Skip to main content
Erschienen in: Journal of Materials Science 5/2017

04.11.2016 | Original Paper

Synthesis of polypyrrole/Fe-kanemite nanocomposite through in situ polymerization: effect of iron exchange, acid treatment, and CO2 adsorption properties

verfasst von: Bouhadjar Boukoussa, Fatiha Abidallah, Zakaria Abid, Zoulikha Talha, Nafissa Taybi, Hadjer Sid El Hadj, Rachid Ghezini, Rachida Hamacha, Abdelkader Bengueddach

Erschienen in: Journal of Materials Science | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper focuses on the synthesis of polypyrrole/Fe-kanemite nanocomposites by in situ polymerization of pyrrole. Different percentages of PPy/Fe-kan have been prepared and tested for the CO2 adsorption. Fe-exchanged kanemite was prepared using various iron contents and used as an oxidant for the preparation of PPy/Fe-kan nanocomposite. The obtained materials were characterized using various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, ultraviolet–visible (UV–vis), thermogravimetric analysis TGA, energy dispersive X-ray analysis, scanning and transmission electronic microscopy (SEM, TEM). Based on the XRD and UV–vis analysis, the exchange process leads to the formation of various iron species on the external and internal surface. The thermal stability of PPy/Fe-kan was improved and increased in the following order PPy/Fe-kan (1%) > PPy/Fe-kan (3%) > PPy/Fe-kan (5%) > PPy/Fe-kan (10%) > PPy. SEM and TEM analysis show that the nanocomposite particles have spherical morphology with a high dispersion of the Fe-kanemite in the polymer matrix. CO2 adsorption at 0 and 15 °C was carried using a volumetric method, and the recorded isotherm indicated that the CO2 adsorption capacity of PPy/Fe-kan can be enhanced through modification by polypyrrole. The unmodified Na-kanemite has low CO2 adsorption capacity around 0.05 mmol g−1 at 15 °C, while the PPy/Fe-kan (5%) nanocomposite presented the best CO2 adsorption capacity around 1.7 mmol g−1 at 0 °C under low pressure that is mainly attributable to physical adsorption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Eugester HB (1967) Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157:1177–1180CrossRef Eugester HB (1967) Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157:1177–1180CrossRef
2.
Zurück zum Zitat Mcatee JL, House R, Eugester HB (1968) Magadiite from Trinity County, California. Am Miner 53:2061–2069 Mcatee JL, House R, Eugester HB (1968) Magadiite from Trinity County, California. Am Miner 53:2061–2069
3.
Zurück zum Zitat Sheppard RA, Guide A (1970) Makatite, a new hydrous sodium silicate mineral from Lake Magadi, Kenya. J Am Miner 55:358–366 Sheppard RA, Guide A (1970) Makatite, a new hydrous sodium silicate mineral from Lake Magadi, Kenya. J Am Miner 55:358–366
4.
Zurück zum Zitat Thiesen PH, Beneke K, Lagaly G (2002) Silylation of a crystalline silicic acid: an MAS NMR and porosity study. J Mater Chem 12:3010–3015CrossRef Thiesen PH, Beneke K, Lagaly G (2002) Silylation of a crystalline silicic acid: an MAS NMR and porosity study. J Mater Chem 12:3010–3015CrossRef
5.
Zurück zum Zitat Feng F, Balkus KJ Jr (2003) Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template. J Porous Mater 10:5–15CrossRef Feng F, Balkus KJ Jr (2003) Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template. J Porous Mater 10:5–15CrossRef
6.
Zurück zum Zitat Borowski M, Kovalev O, Gies H (2008) Structural characterization of the hydrous layer silicate Na-RUB-18, Na8Si32O64(OH)8·32H2O and derivatives with XPD-, NPD-, and SS NMR experiments. Microporous Mesoporous Mater 107:71–80CrossRef Borowski M, Kovalev O, Gies H (2008) Structural characterization of the hydrous layer silicate Na-RUB-18, Na8Si32O64(OH)8·32H2O and derivatives with XPD-, NPD-, and SS NMR experiments. Microporous Mesoporous Mater 107:71–80CrossRef
7.
