Skip to main content

2022 | OriginalPaper | Buchkapitel

Synthesis, Properties and Applications of Polymeric Matrix-Based Phosphor Hybrids

verfasst von : Samit Kumar Ray, Amritanshu Banerjee, Bidyut Kumar Bhangi, Barnali Dutta, Debapriya Pyne

Erschienen in: Hybrid Phosphor Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phosphors are special types of compounds which emit lights when exposed to visible light, ultraviolet radiation or electron beam. In general, these compounds are prepared from inorganic transition metal or rare earth compounds. The radiation causes movement of its valence electron to the conduction or exciton band leaving behind a hole in the valence band. The electron–hole pairs moves to the impurities in the crystal of the phosphor which rapidly de-excite by emitting light. The inhomogeneity in the crystal structure of phosphor is created by addition of the impurities or dopants which is also called activator. Accordingly, a phosphor consists of a host which is oxides, nitrides, sulfides, halides, silicates or selenides of Zn, Cd, Mn, Al, Si or different rare earth metals and an activator metal such as Cu or Ag activated ZnS or Bi activated CaS phosphor. Apart from inorganic phosphors, more energy efficient phosphors for lighting and other optoelectronic applications are prepared from metal–organic frameworks (MOF) or coordination polymers. MOF consists of single metal ions or clusters of metal ions linked by organic ligands having multiple binding sites to form extended network structures. However, the inorganic or MOF based phosphors have several drawbacks like limited resources, high toxicity and also high cost. In contrast to inorganic or MOF based phosphors, metal-free small organic molecules or polymer based room temperature phosphors (RTP) are environment friendly and easy to process. These two types of RTPs are characterized by its long-lived triplet excitons and larger Stokes shift. However, easy processing, good flexibility and stretching ability, low cost, excellent electron mobility and thermal conductivity have made polymer based RTPs more attractive than small organic molecules based RTPs. Thus, Polymer based RTPs are widely used in organic light emitting diodes, solar cells, field effect transistors, memory devices and many other similar applications. The phosphors are prepared by (1) intersystem crossing (ICS) from the lowest excited singlet state (S1) to a triplet state (Tn) and (2) radiative transition from the lowest excited triplet state (T1) to the ground state (S0). The emission from T1 state is quenched at room temperature under ambient conditions. Accordingly, the challenge to get efficient RTP is to suppress nonradiative decay. Polymers are of high molecular weight with long chains that can cause entanglement and a high degree of rigidity making them ideal candidates to observe phosphorescence from organic lumiphores. In this book chapter synthesis, properties and applications of (1) non-doped and (2) doped polymer based RTPs will be discussed with reference to recent literature with the following possible.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Shionoya, S.: Introduction to the hand book. In: William, M., Shionoya, Y.S. (Deceased), Yamamoto, H. (eds.) Phosphor Handbook. CRC Press. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742, pp. 3–8 (2007) Shionoya, S.: Introduction to the hand book. In: William, M., Shionoya, Y.S. (Deceased), Yamamoto, H. (eds.) Phosphor Handbook. CRC Press. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742, pp. 3–8 (2007)
3.
Zurück zum Zitat Yi, G., Sun, B., Chen, D.: Nanocrystalline phosphors, vol 6. In: Nalwa, H.S. (ed.) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, pp. 465–476. ISBN: 1-58883-062-4 (2004) Yi, G., Sun, B., Chen, D.: Nanocrystalline phosphors, vol 6. In: Nalwa, H.S. (ed.) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, pp. 465–476. ISBN: 1-58883-062-4 (2004)
5.
Zurück zum Zitat Ronda, C.R.: Emission and excitation mechanisms of phosphors. In: Chapter 1 Luminescence: From Theory to Applications. Edited by Cees Ronda, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN: 978-3-527-31402 (2008) Ronda, C.R.: Emission and excitation mechanisms of phosphors. In: Chapter 1 Luminescence: From Theory to Applications. Edited by Cees Ronda, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN: 978-3-527-31402 (2008)
6.
Zurück zum Zitat William, P.: Lustig, Jing Li, Luminescent metal–organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coord. Chem. Rev. 373, 116–147 (2018)CrossRef William, P.: Lustig, Jing Li, Luminescent metal–organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coord. Chem. Rev. 373, 116–147 (2018)CrossRef
7.
Zurück zum Zitat Gan, N., Shi, H., An, Z., Huang, W.: Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv. Funct. Mater. 28, 1802657 (2018)CrossRef Gan, N., Shi, H., An, Z., Huang, W.: Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv. Funct. Mater. 28, 1802657 (2018)CrossRef
8.
Zurück zum Zitat Li, S., Xie, R.J.: Review—data-driven discovery of novel phosphors. ECS J. Solid State Sci. Technol. 9, 016013 (2020) Li, S., Xie, R.J.: Review—data-driven discovery of novel phosphors. ECS J. Solid State Sci. Technol. 9, 016013 (2020)
9.
Zurück zum Zitat Xie, R.-J., Hirosaki, N., Sakuma, K., Yamamoto, Y., Mitomo, M.: Appl. Phys. Lett. 84(26), 5404 (2004)CrossRef Xie, R.-J., Hirosaki, N., Sakuma, K., Yamamoto, Y., Mitomo, M.: Appl. Phys. Lett. 84(26), 5404 (2004)CrossRef
10.
Zurück zum Zitat Hirosaki, N., Xie, R.J., Kimoto, K., Sekiguchi, T., Yamamoto, Y., Suehiro, T., Mitomo, M.: Appl. Phys. Lett. 86(21), 211905 (2005) Hirosaki, N., Xie, R.J., Kimoto, K., Sekiguchi, T., Yamamoto, Y., Suehiro, T., Mitomo, M.: Appl. Phys. Lett. 86(21), 211905 (2005)
11.
