Skip to main content

2017 | OriginalPaper | Buchkapitel

Synthesis of High-Density Graphene Foams Using Nanoparticle Templates

verfasst von : M. Christian, L. Venturi, L. Ortolani, F. Liscio, R. Rizzoli, V. Palermo, V. Morandi

Erschienen in: GraphITA

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene foams grown by CVD on commercially available Ni foam templates were first reported in 2011. Since then they have been investigated widely due to their ability to transfer many of the unique properties of graphene to the macroscopic scale, with high surface area, high electrical conductivity and good structural integrity. However, the pore-size range is typically 200–400 μm, so much of the volume is unoccupied by the functional graphene material. We report a new synthesis procedure that produces graphene foams with pore sizes in the range of 1–10 μm, by using a sacrificial template of metal nanoparticles sintered together to form a network. These materials could have wide-ranging applications in fields such as high-density energy storage, membranes and sensing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dikin, D.A., et al.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)CrossRef Dikin, D.A., et al.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)CrossRef
2.
Zurück zum Zitat Xu, Y., Sheng, K., Li, C., Shi, G.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)CrossRef Xu, Y., Sheng, K., Li, C., Shi, G.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)CrossRef
3.
Zurück zum Zitat Chen, Z., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)CrossRef Chen, Z., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)CrossRef
4.
Zurück zum Zitat Yavari, F., et al.: High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1 (2011) Yavari, F., et al.: High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1 (2011)
5.
Zurück zum Zitat Chen, W., Fan, Z., Zeng, G., Lai, Z.: Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. J. Power Sour. 225, 251–256 (2013)CrossRef Chen, W., Fan, Z., Zeng, G., Lai, Z.: Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. J. Power Sour. 225, 251–256 (2013)CrossRef
6.
Zurück zum Zitat Li, N., et al.: Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3 (2013) Li, N., et al.: Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3 (2013)
7.
Zurück zum Zitat Deng, W., Sun, Y., Su, Q., Xie, E., Lan, W.: Porous CoO nanobundles composited with 3D graphene foams for supercapacitors electrodes. Mater. Lett. 137, 124–127 (2014)CrossRef Deng, W., Sun, Y., Su, Q., Xie, E., Lan, W.: Porous CoO nanobundles composited with 3D graphene foams for supercapacitors electrodes. Mater. Lett. 137, 124–127 (2014)CrossRef
8.
Zurück zum Zitat Li, X., Wang, Z., Qiu, Y., Pan, Q., Hu, P.: 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloys Compd. 620, 31–37 (2015)CrossRef Li, X., Wang, Z., Qiu, Y., Pan, Q., Hu, P.: 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloys Compd. 620, 31–37 (2015)CrossRef
9.
Zurück zum Zitat Wang, W., et al.: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2, 294–303 (2013)CrossRef Wang, W., et al.: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2, 294–303 (2013)CrossRef
10.
Zurück zum Zitat Ma, Y., et al.: 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosens. Bioelectron. 59, 384–388 (2014)CrossRef Ma, Y., et al.: 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosens. Bioelectron. 59, 384–388 (2014)CrossRef
12.
Zurück zum Zitat Singh, E., et al.: Superhydrophobic graphene foams. Small 9, 75–80 (2013)CrossRef Singh, E., et al.: Superhydrophobic graphene foams. Small 9, 75–80 (2013)CrossRef
13.
Zurück zum Zitat Jeong, Y.R., et al.: Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. n/a–n/a (2015). doi:10.1002/adfm.201501000 Jeong, Y.R., et al.: Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. n/a–n/a (2015). doi:10.​1002/​adfm.​201501000
14.
Zurück zum Zitat Goh, B.-M., et al.: Filling the voids of graphene foam with graphene ‘Eggshell’ for improved lithium-ion storage. ACS Appl. Mater. Interfaces. 6, 9835–9841 (2014)CrossRef Goh, B.-M., et al.: Filling the voids of graphene foam with graphene ‘Eggshell’ for improved lithium-ion storage. ACS Appl. Mater. Interfaces. 6, 9835–9841 (2014)CrossRef
15.
Zurück zum Zitat Wang, L., Li, X., Guo, T., Yan, X., Tay, B.K.: Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int. J. Hydrogen Energy 39, 7876–7884 (2014)CrossRef Wang, L., Li, X., Guo, T., Yan, X., Tay, B.K.: Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int. J. Hydrogen Energy 39, 7876–7884 (2014)CrossRef
16.
Zurück zum Zitat Ferrari, A.C., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97 (2006) Ferrari, A.C., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97 (2006)
17.
Zurück zum Zitat Li, X., Cai, W., Colombo, L., Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009)CrossRef Li, X., Cai, W., Colombo, L., Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009)CrossRef
18.
Zurück zum Zitat Matsuno, M., et al.: In situ sintering of Ni nanoparticles by controlled heating. Microsc. Microanal. 17, 524–525 (2011)CrossRef Matsuno, M., et al.: In situ sintering of Ni nanoparticles by controlled heating. Microsc. Microanal. 17, 524–525 (2011)CrossRef
19.
Zurück zum Zitat Gonzalez-Elipe, A.R., Holgado, J.P., Alvarez, R., Munuera, G.: Use of factor analysis and XPS to study defective nickel oxide. J. Phys. Chem. 96, 3080–3086 (1992)CrossRef Gonzalez-Elipe, A.R., Holgado, J.P., Alvarez, R., Munuera, G.: Use of factor analysis and XPS to study defective nickel oxide. J. Phys. Chem. 96, 3080–3086 (1992)CrossRef
Metadaten
Titel
Synthesis of High-Density Graphene Foams Using Nanoparticle Templates
verfasst von
M. Christian
L. Venturi
L. Ortolani
F. Liscio
R. Rizzoli
V. Palermo
V. Morandi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-58134-7_14

Neuer Inhalt