Zurück zum Zitat Annehed H, Falth L, Lincoln FJ (1982) Crystal structure of synthetic makatite Na2Si4O8(OH)2·4H2O. Z Kristallogr Cryst Mater 159:203–210CrossRef Annehed H, Falth L, Lincoln FJ (1982) Crystal structure of synthetic makatite Na2Si4O8(OH)2·4H2O. Z Kristallogr Cryst Mater 159:203–210CrossRef
8.
Zurück zum Zitat Garvie LAJ, Devouard B, Groy TL, Camara F, Buseck PR (1999) Crystal structure of kanemite, NaHSi2O5·3H2O, from the Aris phonolite, Namibia. Am Miner 84:1170–1175CrossRef Garvie LAJ, Devouard B, Groy TL, Camara F, Buseck PR (1999) Crystal structure of kanemite, NaHSi2O5·3H2O, from the Aris phonolite, Namibia. Am Miner 84:1170–1175CrossRef
9.
Zurück zum Zitat McCulloch L (1952) A new highly silicious soda—silica compound. J Am Chem Soc 74:2453–2456CrossRef McCulloch L (1952) A new highly silicious soda—silica compound. J Am Chem Soc 74:2453–2456CrossRef
10.
Zurück zum Zitat Vithal M, Rama Krishna S, Ravi G, Palla Suresh, Velchuri Radha, Pola Someshwar (2013) Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-light-driven photocatalysts. Ceram Int 39:8429–8439CrossRef Vithal M, Rama Krishna S, Ravi G, Palla Suresh, Velchuri Radha, Pola Someshwar (2013) Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-light-driven photocatalysts. Ceram Int 39:8429–8439CrossRef
11.
Zurück zum Zitat Royer B, Cardoso NF, Lima EC, Ruiz VSO, Macedo TR, Airoldi C (2009) Organofunctionalized kenyaite for dye removal from aqueous solution. J Colloid Interface Sci 336:398–405CrossRef Royer B, Cardoso NF, Lima EC, Ruiz VSO, Macedo TR, Airoldi C (2009) Organofunctionalized kenyaite for dye removal from aqueous solution. J Colloid Interface Sci 336:398–405CrossRef
12.
Zurück zum Zitat Corredor JI, Cota A, Pavón E, Osuna FJ, Alba MD (2014) Influence of the synthesis parameter on the interlayer and framework structure of lamellar octadecyltrimethylammonium kanemite. Appl Clay Sci 95:9–17CrossRef Corredor JI, Cota A, Pavón E, Osuna FJ, Alba MD (2014) Influence of the synthesis parameter on the interlayer and framework structure of lamellar octadecyltrimethylammonium kanemite. Appl Clay Sci 95:9–17CrossRef
13.
Zurück zum Zitat Shi Z, Wang Y, Meng C, Liu X (2013) Hydrothermal conversion of magadiite into mordenite in the presence of cyclohexylamine. Microporous Mesoporous Mater 176:155–161CrossRef Shi Z, Wang Y, Meng C, Liu X (2013) Hydrothermal conversion of magadiite into mordenite in the presence of cyclohexylamine. Microporous Mesoporous Mater 176:155–161CrossRef
14.
Zurück zum Zitat Matsuo Y, Yamauchi Y (2013) Preparation of microporous pillared magadiite from silylated magadiite and their unique inclusion behaviors of organic molecules. Microporous Mesoporous Mater 168:171–177CrossRef Matsuo Y, Yamauchi Y (2013) Preparation of microporous pillared magadiite from silylated magadiite and their unique inclusion behaviors of organic molecules. Microporous Mesoporous Mater 168:171–177CrossRef
15.