Zurück zum Zitat Uheda, K., Hirosaki, N., Yamamoto, Y., Naito, A., Nakajima, T., Yamamoto, H.: Electrochem. Solid State Lett. 9(4), H22 (2006)CrossRef Uheda, K., Hirosaki, N., Yamamoto, Y., Naito, A., Nakajima, T., Yamamoto, H.: Electrochem. Solid State Lett. 9(4), H22 (2006)CrossRef
12.
Zurück zum Zitat Park, W.B., Singh, S.P., Yoon, C., Sohn, K.-S.: J. Mater. Chem. 22, 14068 (2012)CrossRef Park, W.B., Singh, S.P., Yoon, C., Sohn, K.-S.: J. Mater. Chem. 22, 14068 (2012)CrossRef
13.
Zurück zum Zitat Park, W.B., Shin, N., Hong, K.-P., Pyo, M., Sohn, K.-S.: Adv. Funct. Mater. 22, 2258 (2012)CrossRef Park, W.B., Shin, N., Hong, K.-P., Pyo, M., Sohn, K.-S.: Adv. Funct. Mater. 22, 2258 (2012)CrossRef
14.
Zurück zum Zitat Park, W.B., Singh, S.P., Yoon, C., Sohn, K.-S.: J. Mater. Chem. C 1, 1832 (2013)CrossRef Park, W.B., Singh, S.P., Yoon, C., Sohn, K.-S.: J. Mater. Chem. C 1, 1832 (2013)CrossRef
15.
Zurück zum Zitat Park, W.B., Singh, S.P., Sohn, K.-S.: J. Am. Chem. Soc. 136, 2363 (2014)CrossRef Park, W.B., Singh, S.P., Sohn, K.-S.: J. Am. Chem. Soc. 136, 2363 (2014)CrossRef
16.
Zurück zum Zitat Pust, P., Wochnik, A.S., Baumann, E., Schmidt, P.J., Wiechert, D., Scheu, C., Schnick, W.: Chem. Mater. 26, 3544 (2014)CrossRef Pust, P., Wochnik, A.S., Baumann, E., Schmidt, P.J., Wiechert, D., Scheu, C., Schnick, W.: Chem. Mater. 26, 3544 (2014)CrossRef
17.
Zurück zum Zitat Hirosaki, N., Takeda, T., Funahshi, S., Xie, R.-J.: Chem. Mater. 26, 4280 (2014)CrossRef Hirosaki, N., Takeda, T., Funahshi, S., Xie, R.-J.: Chem. Mater. 26, 4280 (2014)CrossRef
18.
Zurück zum Zitat Yang, Y., Zhao, Q., Feng, W., Li, F.: Chem. Rev. 113, 192–270 (2013)CrossRef Yang, Y., Zhao, Q., Feng, W., Li, F.: Chem. Rev. 113, 192–270 (2013)CrossRef
19.
Zurück zum Zitat Taylor-Pashow, K.M.L., Della Rocca, J., Huxford, R.C., Lin, W.: Chem. Commun. 46, 5832–5849 (2010) Taylor-Pashow, K.M.L., Della Rocca, J., Huxford, R.C., Lin, W.: Chem. Commun. 46, 5832–5849 (2010)
20.
Zurück zum Zitat Wei, Z., Gu, Z.-Y., Arvapally, R.K., Chen, Y.-P., McDougald, R.N., Ivy, J.F., Yakovenko, A.A., Feng, D., Omary, M.A., Zhou, H.-C.: J. Am. Chem. Soc. 136, 8269–8276 (2014)CrossRef Wei, Z., Gu, Z.-Y., Arvapally, R.K., Chen, Y.-P., McDougald, R.N., Ivy, J.F., Yakovenko, A.A., Feng, D., Omary, M.A., Zhou, H.-C.: J. Am. Chem. Soc. 136, 8269–8276 (2014)CrossRef
21.
Zurück zum Zitat Lustig, W.P., Mukherjee, S., Rudd, N.D., Desai, A.V., Li, J., Ghosh, S.K.: Chem. Soc. Rev. 46, 3242–3285 (2017)CrossRef Lustig, W.P., Mukherjee, S., Rudd, N.D., Desai, A.V., Li, J., Ghosh, S.K.: Chem. Soc. Rev. 46, 3242–3285 (2017)CrossRef
22.
Zurück zum Zitat Heine, J., Muller-Buschbaum, K.: Chem. Soc. Rev. 42, 9232–9242 (2013)CrossRef Heine, J., Muller-Buschbaum, K.: Chem. Soc. Rev. 42, 9232–9242 (2013)CrossRef
23.
Zurück zum Zitat Stavila, V., Talin, A.A., Allendorf, M.D.: Chem. Soc. Rev. 43, 5994–6010 (2014)CrossRef Stavila, V., Talin, A.A., Allendorf, M.D.: Chem. Soc. Rev. 43, 5994–6010 (2014)CrossRef
25.
Zurück zum Zitat He, Y., Zhou, W., Krishna, R., Chen, B.: Chem. Commun. 48(2012), 11813–11821 (1831) He, Y., Zhou, W., Krishna, R., Chen, B.: Chem. Commun. 48(2012), 11813–11821 (1831)
26.
27.
Zurück zum Zitat Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.-Y.: Chem. Soc. Rev. 43, 6011–6061 (2014)CrossRef Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.-Y.: Chem. Soc. Rev. 43, 6011–6061 (2014)CrossRef
28.
