Skip to main content
Erschienen in: Journal of Electronic Materials 9/2021

27.06.2021 | Original Research Article

Synthesis, Characterization, Thermal Behavior, and Dielectric Properties of Methacrylate Polymers Containing Imine Bonding

verfasst von: Adnan Solmaz, Zülfiye Ilter, Ismet Kaya

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two different Schiff bases, viz. 1-{4-[(5-bromo-2-hydroxybenzyliden)amino]phenyl}ethanone (5-Br-2HBAPE) and 1-{4-[(4-hydroxybenzylidene)amino]phenyl}ethanone (4-HBAPE), have been prepared by condensation of 5-bromosalicylaldehyde and 4-hydroxybenzaldehyde with 4-aminoacetophenone in ethanol at molar ratio of 1:1. Then, Schiff base methacrylate monomers, i.e., 2-(((4-acetylphenyl)imino)methyl)-4-bromophenylmethacrylate (APIMBPM) and 2-(((4-acetylphenyl)imino)methyl)phenylmethacrylate (APIMPM), were synthesized by reaction of each Schiff base compound with methacryloylchloride at 0°C to 5°C. Schiff base methacrylate polymers poly(APIMBPM) and poly(APIMPM) were then prepared by free-radical polymerization in tetrahydrofuran (THF) at 70°C using azobisisobutyronitrile (AIBN) as initiator. The structure of 5-Br-2HBAPE, 4-HBAPE, APIMBPM, APIMPM, poly(APIMBPM), and poly(APIMPM) was confirmed by Fourier-transform infrared (FT-IR) and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The thermal behavior of poly(APIMBPM) and poly(APIMPM) was studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). The glass-transition temperature (Tg) of poly(APIMBPM) and poly(APIMPM) was found to be 113°C and 108°C, respectively. The residual amount of poly(APIMBPM) and poly(APIMPM) at 1000°C was found to be 45.60% and 26.35%, respectively. Dielectric and conductivity measurements were carried out on the Schiff base methacrylate polymers by impedance analysis as a function of frequency. The conductivity of poly(APIMBPM) and poly(APIMPM) was found to be 1.30 × 10−9 S cm−1 and 2.14 × 10−9 S cm−1, respectively. Scanning electron microscopy (SEM) was used to investigate the morphology of the Schiff base methacrylate polymers, and their antimicrobial activity against bacteria and fungus was determined by disk diffusion method. Poly(APIMBPM) exhibited good antibacterial property against Klebsiella pneumonia. Poly(APIMBPM) and poly(APIMPM) exhibited good antifungal action against Candida albicans. We thus describe the synthesis of different Schiff base methacrylate polymers and their thermal behavior, electrical properties, and antimicrobial activities.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Schiff, Eur. J. Org. Chem. 150, 193 (1869). H. Schiff, Eur. J. Org. Chem. 150, 193 (1869).
2.
Zurück zum Zitat C.M. Sharaby, M.F. Amine, and A.A. Hamed, J. Mol. Struct. 1134, 208 (2017).CrossRef C.M. Sharaby, M.F. Amine, and A.A. Hamed, J. Mol. Struct. 1134, 208 (2017).CrossRef
4.