Zurück zum Zitat Oliveira MER, da Silva Filho EC, Filho JM, Ferreira SS, Oliveira AC, Campo AF (2015) Catalytic performance of kenyaite and magadiite lamellar silicates for the production of α, β-unsaturated esters. Chem Eng J 263:257–267CrossRef Oliveira MER, da Silva Filho EC, Filho JM, Ferreira SS, Oliveira AC, Campo AF (2015) Catalytic performance of kenyaite and magadiite lamellar silicates for the production of α, β-unsaturated esters. Chem Eng J 263:257–267CrossRef
16.
Zurück zum Zitat Park KW, Jung JH, Seo HJ, Kwon OY (2009) Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane. Microporous Mesoporous Mater 121:219–225CrossRef Park KW, Jung JH, Seo HJ, Kwon OY (2009) Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane. Microporous Mesoporous Mater 121:219–225CrossRef
17.
Zurück zum Zitat Wu Y, Liu Z, Herrera-Alonso JM, Marand E, Little JC (2016) A new method to predict the effective diffusion coefficient of gases and vapors in polyurethane/clay nanocomposite membranes. J Membr Sci 510:201–208CrossRef Wu Y, Liu Z, Herrera-Alonso JM, Marand E, Little JC (2016) A new method to predict the effective diffusion coefficient of gases and vapors in polyurethane/clay nanocomposite membranes. J Membr Sci 510:201–208CrossRef
18.
Zurück zum Zitat Mykola S, Olga N, Dmitry M (2016) The influence of alkylammonium modified clays on the fungal resistance and biodeterioration of epoxy-clay nanocomposites. Int Biodeterior Biodegrad 110:136–140CrossRef Mykola S, Olga N, Dmitry M (2016) The influence of alkylammonium modified clays on the fungal resistance and biodeterioration of epoxy-clay nanocomposites. Int Biodeterior Biodegrad 110:136–140CrossRef
19.
Zurück zum Zitat Hosseinabadi HG, Khederlou Kh, Payandehpeyman J, Bagheri R (2016) On variations of the interphase thickness and the slope of strengthening by clay addition in exfoliated polymer-clay nanocomposites. Polymer 90:302–308CrossRef Hosseinabadi HG, Khederlou Kh, Payandehpeyman J, Bagheri R (2016) On variations of the interphase thickness and the slope of strengthening by clay addition in exfoliated polymer-clay nanocomposites. Polymer 90:302–308CrossRef
20.
Zurück zum Zitat Filippone G, Carroccio SC, Curcuruto G, Passaglia E, Gambarotti C, Tz Dintcheva N (2015) Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state—Part II: thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites. Polymer 73:102–110CrossRef Filippone G, Carroccio SC, Curcuruto G, Passaglia E, Gambarotti C, Tz Dintcheva N (2015) Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state—Part II: thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites. Polymer 73:102–110CrossRef
21.
Zurück zum Zitat Unuabonah EI, Taubert A (2014) Clay–polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92CrossRef Unuabonah EI, Taubert A (2014) Clay–polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92CrossRef
22.
Zurück zum Zitat Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) A critical appraisal of polymer–clay nanocomposites. Chem Soc Rev 37:568–594CrossRef Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) A critical appraisal of polymer–clay nanocomposites. Chem Soc Rev 37:568–594CrossRef
23.
Zurück zum Zitat Chen GF, Liu ZQ, Lin JM, Li N, Su YZ (2015) Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors. J Power Sources 283:484–493CrossRef Chen GF, Liu ZQ, Lin JM, Li N, Su YZ (2015) Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors. J Power Sources 283:484–493CrossRef
24.
Zurück zum Zitat Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438CrossRef Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438CrossRef
25.