Zurück zum Zitat Song, B.Q., Wang, X.L., Yang, G.S., Wang, H.N., Liang, J., Shao, K.Z., Su, Z.M.: Cryst. Eng. Comm. 16, 6882 (2014) Song, B.Q., Wang, X.L., Yang, G.S., Wang, H.N., Liang, J., Shao, K.Z., Su, Z.M.: Cryst. Eng. Comm. 16, 6882 (2014)
29.
Zurück zum Zitat Ke, F., Yuan, Y.-P., Qiu, L.-G., Shen, Y.-H., Xie, A.-J., Zhu, J.-F., Tian, X.-Y., Zhang, L.-D.: J. Mater. Chem. 21, 3843–3848 (2011)CrossRef Ke, F., Yuan, Y.-P., Qiu, L.-G., Shen, Y.-H., Xie, A.-J., Zhu, J.-F., Tian, X.-Y., Zhang, L.-D.: J. Mater. Chem. 21, 3843–3848 (2011)CrossRef
30.
Zurück zum Zitat Ray Chowdhuri, A., Bhattacharya,D., Sahu, S.K.: Dalton Trans. 45, 2963–2973 (2016) Ray Chowdhuri, A., Bhattacharya,D., Sahu, S.K.: Dalton Trans. 45, 2963–2973 (2016)
31.
Zurück zum Zitat Lee, D., Bolton, O., Kim, B.C., Youk, J.H., Takayama, S., Kim, J.: Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. J. Am. Chem. Soc. 135, 6325 (2013)CrossRef Lee, D., Bolton, O., Kim, B.C., Youk, J.H., Takayama, S., Kim, J.: Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. J. Am. Chem. Soc. 135, 6325 (2013)CrossRef
32.
Zurück zum Zitat Mukherjee, S., Thilagar, P.: Chem. Commun. 51, 109988–111003 (2015) Mukherjee, S., Thilagar, P.: Chem. Commun. 51, 109988–111003 (2015)
33.
Zurück zum Zitat Yu, Y., Kwon, M.S., Jung, J., Zeng, Y., Kim, M., Chung, K., Gierschner, J., Youk, J., Borisov, S.M., Kim, J.: Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angew. Chem. 129, 16425–16429 (2017) Yu, Y., Kwon, M.S., Jung, J., Zeng, Y., Kim, M., Chung, K., Gierschner, J., Youk, J., Borisov, S.M., Kim, J.: Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angew. Chem. 129, 16425–16429 (2017)
34.
Zurück zum Zitat Fang, M., Yang, J., Xiang, X., Xie, Y., Dong, Y.Q., Peng, Q., Li, Q., Li, Z.: Unexpected room temperature phosphorescence from nonaromatic pure organic molecule with low molecular weight of 85: how the intermolecular hydrogen bond creates wonderful flash mater. Chem. Front. (2018). https://doi.org/10.1039/C8QM00396CCrossRef Fang, M., Yang, J., Xiang, X., Xie, Y., Dong, Y.Q., Peng, Q., Li, Q., Li, Z.: Unexpected room temperature phosphorescence from nonaromatic pure organic molecule with low molecular weight of 85: how the intermolecular hydrogen bond creates wonderful flash mater. Chem. Front. (2018). https://​doi.​org/​10.​1039/​C8QM00396CCrossRef
35.
Zurück zum Zitat Wu, W., Tang, R., Li, Q., Li, Z.: Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 44, 3997–4022 (2015)CrossRef Wu, W., Tang, R., Li, Q., Li, Z.: Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 44, 3997–4022 (2015)CrossRef
36.
Zurück zum Zitat Tian, R., Xu, S.M., Xu, Q., Lu, C.: Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Sci. Adv. 6, eaaz6107 (2020) Tian, R., Xu, S.M., Xu, Q., Lu, C.: Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Sci. Adv. 6, eaaz6107 (2020)
37.
Zurück zum Zitat Fang, M.-M., Yang, J., Lia, Z.: Recent advances in purely organic room temperature phosphorescence polymer. Chin. J. Polym. Sci. 37, 383–393 (2019)CrossRef Fang, M.-M., Yang, J., Lia, Z.: Recent advances in purely organic room temperature phosphorescence polymer. Chin. J. Polym. Sci. 37, 383–393 (2019)CrossRef
38.
Zurück zum Zitat Kwon, M.S., Yu, Y., Coburn, C., Phillips, A.W., Chung, K., Shanker, A., Jung, J., Kim, G., Pipe, K., Forrest, S.R., Youk, J.H., Gierschner, J., Kim, J.: Nat. Commun. 6, 8947 (2015)CrossRef Kwon, M.S., Yu, Y., Coburn, C., Phillips, A.W., Chung, K., Shanker, A., Jung, J., Kim, G., Pipe, K., Forrest, S.R., Youk, J.H., Gierschner, J., Kim, J.: Nat. Commun. 6, 8947 (2015)CrossRef
40.
Zurück zum Zitat Bessiere, A., Sharma, S.K., Basavaraju, N., Priolkar, K.R., Binet, L., Viana, B., Bos, A.J.J., Maldiney, T., Richard, C., Scherman, D., Gourier, D.: Chem. Mater. 26, 1365–1373 (2014)CrossRef Bessiere, A., Sharma, S.K., Basavaraju, N., Priolkar, K.R., Binet, L., Viana, B., Bos, A.J.J., Maldiney, T., Richard, C., Scherman, D., Gourier, D.: Chem. Mater. 26, 1365–1373 (2014)CrossRef
41.
42.
Zurück zum Zitat Chenu, S., Veron, E., Genevois, C., Garcia, A., Matzen, G., Allix, M.: J. Mater. Chem. C 2, 10002–10010 (2014)CrossRef Chenu, S., Veron, E., Genevois, C., Garcia, A., Matzen, G., Allix, M.: J. Mater. Chem. C 2, 10002–10010 (2014)CrossRef
43.