Zurück zum Zitat D.W. Roberts, T.W. Schultz, and A.M. Api, Chem. Res. Toxicol. 30, 1309 (2017).CrossRef D.W. Roberts, T.W. Schultz, and A.M. Api, Chem. Res. Toxicol. 30, 1309 (2017).CrossRef
5.
Zurück zum Zitat R.J. Dirisio, J.E. Armstrong, M.A. Frank, W.R. Lake, and W.R. McNamara, Dalton Trans. 46, 10418 (2017).CrossRef R.J. Dirisio, J.E. Armstrong, M.A. Frank, W.R. Lake, and W.R. McNamara, Dalton Trans. 46, 10418 (2017).CrossRef
6.
Zurück zum Zitat K.K. Upadhyay, A. Kumar, S. Upadhyay, and P.C. Mishra, J. Mol. Struct. 873, 5 (2008).CrossRef K.K. Upadhyay, A. Kumar, S. Upadhyay, and P.C. Mishra, J. Mol. Struct. 873, 5 (2008).CrossRef
7.
8.
Zurück zum Zitat J.W. Nicholson, P.J. Brookman, O.M. Lacy, G.S. Sayers, and A.D. Wilson, J. Biomed. Mater. Res. 22, 623 (1988).CrossRef J.W. Nicholson, P.J. Brookman, O.M. Lacy, G.S. Sayers, and A.D. Wilson, J. Biomed. Mater. Res. 22, 623 (1988).CrossRef
10.
Zurück zum Zitat J.N. Patel, M.B. Dolia, K.H. Patel, and R.M. Patel, J. Polym. Res. 13, 219 (2006).CrossRef J.N. Patel, M.B. Dolia, K.H. Patel, and R.M. Patel, J. Polym. Res. 13, 219 (2006).CrossRef
11.
Zurück zum Zitat Y. Açıkbaş, N. Çankaya, R. Capan, M. Erdoğan, and C. Soykan, J. Macromol. Sci. Part A Pure Appl. Chem. 53, 18 (2016).CrossRef Y. Açıkbaş, N. Çankaya, R. Capan, M. Erdoğan, and C. Soykan, J. Macromol. Sci. Part A Pure Appl. Chem. 53, 18 (2016).CrossRef
12.
Zurück zum Zitat M. Grigoras, and C.O. Catanescu, J. Macromol. Sci. Pure Appl. Chem. Polym. C 44, 131 (2007).CrossRef M. Grigoras, and C.O. Catanescu, J. Macromol. Sci. Pure Appl. Chem. Polym. C 44, 131 (2007).CrossRef
13.
Zurück zum Zitat S.A. Jenekhe, C.J. Yang, H. Vanherzeele, and J.S. Meth, Chem. Mater. 3, 985 (1991).CrossRef S.A. Jenekhe, C.J. Yang, H. Vanherzeele, and J.S. Meth, Chem. Mater. 3, 985 (1991).CrossRef
14.
Zurück zum Zitat J.H. Flynn, and L.A. Wall, J. Res. Nat. Bur. Stand A Phys Chem. 70A, 487 (1966).CrossRef J.H. Flynn, and L.A. Wall, J. Res. Nat. Bur. Stand A Phys Chem. 70A, 487 (1966).CrossRef
15.
Zurück zum Zitat W.W. Wendlandt, Thermal analysis, 3rd ed., (London: Wiley, 1986). W.W. Wendlandt, Thermal analysis, 3rd ed., (London: Wiley, 1986).
18.
Zurück zum Zitat K. Orsolya, P. Bardos, S. Boyadjiev, T. Igricz, Z. Kristof, N. Imre, and M. Szilagyi, J. Therm. Anal. Calorim. 137, 1249 (2019).CrossRef K. Orsolya, P. Bardos, S. Boyadjiev, T. Igricz, Z. Kristof, N. Imre, and M. Szilagyi, J. Therm. Anal. Calorim. 137, 1249 (2019).CrossRef
19.
Zurück zum Zitat B. Asma, M. Afzal, A. Javed, M. Nadeem, and M.M. Hassan, Curr. Appl. Phys. 10, 601 (2010).CrossRef B. Asma, M. Afzal, A. Javed, M. Nadeem, and M.M. Hassan, Curr. Appl. Phys. 10, 601 (2010).CrossRef
20.
21.
22.
Zurück zum Zitat F. Yakuphanoglu, M. Okutan, Q. Zhuang, and Z. Han, Phys. B 365, 13 (2005).CrossRef F. Yakuphanoglu, M. Okutan, Q. Zhuang, and Z. Han, Phys. B 365, 13 (2005).CrossRef
23.
