL, Song WL, Wang P, Meziani MJ, Kong CY, Anderson A, Maimaiti H, LeCroy GE, Qian HJ, Sun YP (2014) Flexible graphene−graphene composites of superior thermal and electrical transport properties. ACS Appl Mater Interfaces 6:15026–15032
4.
Zurück zum Zitat Ren F, Ren PG, Di YY, Chen DM, Liu GG (2011) Thermal, mechanical and electrical properties of linear low-density polyethylene composites filled with different dimensional SiC particles. Polym Plast Technol 50:791–796CrossRef Ren F, Ren PG, Di YY, Chen DM, Liu GG (2011) Thermal, mechanical and electrical properties of linear low-density polyethylene composites filled with different dimensional SiC particles. Polym Plast Technol 50:791–796CrossRef
5.
Zurück zum Zitat Zhou WY, Qi SH, An QL, Zhao HZ, Liu NL (2007) Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull 42:1863–1873CrossRef Zhou WY, Qi SH, An QL, Zhao HZ, Liu NL (2007) Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull 42:1863–1873CrossRef
6.
Zurück zum Zitat Chen BS, Luan DC, Huang J, Zhang J (2015) Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene composites through boron nitride and zinc oxide hybrid fillers. J Appl Polym Sci 132:42302 Chen BS, Luan DC, Huang J, Zhang J (2015) Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene composites through boron nitride and zinc oxide hybrid fillers. J Appl Polym Sci 132:42302
7.
Zurück zum Zitat Zhou WY, Yu DM, Min C, Fu YP, Guo XS (2009) Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci 112:1695–1703CrossRef Zhou WY, Yu DM, Min C, Fu YP, Guo XS (2009) Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci 112:1695–1703CrossRef
8.
Zurück zum Zitat Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769CrossRef Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769CrossRef
9.
Zurück zum Zitat Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube_polymer nanocomposites with high packing density. ASC Nano 5:4818–4825CrossRef Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube_polymer nanocomposites with high packing density. ASC Nano 5:4818–4825CrossRef
10.
Zurück zum Zitat Yu AP, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569CrossRef Yu AP, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569CrossRef
11.
Zurück zum Zitat Zhou WY (2011) Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. Thermochim Acta 512:183–188CrossRef Zhou WY (2011) Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. Thermochim Acta 512:183–188CrossRef
12.
Zurück zum Zitat Zhou WY, Qi SH, Li HD, Shao SY (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42CrossRef Zhou WY, Qi SH, Li HD, Shao SY (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42CrossRef
13.
Zurück zum Zitat Zhang XL, Shen LY, Wu H, Guo SY (2013) Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos Sci Technol 89:24–28CrossRef Zhang XL, Shen LY, Wu H, Guo SY (2013) Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos Sci Technol 89:24–28CrossRef
14.
Zurück zum Zitat Kikugawa G, Desai TG, Keblinski P, Ohara T (2013) Effect of crosslink formation on heat conduction in amorphous polymers. J Appl Phys 114:034302CrossRef Kikugawa G, Desai TG, Keblinski P, Ohara T (2013) Effect of crosslink formation on heat conduction in amorphous polymers. J Appl Phys 114:034302CrossRef
15.
Zurück zum Zitat Ong ZY, Zhang G (2015) Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport. Phys Rev B 91:174302CrossRef Ong ZY, Zhang G (2015) Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport. Phys Rev B 91:174302CrossRef
16.
Zurück zum Zitat Zhou WY, Wang CF, An QL, Ou HY (2008) Thermal properties of heat conductive silicone rubber filled with hybrid fillers. J Compos Mater 42:173–187CrossRef Zhou WY, Wang CF, An QL, Ou HY (2008) Thermal properties of heat conductive silicone rubber filled with hybrid fillers. J Compos Mater 42:173–187CrossRef
17.
Zurück zum Zitat Agari Y, Ueda A, Nagai S (1991) Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci 42:1665–1669CrossRef Agari Y, Ueda A, Nagai S (1991) Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci 42:1665–1669CrossRef
18.
Zurück zum Zitat Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437–443CrossRef Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437–443CrossRef
19.