Zurück zum Zitat Gao, Yan, D.: Chem. Sci. 8, 590–599 (2017) Gao, Yan, D.: Chem. Sci. 8, 590–599 (2017)
45.
Zurück zum Zitat Hu, X., Ding, Y., Liu, J., Deng, Y., Cheng, C.: Synthesis and fluorescence properties of a waterborne polyurethane–acrylic hybrid polymeric dye. Polym. Bull. 74, 555–569 (2016)CrossRef Hu, X., Ding, Y., Liu, J., Deng, Y., Cheng, C.: Synthesis and fluorescence properties of a waterborne polyurethane–acrylic hybrid polymeric dye. Polym. Bull. 74, 555–569 (2016)CrossRef
46.
Zurück zum Zitat Hu., Xianhai, Zhang, X., Liu, J., Dai, J.: Synthesis, characterization and fluorescence performance of a waterborne polyurethane-based polymeric dye. J. Lumin. 142, 23–27 (2013) Hu., Xianhai, Zhang, X., Liu, J., Dai, J.: Synthesis, characterization and fluorescence performance of a waterborne polyurethane-based polymeric dye. J. Lumin. 142, 23–27 (2013)
49.
Zurück zum Zitat Zhou, C., Xie, T., Zhou, R., Trindle, C.O., Tikman, Y., Zhang, X., Zhang, G., Appl. A.C.S.: Mater. Interfaces 7, 17209 (2015)CrossRef Zhou, C., Xie, T., Zhou, R., Trindle, C.O., Tikman, Y., Zhang, X., Zhang, G., Appl. A.C.S.: Mater. Interfaces 7, 17209 (2015)CrossRef
50.
Zurück zum Zitat Wang, T., Zhang, X., Deng, Y., Sun, W., Wang, Q., Xu, F., Huang, X.: Polymers 9, 411 (2017)CrossRef Wang, T., Zhang, X., Deng, Y., Sun, W., Wang, Q., Xu, F., Huang, X.: Polymers 9, 411 (2017)CrossRef
51.
52.
Zurück zum Zitat Sun, W., Wang, Z., Wang, T., Yang, L., Jiang, J., Zhang, X., Luo, Y., Zhang, G.: J. Phys. Chem. A 121, 4225 (2017)CrossRef Sun, W., Wang, Z., Wang, T., Yang, L., Jiang, J., Zhang, X., Luo, Y., Zhang, G.: J. Phys. Chem. A 121, 4225 (2017)CrossRef
53.
Zurück zum Zitat Chen, X., Liu, X., Lei, J., Xu, L., Zhao, Z., Kausar, F., Xie, X., Zhu, X., Zhang, Y., Yuan, W.Z.: Mol. Syst. Des. Eng. 3, 364 (2018)CrossRef Chen, X., Liu, X., Lei, J., Xu, L., Zhao, Z., Kausar, F., Xie, X., Zhu, X., Zhang, Y., Yuan, W.Z.: Mol. Syst. Des. Eng. 3, 364 (2018)CrossRef
54.
Zurück zum Zitat Song, L., Zhu, T., Yuan, L., Zhou, J., Zhang, Y., Wang, Z., Tang, C.: Ultra-strong long-chain polyamide elastomers with programmable supramolecular interactions and oriented crystalline microstructures. Nat. Commun. 10, 1315 (2019)CrossRef Song, L., Zhu, T., Yuan, L., Zhou, J., Zhang, Y., Wang, Z., Tang, C.: Ultra-strong long-chain polyamide elastomers with programmable supramolecular interactions and oriented crystalline microstructures. Nat. Commun. 10, 1315 (2019)CrossRef
55.
Zurück zum Zitat Zhao, E., Lam, J.W.Y., Meng, L., Hong, Y., Deng, H., Bai, G., Huang, X., Hao, J., Tang, B.Z.: Poly[(maleic anhydride)-alt-(vinyl acetate)]: a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 48, 64–71 (2015)CrossRef Zhao, E., Lam, J.W.Y., Meng, L., Hong, Y., Deng, H., Bai, G., Huang, X., Hao, J., Tang, B.Z.: Poly[(maleic anhydride)-alt-(vinyl acetate)]: a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 48, 64–71 (2015)CrossRef
56.
Zurück zum Zitat Lu, H., Feng, L., Li, S., Zhang, J., Lu, H., Feng, S.: Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane–poly(amidoamine) dendrimers. Macromolecules 48, 476–482 (2015)CrossRef Lu, H., Feng, L., Li, S., Zhang, J., Lu, H., Feng, S.: Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane–poly(amidoamine) dendrimers. Macromolecules 48, 476–482 (2015)CrossRef
57.
Zurück zum Zitat Zhou, Q., Cao, B., Zhu, C., Xu, S., Gong, Y., Yuan, W.Z., Zhang, Y.: Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 12, 6586 (2016)CrossRef Zhou, Q., Cao, B., Zhu, C., Xu, S., Gong, Y., Yuan, W.Z., Zhang, Y.: Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 12, 6586 (2016)CrossRef
58.
Zurück zum Zitat Chen, X., Luo, W., Ma, H., Peng, Q., Yuan, W.Z., Zhang, Y.: Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 61, 351–359 (2017)CrossRef Chen, X., Luo, W., Ma, H., Peng, Q., Yuan, W.Z., Zhang, Y.: Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 61, 351–359 (2017)CrossRef
59.
Zurück zum Zitat Kopeć, M., Pikiel, M., Vancso, G.J.: Surface-grafted polyacrylonitrile brushes with aggregation-induced emission properties. Polym. Chem. 11, 669–674 (2020)CrossRef Kopeć, M., Pikiel, M., Vancso, G.J.: Surface-grafted polyacrylonitrile brushes with aggregation-induced emission properties. Polym. Chem. 11, 669–674 (2020)CrossRef
60.