Zurück zum Zitat Xin Q, Fu J, Chen Z, Liu S, Yan Y, Zhang J, Xu Q (2015) Polypyrrole nanofibers as a high-efficient adsorbent for the removal of methyl orange from aqueous solution. J Environ Chem Eng 3:1637–1647CrossRef Xin Q, Fu J, Chen Z, Liu S, Yan Y, Zhang J, Xu Q (2015) Polypyrrole nanofibers as a high-efficient adsorbent for the removal of methyl orange from aqueous solution. J Environ Chem Eng 3:1637–1647CrossRef
26.
Zurück zum Zitat Zhou Q, Yan C, Luo W (2016) Polypyrrole coated secondary fly ash–iron composites: Novel floatable magnetic adsorbents for the removal of chromium (VI) from wastewater. Mater Des 92:701–709 Zhou Q, Yan C, Luo W (2016) Polypyrrole coated secondary fly ash–iron composites: Novel floatable magnetic adsorbents for the removal of chromium (VI) from wastewater. Mater Des 92:701–709
27.
Zurück zum Zitat Bhaumik M, Agarwal S, Gupta VK, Maity A (2016) Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J Colloid Interface Sci 470:257–267CrossRef Bhaumik M, Agarwal S, Gupta VK, Maity A (2016) Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J Colloid Interface Sci 470:257–267CrossRef
28.
Zurück zum Zitat Aravindan N, Sangaranarayanan MV (2016) Influence of solvent composition on the anti-corrosion performance of copper–polypyrrole (Cu–PPy) coated 304 stainless steel. Prog Org Coat 95:38–45CrossRef Aravindan N, Sangaranarayanan MV (2016) Influence of solvent composition on the anti-corrosion performance of copper–polypyrrole (Cu–PPy) coated 304 stainless steel. Prog Org Coat 95:38–45CrossRef
29.
Zurück zum Zitat Hassan HS, Kashyout AB, Morsi I, Nasser AAA, Abuklill H (2015) Development of polypyrrole coated copper nanowires for gas sensor application. Sens Bio-sens Res 5:50–54CrossRef Hassan HS, Kashyout AB, Morsi I, Nasser AAA, Abuklill H (2015) Development of polypyrrole coated copper nanowires for gas sensor application. Sens Bio-sens Res 5:50–54CrossRef
30.
Zurück zum Zitat Dubal DP, Caban-Huertas Z, Holze R, Gomez-Romero P (2016) Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochim Acta 191:346–354CrossRef Dubal DP, Caban-Huertas Z, Holze R, Gomez-Romero P (2016) Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochim Acta 191:346–354CrossRef
31.
Zurück zum Zitat da Silva Jr FAG, Queiroz JC, Macedo ER, Fernandes AWC, Freire NB, da Costa MM, de Oliveira HP (2016) Antibacterial behavior of polypyrrole: the influence of morphology and additives incorporation. Mater Sci Eng 62:317–322CrossRef da Silva Jr FAG, Queiroz JC, Macedo ER, Fernandes AWC, Freire NB, da Costa MM, de Oliveira HP (2016) Antibacterial behavior of polypyrrole: the influence of morphology and additives incorporation. Mater Sci Eng 62:317–322CrossRef
32.
Zurück zum Zitat Ballav N, Choi HJ, Mishra SB, Ballav AMN, Choi HJ, Mishra SB, Maity A (2014) Polypyrrole-coated halloysite nanotube clay nanocomposite: synthesis, characterization and Cr(VI) adsorption behaviour. Appl Clay Sci 102:60–70CrossRef Ballav N, Choi HJ, Mishra SB, Ballav AMN, Choi HJ, Mishra SB, Maity A (2014) Polypyrrole-coated halloysite nanotube clay nanocomposite: synthesis, characterization and Cr(VI) adsorption behaviour. Appl Clay Sci 102:60–70CrossRef
33.