Zurück zum Zitat Jiang X, Yan DX, Bao Y, Pang H, Ji X, Li ZM (2015) Facile, green and affordable strategy for structuring natural graphite/polymer composite with efficient electromagnetic interference shielding. RSC Adv 5:22587–22592CrossRef Jiang X, Yan DX, Bao Y, Pang H, Ji X, Li ZM (2015) Facile, green and affordable strategy for structuring natural graphite/polymer composite with efficient electromagnetic interference shielding. RSC Adv 5:22587–22592CrossRef
20.
Zurück zum Zitat Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933CrossRef Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933CrossRef
21.
Zurück zum Zitat Liu KS, Ronca S, Andablo-Reyes E, Forte G, Rastogi S (2015) Unique rheological response of ultrahigh molecular weight polyethylenes in the presence of reduced graphene oxide. Macromolecules 48:131–139CrossRef Liu KS, Ronca S, Andablo-Reyes E, Forte G, Rastogi S (2015) Unique rheological response of ultrahigh molecular weight polyethylenes in the presence of reduced graphene oxide. Macromolecules 48:131–139CrossRef
22.
Zurück zum Zitat Agari Y, Ueda A, Tanaka M, Nagai S (1990) Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content. J Appl Polym Sci 40:929–941CrossRef Agari Y, Ueda A, Tanaka M, Nagai S (1990) Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content. J Appl Polym Sci 40:929–941CrossRef
23.
Zurück zum Zitat Lin F, Bhatia GS, Ford JD (1993) Thermal conductivities of powder-filled epoxy resins. J Appl Polym Sci 49:1901–1908CrossRef Lin F, Bhatia GS, Ford JD (1993) Thermal conductivities of powder-filled epoxy resins. J Appl Polym Sci 49:1901–1908CrossRef
24.
Zurück zum Zitat Yu JC, Sundqvist B, Tonpheng B, Andersson O (2014) Thermal conductivity of highly crystallized polyethylene. Polymer 55:195–200CrossRef Yu JC, Sundqvist B, Tonpheng B, Andersson O (2014) Thermal conductivity of highly crystallized polyethylene. Polymer 55:195–200CrossRef
25.
Zurück zum Zitat Zhang T, Luo TF (2012) Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J Appl Phys 112:094304CrossRef Zhang T, Luo TF (2012) Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J Appl Phys 112:094304CrossRef
26.
Zurück zum Zitat Zhang LS, Fan W, Liu TX (2015) A flexible free-standing defect-rich MoS2/graphene/carbon nanotube hybrid paper as a binder-free anode for high-performance lithium ion batteries. RSC Adv 5:43130–43140CrossRef Zhang LS, Fan W, Liu TX (2015) A flexible free-standing defect-rich MoS2/graphene/carbon nanotube hybrid paper as a binder-free anode for high-performance lithium ion batteries. RSC Adv 5:43130–43140CrossRef
27.
Zurück zum Zitat Liu MK, Du YF, Miao YE, Ding QW, He SX, Tjiu WW, Pan JS, Liu TX (2015) Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale 7:1037–1046CrossRef Liu MK, Du YF, Miao YE, Ding QW, He SX, Tjiu WW, Pan JS, Liu TX (2015) Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale 7:1037–1046CrossRef
28.
Zurück zum Zitat Ren PG, Yan DX, Chen T, Zeng BQ, Li ZM (2011) Improved properties of highly oriented graphene/polymer nanocomposites. J Appl Polym Sci 121:3167–3174CrossRef Ren PG, Yan DX, Chen T, Zeng BQ, Li ZM (2011) Improved properties of highly oriented graphene/polymer nanocomposites. J Appl Polym Sci 121:3167–3174CrossRef
29.
Zurück zum Zitat Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327CrossRef Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327CrossRef
30.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef
Metadaten
Titel
Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure
verfasst von
Peng-Gang Ren
Xiao-Huan Si
Zhen-Feng Sun
Fang Ren
Lu Pei
Si-Yu Hou
Publikationsdatum
01.02.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 2/2016
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0908-y

Weitere Artikel der Ausgabe 2/2016

Journal of Polymer Research 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.