Zurück zum Zitat Nara, M., Orita, R., Ishige, R., Ando, S.: White-light emission and tunable luminescence colors of polyimide copolymers based on FRET and room-temperature phosphorescence. ACS Omega Nara, M., Orita, R., Ishige, R., Ando, S.: White-light emission and tunable luminescence colors of polyimide copolymers based on FRET and room-temperature phosphorescence. ACS Omega
61.
62.
Zurück zum Zitat Zhang, T., Chen, H., Ma, X., Tian, H.: Ind. Eng. Chem. Res. 56, 3123 (2017)CrossRef Zhang, T., Chen, H., Ma, X., Tian, H.: Ind. Eng. Chem. Res. 56, 3123 (2017)CrossRef
63.
Zurück zum Zitat Ma, X., Xu, C., Wang, J., Tian, H.: Angew. Chem., Int. Ed. 57, 10854 (2018) Ma, X., Xu, C., Wang, J., Tian, H.: Angew. Chem., Int. Ed. 57, 10854 (2018)
64.
Zurück zum Zitat Hasegawa, M., Horie, K.: Photophysics, photochemistry, and optical properties of polyimides. Pergamon 26, 259–335 (2001) Hasegawa, M., Horie, K.: Photophysics, photochemistry, and optical properties of polyimides. Pergamon 26, 259–335 (2001)
65.
Zurück zum Zitat Wakita, J., Sekino, H., Sakai, K., Urano, Y., Ando, S.: Molecular design, synthesis, and properties of highly fluorescent polyimides. J. Phys. Chem. B 113, 15212–15224 (2009)CrossRef Wakita, J., Sekino, H., Sakai, K., Urano, Y., Ando, S.: Molecular design, synthesis, and properties of highly fluorescent polyimides. J. Phys. Chem. B 113, 15212–15224 (2009)CrossRef
66.
Zurück zum Zitat Wakita, J., Inoue, S., Kawanishi, N., Ando, S.: Excited-state intramolecular proton transfer in imide compounds and its application to control the emission colors of highly fluorescent polyimides. Macromolecules 43, 3594–3605 (2010)CrossRef Wakita, J., Inoue, S., Kawanishi, N., Ando, S.: Excited-state intramolecular proton transfer in imide compounds and its application to control the emission colors of highly fluorescent polyimides. Macromolecules 43, 3594–3605 (2010)CrossRef
67.
Zurück zum Zitat Kanosue, K., Shimosaka, T., Wakita, J., Ando, S.: Polyimide and imide compound exhibiting bright red fluorescence with very large stokes shifts via excited-state intramolecular proton transfer. Macromolecules 48, 1777–1785 (2015)CrossRef Kanosue, K., Shimosaka, T., Wakita, J., Ando, S.: Polyimide and imide compound exhibiting bright red fluorescence with very large stokes shifts via excited-state intramolecular proton transfer. Macromolecules 48, 1777–1785 (2015)CrossRef
68.
Zurück zum Zitat Kanosue, K., Augulis, R., Peckus, D., Karpicz, R., Tamulevičius, T., Tamulevičius, S., Gulbinas, V., Ando, S.: Polyimide and imide compound exhibiting bright red fluorescence with very large stokes shifts via excited-state intramolecular proton transfer II. Ultrafast proton transfer dynamics in the excited state. Macromolecules 49, 1848−1857 (2016) Kanosue, K., Augulis, R., Peckus, D., Karpicz, R., Tamulevičius, T., Tamulevičius, S., Gulbinas, V., Ando, S.: Polyimide and imide compound exhibiting bright red fluorescence with very large stokes shifts via excited-state intramolecular proton transfer II. Ultrafast proton transfer dynamics in the excited state. Macromolecules 49, 1848−1857 (2016)
69.
Zurück zum Zitat Yuniarto, K., Welt, B.A., Irawan, C.: Morphological, thermal and oxygen barrier properties plasticized film polylactic acid. J. Appl. Packag. Res. 9(3)(6), 1–9 (2017) Yuniarto, K., Welt, B.A., Irawan, C.: Morphological, thermal and oxygen barrier properties plasticized film polylactic acid. J. Appl. Packag. Res. 9(3)(6), 1–9 (2017)
70.
Zurück zum Zitat Anderson, K.S., Schreck, K.M., Hillmyer, M.A.: Toughening polylactide. Polym. Rev. 48, 85–108 (2008)CrossRef Anderson, K.S., Schreck, K.M., Hillmyer, M.A.: Toughening polylactide. Polym. Rev. 48, 85–108 (2008)CrossRef
71.
Zurück zum Zitat Zhang, G., Chen, J., Payne, S.J., Kooi, S.E., Demas, J.N., Fraser, C.L.: Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 129, 8942–8943 (2007)CrossRef Zhang, G., Chen, J., Payne, S.J., Kooi, S.E., Demas, J.N., Fraser, C.L.: Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 129, 8942–8943 (2007)CrossRef
72.
Zurück zum Zitat DeRosa, C.A., Kerr, C., Fan, Z., Kolpaczynska, M., Mathew, A.S., Evans, R.E., Zhang, G., Fraser, C.L.: Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials. ACS Appl. Mater. Interfaces 7, 23633–23643 (2015)CrossRef DeRosa, C.A., Kerr, C., Fan, Z., Kolpaczynska, M., Mathew, A.S., Evans, R.E., Zhang, G., Fraser, C.L.: Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials. ACS Appl. Mater. Interfaces 7, 23633–23643 (2015)CrossRef
73.