Zurück zum Zitat Setshedi KZ, Bhaumik M, Songwane S, Onyango MS, Maity A (2013) Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal. Chem Eng J 222:186–197CrossRef Setshedi KZ, Bhaumik M, Songwane S, Onyango MS, Maity A (2013) Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal. Chem Eng J 222:186–197CrossRef
34.
Zurück zum Zitat Chávez-Guajardo AE, Medina-Llamas JC, Maqueira L, Andrade CAS, Alves KGB, de Melo CP (2015) Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836CrossRef Chávez-Guajardo AE, Medina-Llamas JC, Maqueira L, Andrade CAS, Alves KGB, de Melo CP (2015) Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836CrossRef
35.
Zurück zum Zitat Meng LY, Park SJ (2014) Effect of ZnCl2 activation on CO2 adsorption of N-doped nanoporous carbons from polypyrrole. J Solid State Chem 218:90–94CrossRef Meng LY, Park SJ (2014) Effect of ZnCl2 activation on CO2 adsorption of N-doped nanoporous carbons from polypyrrole. J Solid State Chem 218:90–94CrossRef
36.
Zurück zum Zitat Sevilla M, Valle-Vigon P, Fuertes AB (2011) N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21:2781–2787CrossRef Sevilla M, Valle-Vigon P, Fuertes AB (2011) N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21:2781–2787CrossRef
37.
Zurück zum Zitat Adeniran B, Mokaya R (2015) Compactivation: a mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy 16:173–185CrossRef Adeniran B, Mokaya R (2015) Compactivation: a mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy 16:173–185CrossRef
38.
Zurück zum Zitat Chandra V, Uk YuS, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyyappan M, Kim KS (2012) Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun 48:735–737CrossRef Chandra V, Uk YuS, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyyappan M, Kim KS (2012) Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun 48:735–737CrossRef
39.
Zurück zum Zitat Li Y, Zou B, Hu C, Cao M (2016) Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion. Carbon 99:79–89CrossRef Li Y, Zou B, Hu C, Cao M (2016) Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion. Carbon 99:79–89CrossRef
40.
Zurück zum Zitat Azzouz A, Nousir S, Platon N, Ghomari K, Shiao TC, Hersant G, Bergeron JY, Roy R (2013) Truly reversible capture of CO2 by montmorillonite intercalated with soya oil-derived polyglycerols. Int J Greenh Gas Control 17:140–147CrossRef Azzouz A, Nousir S, Platon N, Ghomari K, Shiao TC, Hersant G, Bergeron JY, Roy R (2013) Truly reversible capture of CO2 by montmorillonite intercalated with soya oil-derived polyglycerols. Int J Greenh Gas Control 17:140–147CrossRef
41.
Zurück zum Zitat Terrab I, Boukoussa B, Hamacha R, Bouchiba N, Roy R, Bengueddach A, Azzouz A (2016) Insights in CO2 interaction on zeolite omega-supported polyol dendrimers. Thermochim Acta 624:95–101CrossRef Terrab I, Boukoussa B, Hamacha R, Bouchiba N, Roy R, Bengueddach A, Azzouz A (2016) Insights in CO2 interaction on zeolite omega-supported polyol dendrimers. Thermochim Acta 624:95–101CrossRef
42.
Zurück zum Zitat Chen Z, Adil K, Weselinski ŁJ, Belmabkhout Y, Eddaoudi M (2015) Supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO2 capture and hydrocarbons separation. J Mater Chem A 3:6276–6281CrossRef Chen Z, Adil K, Weselinski ŁJ, Belmabkhout Y, Eddaoudi M (2015) Supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO2 capture and hydrocarbons separation. J Mater Chem A 3:6276–6281CrossRef
43.