Zurück zum Zitat S. Wang, X. Yang, T. Zhu, L. Bo, R. Wang, S. Huang, C. Wang, D. Jiang, H. Chen, and R.A. Jones, Dalton Trans. 47, 53 (2018).CrossRef S. Wang, X. Yang, T. Zhu, L. Bo, R. Wang, S. Huang, C. Wang, D. Jiang, H. Chen, and R.A. Jones, Dalton Trans. 47, 53 (2018).CrossRef
24.
Zurück zum Zitat F. Biryan, and G. Pihtili, J. Therm. Anal. Calorim. 139, 3857 (2020).CrossRef F. Biryan, and G. Pihtili, J. Therm. Anal. Calorim. 139, 3857 (2020).CrossRef
26.
28.
29.
Zurück zum Zitat G.C. Levy, and G.L. Nelson, Carbon-13 nuclear magnetic resonance for organic chemists (New York: Wiley-Interscience, 1972). G.C. Levy, and G.L. Nelson, Carbon-13 nuclear magnetic resonance for organic chemists (New York: Wiley-Interscience, 1972).
30.
Zurück zum Zitat C. Acquah, M.K. Danquah, C.K.S. Moy, M. Anwar, and C.M. Ongkudon, Can. J. Chem. Eng. 95, 1345 (2017).CrossRef C. Acquah, M.K. Danquah, C.K.S. Moy, M. Anwar, and C.M. Ongkudon, Can. J. Chem. Eng. 95, 1345 (2017).CrossRef
31.
Zurück zum Zitat H. Jeske, A. Schirp, and F. Cornelius, Thermochim Act. 543, 165 (2012).CrossRef H. Jeske, A. Schirp, and F. Cornelius, Thermochim Act. 543, 165 (2012).CrossRef
32.
Zurück zum Zitat X. Meng, Y. Huang, H. Yu, and Z. Lv, Polym. Degrad. Stab. 92, 962 (2007).CrossRef X. Meng, Y. Huang, H. Yu, and Z. Lv, Polym. Degrad. Stab. 92, 962 (2007).CrossRef
33.
Zurück zum Zitat A. Kurt, and M. Koca, J. Eng. Res. 4, 46 (2016). A. Kurt, and M. Koca, J. Eng. Res. 4, 46 (2016).
34.
35.
Zurück zum Zitat D. Sengottuvelu, M. Athianna, and A. Siddeswaran, Spectrochim. Acta Part A Mol. Biomol. Spectr. 246, 118989 (2021).CrossRef D. Sengottuvelu, M. Athianna, and A. Siddeswaran, Spectrochim. Acta Part A Mol. Biomol. Spectr. 246, 118989 (2021).CrossRef
37.
Zurück zum Zitat A. Açıkses, N. Çömez, and F. Biryan, J. Macromol. Sci. Part A Pure Appl. Chem. 56, 253 (2019).CrossRef A. Açıkses, N. Çömez, and F. Biryan, J. Macromol. Sci. Part A Pure Appl. Chem. 56, 253 (2019).CrossRef
38.
Zurück zum Zitat A. Kaya, Ö. Vural, H. Tecimer, S. Demirezen, and Ş Altındal, Curr. Appl. Phys. 14, 322 (2014).CrossRef A. Kaya, Ö. Vural, H. Tecimer, S. Demirezen, and Ş Altındal, Curr. Appl. Phys. 14, 322 (2014).CrossRef
39.
40.
Zurück zum Zitat C.H. Collins and P.M. Lyne, Microbiological Methods (London: Butterworth, 1987). C.H. Collins and P.M. Lyne, Microbiological Methods (London: Butterworth, 1987).
41.
Zurück zum Zitat İ Erol, C. Soykan, and S. Kirbag, J. Appl. Polym. Sci. 90, 3244 (2003).CrossRef İ Erol, C. Soykan, and S. Kirbag, J. Appl. Polym. Sci. 90, 3244 (2003).CrossRef
Metadaten
Titel
Synthesis, Characterization, Thermal Behavior, and Dielectric Properties of Methacrylate Polymers Containing Imine Bonding
verfasst von
Adnan Solmaz
Zülfiye Ilter
Ismet Kaya
Publikationsdatum
27.06.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09063-8

Weitere Artikel der Ausgabe 9/2021

Journal of Electronic Materials 9/2021 Zur Ausgabe

Neuer Inhalt