Zurück zum Zitat Zhang, G., Evans, R.E., Campbell, K.A., Fraser, C.L.: Role of boron in the polymer chemistry and photophysical properties of difluoroboron−dibenzoylmethane polylactide. Macromolecules 42, 8627–8633 (2009)CrossRef Zhang, G., Evans, R.E., Campbell, K.A., Fraser, C.L.: Role of boron in the polymer chemistry and photophysical properties of difluoroboron−dibenzoylmethane polylactide. Macromolecules 42, 8627–8633 (2009)CrossRef
74.
Zurück zum Zitat Zhang, G., Fiore, G.L., Clair, T.L.S., Fraser, C.L.: Difluoroboron dibenzoylmethane pcl-pla block copolymers: matrix effects on room temperature phosphorescence. Macromolecules 42, 3162–3169 (2009)CrossRef Zhang, G., Fiore, G.L., Clair, T.L.S., Fraser, C.L.: Difluoroboron dibenzoylmethane pcl-pla block copolymers: matrix effects on room temperature phosphorescence. Macromolecules 42, 3162–3169 (2009)CrossRef
75.
Zurück zum Zitat Chen, X., Xu, C., Wang, T., Zhou, C., Du, J., Wang, Z., Xu, H., Xie, T., Bi, G., Jiang, J., Zhang, X., Demas, J.N., Trindle, C.O., Luo, Y., Zhang, G.: Versatile room-temperature-phosphorescent materials prepared from n-substituted naphthalimides: emission enhancement and chemical conjugation. Angew. Chem., Int. 55(34), 9872–9876 (2016) Chen, X., Xu, C., Wang, T., Zhou, C., Du, J., Wang, Z., Xu, H., Xie, T., Bi, G., Jiang, J., Zhang, X., Demas, J.N., Trindle, C.O., Luo, Y., Zhang, G.: Versatile room-temperature-phosphorescent materials prepared from n-substituted naphthalimides: emission enhancement and chemical conjugation. Angew. Chem., Int. 55(34), 9872–9876 (2016)
76.
Zurück zum Zitat Pfister, A., Zhang, G., Zareno, J., Horwitz, A.F., Fraser, C.L.: Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. ACS Nano 2(6), 1252–1258 (2008)CrossRef Pfister, A., Zhang, G., Zareno, J., Horwitz, A.F., Fraser, C.L.: Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. ACS Nano 2(6), 1252–1258 (2008)CrossRef
77.
Zurück zum Zitat Kerr, C., Derosa, C.A., Daly, M.L., Zhang, H., Palmer, G.M., Fraser, C.L.: Luminescent difluoroboron β-diketonate pla–peg nanoparticle. Biomacromol 18, 551–561 (2017)CrossRef Kerr, C., Derosa, C.A., Daly, M.L., Zhang, H., Palmer, G.M., Fraser, C.L.: Luminescent difluoroboron β-diketonate pla–peg nanoparticle. Biomacromol 18, 551–561 (2017)CrossRef
78.
Zurück zum Zitat Ogoshi, T., Tsuchida, H., Kakuta, T., Yamagishi, T.-A., Taema, A., Ono, T., Sugimoto, M., Mizuno, M.: Adv. Funct. Mater. 29, 1707369 (2018)CrossRef Ogoshi, T., Tsuchida, H., Kakuta, T., Yamagishi, T.-A., Taema, A., Ono, T., Sugimoto, M., Mizuno, M.: Adv. Funct. Mater. 29, 1707369 (2018)CrossRef
79.
Zurück zum Zitat Chen, X., He, Z., Kausar, F., Chen, G., Zhang, Y., Yuan, W.: Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly (ethylene terephthalate). Macromolecules 51, 9035–9042 (2018)CrossRef Chen, X., He, Z., Kausar, F., Chen, G., Zhang, Y., Yuan, W.: Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly (ethylene terephthalate). Macromolecules 51, 9035–9042 (2018)CrossRef
80.
Zurück zum Zitat Yu, Y., Kwon, M.S., Jung, J., Zeng, Y., Kim, M., Chung, K., Gierschner, J.,. Youk, J.H., Borisov, S., Kim, J., Angew. Chem., Int. Ed. 56, 16207 (2017) Yu, Y., Kwon, M.S., Jung, J., Zeng, Y., Kim, M., Chung, K., Gierschner, J.,. Youk, J.H., Borisov, S., Kim, J., Angew. Chem., Int. Ed. 56, 16207 (2017)
81.
Zurück zum Zitat Tao, S., Lu, S., Geng, Y., Zhu, S., Redfern, S.A.T., Song, Y., Feng, T., Xu, W., Yang, B., Angew. Chem., Int. Ed. 57, 2393 (2018) Tao, S., Lu, S., Geng, Y., Zhu, S., Redfern, S.A.T., Song, Y., Feng, T., Xu, W., Yang, B., Angew. Chem., Int. Ed. 57, 2393 (2018)
82.
Zurück zum Zitat Wang, S., Ma, L., Wang, Q., Shao, P., Ma, D., Yuan, S., Lei, P., Li, P., Feng, X., Wang, B.: J. Mater. Chem. C 6, 5369 (2018)CrossRef Wang, S., Ma, L., Wang, Q., Shao, P., Ma, D., Yuan, S., Lei, P., Li, P., Feng, X., Wang, B.: J. Mater. Chem. C 6, 5369 (2018)CrossRef
83.
Zurück zum Zitat Gahlaut, R., Joshi, H.C., Joshi, N.K., Pandey, N., Arora, P., Rautela, R., Suyal, K., Pant, S.: Luminescence characteristics and room temperature phosphorescence of naphthoic acids in polymers. J. Lumin. 138, 122–128 (2013)CrossRef Gahlaut, R., Joshi, H.C., Joshi, N.K., Pandey, N., Arora, P., Rautela, R., Suyal, K., Pant, S.: Luminescence characteristics and room temperature phosphorescence of naphthoic acids in polymers. J. Lumin. 138, 122–128 (2013)CrossRef
84.