Zurück zum Zitat Ghomari K, Benhamou A, Hamacha R, Bengueddach A, Nousir S, Shiao TC, Roy R, Azzouz A (2015) TPD and DSC insights in the basicity of MCM-48-like silica and modified counterparts. Thermochim Acta 600:52–61CrossRef Ghomari K, Benhamou A, Hamacha R, Bengueddach A, Nousir S, Shiao TC, Roy R, Azzouz A (2015) TPD and DSC insights in the basicity of MCM-48-like silica and modified counterparts. Thermochim Acta 600:52–61CrossRef
44.
Zurück zum Zitat Hanif A, Dasgupta S, Nanoti A (2015) High temperature CO2 adsorption by mesoporous silica supported magnesium aluminum mixed oxide. Chem Eng J 280:703–710CrossRef Hanif A, Dasgupta S, Nanoti A (2015) High temperature CO2 adsorption by mesoporous silica supported magnesium aluminum mixed oxide. Chem Eng J 280:703–710CrossRef
45.
Zurück zum Zitat Capek L, Kreibich V, Dedecek J, Grygar T, Wichterlova B, Sobalik Z, Martens JA, Brosius R, Tokarova V (2005) Analysis of Fe species in zeolites by UV–VIS–NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type. Microporous Mesoporous Mater 80:279–289CrossRef Capek L, Kreibich V, Dedecek J, Grygar T, Wichterlova B, Sobalik Z, Martens JA, Brosius R, Tokarova V (2005) Analysis of Fe species in zeolites by UV–VIS–NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type. Microporous Mesoporous Mater 80:279–289CrossRef
46.
Zurück zum Zitat Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501CrossRef Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501CrossRef
47.
Zurück zum Zitat Pérez-Ramírez J, Groen JC, Brückner A, Kumar MS, Bentrup U, Debbagh MN, Villaescusa LA (2005) Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. J Catal 232:318–334CrossRef Pérez-Ramírez J, Groen JC, Brückner A, Kumar MS, Bentrup U, Debbagh MN, Villaescusa LA (2005) Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. J Catal 232:318–334CrossRef
48.
Zurück zum Zitat Marturano P, Drozdová L, Pirngruber GD, Kogelbauerb A, Prins R (2001) The mechanism of formation of the Fe species in Fe/ZSM-5 prepared by CVD. Phys Chem Chem Phys 3:5585–5595CrossRef Marturano P, Drozdová L, Pirngruber GD, Kogelbauerb A, Prins R (2001) The mechanism of formation of the Fe species in Fe/ZSM-5 prepared by CVD. Phys Chem Chem Phys 3:5585–5595CrossRef
49.
Zurück zum Zitat Weiser HB, Milligan WO (1935) X-ray studies on the hydrous oxides. J Phys Chem 39:25–34CrossRef Weiser HB, Milligan WO (1935) X-ray studies on the hydrous oxides. J Phys Chem 39:25–34CrossRef
50.
Zurück zum Zitat Mackenzie RC, Meldau R (1959) The ageing of sesquioxide gels. I. Iron oxide gels. Miner Mag 32:153–165CrossRef Mackenzie RC, Meldau R (1959) The ageing of sesquioxide gels. I. Iron oxide gels. Miner Mag 32:153–165CrossRef
51.
Zurück zum Zitat Jia C, Cheng Y, Bao F, Chen D, Wang Y (2006) pH value-dependant growth of α-Fe2O3 hierarchical nanostructures. J Cryst Growth 294:353–357CrossRef Jia C, Cheng Y, Bao F, Chen D, Wang Y (2006) pH value-dependant growth of α-Fe2O3 hierarchical nanostructures. J Cryst Growth 294:353–357CrossRef
52.
Zurück zum Zitat Gash AE, Tillotson TM, Satcher JH Jr, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007CrossRef Gash AE, Tillotson TM, Satcher JH Jr, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007CrossRef
53.
Zurück zum Zitat Huang Y, Jiang Z, Schwieger W (1999) Vibrational spectroscopic studies of layered silicates. Chem Mater 11:1210–1217CrossRef Huang Y, Jiang Z, Schwieger W (1999) Vibrational spectroscopic studies of layered silicates. Chem Mater 11:1210–1217CrossRef
54.