Zurück zum Zitat Hess, S., Becker, A., Baluschev, S., Yakutkin, V., Wegner, G.: A comparative study of oxygen permeabilities of film-forming polymers by quenching of platinum porphyrin phosphorescence. Macromol. Chem. Phys. 208(19–20), 2173–2188 (2007)CrossRef Hess, S., Becker, A., Baluschev, S., Yakutkin, V., Wegner, G.: A comparative study of oxygen permeabilities of film-forming polymers by quenching of platinum porphyrin phosphorescence. Macromol. Chem. Phys. 208(19–20), 2173–2188 (2007)CrossRef
85.
Zurück zum Zitat Reineke, S., Seidler, N., Yost, S.R., Prins, F., Tisdale, W.A., Baldo, M.A.: Highly efficient, dual state emission from an organic semiconductor. Appl. Phys. Lett. 103, 093302 (2013) Reineke, S., Seidler, N., Yost, S.R., Prins, F., Tisdale, W.A., Baldo, M.A.: Highly efficient, dual state emission from an organic semiconductor. Appl. Phys. Lett. 103, 093302 (2013)
86.
Zurück zum Zitat Joshi, R., Meitei, O.R., Jadhao, M., Kumar, H., Ghosh, S.K.: Conformation controlled turn on–turn off phosphorescence in a metal-free biluminophore: thriving the paradox that exists for organic compounds. Phys. Chem. Chem. Phys. 18, 27910–27920 (2016)CrossRef Joshi, R., Meitei, O.R., Jadhao, M., Kumar, H., Ghosh, S.K.: Conformation controlled turn on–turn off phosphorescence in a metal-free biluminophore: thriving the paradox that exists for organic compounds. Phys. Chem. Chem. Phys. 18, 27910–27920 (2016)CrossRef
87.
Zurück zum Zitat Mieno, H., Kabe, R., Notsuka, N., Allendorf, M.D., Adachi, C.: Long-lived room temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF-8 Adv. Opt. Mater. 4(7), 1015–1021 (2016)CrossRef Mieno, H., Kabe, R., Notsuka, N., Allendorf, M.D., Adachi, C.: Long-lived room temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF-8 Adv. Opt. Mater. 4(7), 1015–1021 (2016)CrossRef
88.
Zurück zum Zitat Koch, M., Perumal, K., Blacque, O., Garg, J.A., Saiganesh, R., Kabilan, S., Balasubramanian, K.K., Venkatesan, K.: Metal-free triplet phosphors with high emission efficiency and high tenability. Angew. Chem., Int. 53(25), 6378 (2014) Koch, M., Perumal, K., Blacque, O., Garg, J.A., Saiganesh, R., Kabilan, S., Balasubramanian, K.K., Venkatesan, K.: Metal-free triplet phosphors with high emission efficiency and high tenability. Angew. Chem., Int. 53(25), 6378 (2014)
89.
Zurück zum Zitat Kwon, M., Lee, D., Seo, S., Jung, J., Kim, J.: Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Ed. 53(11177–11181), 38 (2014) Kwon, M., Lee, D., Seo, S., Jung, J., Kim, J.: Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Ed. 53(11177–11181), 38 (2014)
90.
Zurück zum Zitat Su, Y., Phua, S., Li, Y., Zhou, X., Jana, D., Liu, G., Lim, W.Q., Ong, W., Yang, C., Zhao, Y.: Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 4, eaas9732 (2018) Su, Y., Phua, S., Li, Y., Zhou, X., Jana, D., Liu, G., Lim, W.Q., Ong, W., Yang, C., Zhao, Y.: Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 4, eaas9732 (2018)
91.
Zurück zum Zitat Deng, Y., Zhao, D., Chen, X., Wang, F., Song, H., Shen, D.: Chem. Commun. 49, 5751 (2013)CrossRef Deng, Y., Zhao, D., Chen, X., Wang, F., Song, H., Shen, D.: Chem. Commun. 49, 5751 (2013)CrossRef
92.
Zurück zum Zitat Tan, J., Zhang, J., Li, W., Zhang, L., Yue, D.: J. Mater. Chem. C 4, 10146 (2016)CrossRef Tan, J., Zhang, J., Li, W., Zhang, L., Yue, D.: J. Mater. Chem. C 4, 10146 (2016)CrossRef
93.
94.
Zurück zum Zitat Xu, S., Evans, R.E., Liu, T., Zhang, G., Demas, J.N., Trindle, C.O., Fraser, C.L.: Aromatic difluoroboron β-diketonate complexes: effects of π-conjugation and media on optical properties. Inorg. Chem. 52(7), 3597–3610 (2013)CrossRef Xu, S., Evans, R.E., Liu, T., Zhang, G., Demas, J.N., Trindle, C.O., Fraser, C.L.: Aromatic difluoroboron β-diketonate complexes: effects of π-conjugation and media on optical properties. Inorg. Chem. 52(7), 3597–3610 (2013)CrossRef
95.
Zurück zum Zitat Zhang, X., Xie, T., Cui, M., Yang, L., Sun, X., Jiang, J., Zhang, G.: General design strategy for aromatic ketone-based single-component dual-emissive materials. ACS Appl. Mater. Interfaces. 6(4), 2279–2284 (2014)CrossRef Zhang, X., Xie, T., Cui, M., Yang, L., Sun, X., Jiang, J., Zhang, G.: General design strategy for aromatic ketone-based single-component dual-emissive materials. ACS Appl. Mater. Interfaces. 6(4), 2279–2284 (2014)CrossRef
96.