Zurück zum Zitat Park SM, Seo G, Yoo YS, Han HS (2010) IR study on the reduction of NO and NO2 by hydrazine monohydrate over Fe-BEA zeolite. Korean J Chem Eng 27:1738–1743CrossRef Park SM, Seo G, Yoo YS, Han HS (2010) IR study on the reduction of NO and NO2 by hydrazine monohydrate over Fe-BEA zeolite. Korean J Chem Eng 27:1738–1743CrossRef
55.
Zurück zum Zitat Johan Z, Maglione GF (1972) La Kanemite, nouveau silicate de sodium hydraté de néoformation. Bull Soc Fr Miner Cristallogr 95:371–382 Johan Z, Maglione GF (1972) La Kanemite, nouveau silicate de sodium hydraté de néoformation. Bull Soc Fr Miner Cristallogr 95:371–382
56.
Zurück zum Zitat Borgnino L, Avena MJ, De Pauli CP (2009) Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids Surf A 341:46–52CrossRef Borgnino L, Avena MJ, De Pauli CP (2009) Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids Surf A 341:46–52CrossRef
57.
Zurück zum Zitat Luengo C, Puccia V, Avena M (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J Hazard Mater 186:1713–1719CrossRef Luengo C, Puccia V, Avena M (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J Hazard Mater 186:1713–1719CrossRef
58.
Zurück zum Zitat Chen JP, Hausladen MC, Yang RT (1995) Delaminated Fe2O3-pillared clay: its preparation, characterization, and activities for selective catalytic reduction of No by NH3. J Catal 151:135–146CrossRef Chen JP, Hausladen MC, Yang RT (1995) Delaminated Fe2O3-pillared clay: its preparation, characterization, and activities for selective catalytic reduction of No by NH3. J Catal 151:135–146CrossRef
59.
Zurück zum Zitat Vayssières L, Chanéac C, Tronc E, Jolivet JP (1998) Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J Colloid Interface Sci 205:205–212CrossRef Vayssières L, Chanéac C, Tronc E, Jolivet JP (1998) Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J Colloid Interface Sci 205:205–212CrossRef
60.
Zurück zum Zitat Jolivet JP, Tronc E (1998) Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4–γFe2O3 in aqueous medium. J Colloid Interface Sci 125:688–701CrossRef Jolivet JP, Tronc E (1998) Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4–γFe2O3 in aqueous medium. J Colloid Interface Sci 125:688–701CrossRef
61.
Zurück zum Zitat Ramôa SDAS, Barra GMO, Merlini C, Schreiner WH, Livi S, Soares BG (2015) Production of montmorillonite/polypyrrole nanocomposites through in situ oxidative polymerization of pyrrole: effect of anionic and cationic surfactants on structure and properties. Appl Clay Sci 104:160–167CrossRef Ramôa SDAS, Barra GMO, Merlini C, Schreiner WH, Livi S, Soares BG (2015) Production of montmorillonite/polypyrrole nanocomposites through in situ oxidative polymerization of pyrrole: effect of anionic and cationic surfactants on structure and properties. Appl Clay Sci 104:160–167CrossRef
62.
Zurück zum Zitat Guo J, Gu H, Wei H, Zhang Q, Haldolaarachchige N, Li Y, Young DP, Wei S, Guo Z (2013) Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J Phys Chem C 117:10191–10202CrossRef Guo J, Gu H, Wei H, Zhang Q, Haldolaarachchige N, Li Y, Young DP, Wei S, Guo Z (2013) Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J Phys Chem C 117:10191–10202CrossRef
63.