Zurück zum Zitat M. L. Daly, C. Kerr, C. A. Derosa, C. L. Fraser, Meta-alkoxy-substituted difluoroboron dibenzoylmethane complexes as environment-sensitive materials. ACS Applied Materials & Interfaces, ACS Appl. Mater. Interfaces, 9, 2017, 32008–32017. M. L. Daly, C. Kerr, C. A. Derosa, C. L. Fraser, Meta-alkoxy-substituted difluoroboron dibenzoylmethane complexes as environment-sensitive materials. ACS Applied Materials & Interfaces, ACS Appl. Mater. Interfaces, 9, 2017, 32008–32017.
97.
Zurück zum Zitat Liu, T., Zhang, G., Evans, R.E., Trindle, C.O., Altun, Z., Derosa, C.A., Wang, F., Zhuang, M., Fraser, C.L.: Phosphorescence tuning through heavy atom placement in unsymmetrical difluoroboron β-diketonate materials. Chem. Eur. J. 24(8), 1859–1869 (2018) Liu, T., Zhang, G., Evans, R.E., Trindle, C.O., Altun, Z., Derosa, C.A., Wang, F., Zhuang, M., Fraser, C.L.: Phosphorescence tuning through heavy atom placement in unsymmetrical difluoroboron β-diketonate materials. Chem. Eur. J. 24(8), 1859–1869 (2018)
98.
Zurück zum Zitat Bhogal, S., Kaur, K., Malik, A.K., Sonne, C., Lee, S.S., Kim, K.H.: Core-shell structured molecularly imprinted materials for sensing applications. TrAC Trends in Analy. Chem. 116043 (2020) Bhogal, S., Kaur, K., Malik, A.K., Sonne, C., Lee, S.S., Kim, K.H.: Core-shell structured molecularly imprinted materials for sensing applications. TrAC Trends in Analy. Chem. 116043 (2020)
99.
Zurück zum Zitat Salinas-Castillo, A., Sanchez-Barragan, I., Costa-Fernandez, J.M., Pereiro, R., Ballesteros, A., Gonzalez, J.M., Segura-Carretero, A., Fernandez-Gutierrez, A., Sanz-Medel, A.: Iodinated molecularly imprinted polymer for room-temperature phosphorescence optosensing of fluoranthene. Chem. Commun. 25, 3224–3226 (2005)CrossRef Salinas-Castillo, A., Sanchez-Barragan, I., Costa-Fernandez, J.M., Pereiro, R., Ballesteros, A., Gonzalez, J.M., Segura-Carretero, A., Fernandez-Gutierrez, A., Sanz-Medel, A.: Iodinated molecularly imprinted polymer for room-temperature phosphorescence optosensing of fluoranthene. Chem. Commun. 25, 3224–3226 (2005)CrossRef
100.
Zurück zum Zitat Sanchez-Barragan, I., Costa-Fernandez, J.M., Pereiro, R., Sanz-Medel, A., Salinas, A., Segura, A., Fernandez-Gutierrez, A., Ballesteros, A., Gonzalez, J.M.: Molecularly imprinted polymers based on iodinated monomers for selective room-temperature phosphorescence optosensing of fluoranthene in water. Anal. Chem. 77(21), 7005–7011 (2005)CrossRef Sanchez-Barragan, I., Costa-Fernandez, J.M., Pereiro, R., Sanz-Medel, A., Salinas, A., Segura, A., Fernandez-Gutierrez, A., Ballesteros, A., Gonzalez, J.M.: Molecularly imprinted polymers based on iodinated monomers for selective room-temperature phosphorescence optosensing of fluoranthene in water. Anal. Chem. 77(21), 7005–7011 (2005)CrossRef
101.
Zurück zum Zitat Madurangika Jayasinghe, G.D.T., Domínguez-González, R., Bermejo-Barrera, P., Moreda-Piñeiro, A.: Room temperature phosphorescent determination of aflatoxins in fish feed based on molecularly imprinted polymer—Mn-doped ZnS quantum dots. Analy. Chim. Act. 1103 183–191 (2020) Madurangika Jayasinghe, G.D.T., Domínguez-González, R., Bermejo-Barrera, P., Moreda-Piñeiro, A.: Room temperature phosphorescent determination of aflatoxins in fish feed based on molecularly imprinted polymer—Mn-doped ZnS quantum dots. Analy. Chim. Act. 1103 183–191 (2020)
102.
Zurück zum Zitat Woyessa, G., Rasmussen, H.K., Bang, O.: Zeonex—a route towards low loss humidity insensitive single-mode step-index polymer optical fibre. Opt. Fiber Technol. 57, 102231 (2020) Woyessa, G., Rasmussen, H.K., Bang, O.: Zeonex—a route towards low loss humidity insensitive single-mode step-index polymer optical fibre. Opt. Fiber Technol. 57, 102231 (2020)
103.
Zurück zum Zitat Pander, P., Swist, A., Soloducho, J., Dias, F.B.: Room temperature phosphorescence lifetime and spectrum tuning of substituted thianthrenes. Dyes Pigm. 142, 315–322 (2017)CrossRef Pander, P., Swist, A., Soloducho, J., Dias, F.B.: Room temperature phosphorescence lifetime and spectrum tuning of substituted thianthrenes. Dyes Pigm. 142, 315–322 (2017)CrossRef
Metadaten
Titel
Synthesis, Properties and Applications of Polymeric Matrix-Based Phosphor Hybrids
verfasst von
Samit Kumar Ray
Amritanshu Banerjee
Bidyut Kumar Bhangi
Barnali Dutta
Debapriya Pyne
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-90506-4_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.