Zurück zum Zitat Pojanavaraphan T, Magaraphan R (2010) Fabrication and characterization of new semiconducting nanomaterials composed of natural layered silicates (Na+-MMT), natural rubber (NR), and polypyrrole (PPy). Polymer 51:1111–1123CrossRef Pojanavaraphan T, Magaraphan R (2010) Fabrication and characterization of new semiconducting nanomaterials composed of natural layered silicates (Na+-MMT), natural rubber (NR), and polypyrrole (PPy). Polymer 51:1111–1123CrossRef
64.
Zurück zum Zitat Zhang Y, Zhang Z, Xu S, Yu L, Tang Q (2016) Synthesis of γ-Fe2O3@SiO2@polypyrrole core/shell/shell nanospheres with flexible controllability of electromagnetic properties. RSC Adv 6:6623–6630CrossRef Zhang Y, Zhang Z, Xu S, Yu L, Tang Q (2016) Synthesis of γ-Fe2O3@SiO2@polypyrrole core/shell/shell nanospheres with flexible controllability of electromagnetic properties. RSC Adv 6:6623–6630CrossRef
65.
Zurück zum Zitat Letaïef S, Aranda P, Ruiz-Hitzky E (2005) Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl Clay Sci 28:183–198CrossRef Letaïef S, Aranda P, Ruiz-Hitzky E (2005) Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl Clay Sci 28:183–198CrossRef
66.
Zurück zum Zitat Elkhalifah AEI, Maitra S, Bustam MA, Murugesan T (2013) Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay. Appl Clay Sci 83:391–398CrossRef Elkhalifah AEI, Maitra S, Bustam MA, Murugesan T (2013) Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay. Appl Clay Sci 83:391–398CrossRef
67.
Zurück zum Zitat Elkhalifah AEI, Bustam MA, Shariff AM, Murugesan T (2015) Selective adsorption of CO2 on a regenerable amine-bentonite hybrid adsorbent. Appl Clay Sci 107:213–219CrossRef Elkhalifah AEI, Bustam MA, Shariff AM, Murugesan T (2015) Selective adsorption of CO2 on a regenerable amine-bentonite hybrid adsorbent. Appl Clay Sci 107:213–219CrossRef
68.
Zurück zum Zitat Volzone C, Ortiga J (2004) Influence of the exchangeable cations of montmorillonite on gas adsorptions. Process Saf Environ Prot 82:170–174CrossRef Volzone C, Ortiga J (2004) Influence of the exchangeable cations of montmorillonite on gas adsorptions. Process Saf Environ Prot 82:170–174CrossRef
69.
Zurück zum Zitat Volzone C, Ortiga J (2006) Removal of gases by thermal-acid leached kaolinitic clays: influence of mineralogical composition. Appl Clay Sci 32:87–93CrossRef Volzone C, Ortiga J (2006) Removal of gases by thermal-acid leached kaolinitic clays: influence of mineralogical composition. Appl Clay Sci 32:87–93CrossRef
70.
Zurück zum Zitat Stevens L, Williams K, Han WY, Drage T, Snape C, Wood J, Wang J (2013) Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route. Chem Eng J 215–216:699–708CrossRef Stevens L, Williams K, Han WY, Drage T, Snape C, Wood J, Wang J (2013) Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route. Chem Eng J 215–216:699–708CrossRef
71.
Zurück zum Zitat Cui Y, Kumar S, Kona BR, van Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690CrossRef Cui Y, Kumar S, Kona BR, van Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690CrossRef
Metadaten
Titel
Synthesis of polypyrrole/Fe-kanemite nanocomposite through in situ polymerization: effect of iron exchange, acid treatment, and CO2 adsorption properties
verfasst von
Bouhadjar Boukoussa
Fatiha Abidallah
Zakaria Abid
Zoulikha Talha
Nafissa Taybi
Hadjer Sid El Hadj
Rachid Ghezini
Rachida Hamacha
Abdelkader Bengueddach
Publikationsdatum
04.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0541-0

Weitere Artikel der Ausgabe 5/2017

Journal of Materials Science 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.