Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

Synthetic Strategies in Molecular Imprinting

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces the basic principle and the synthetic aspects of molecular imprinting. First, the use of a molecular template to guide the location of functional groups inside molecularly imprinted cavities is explained. Three different mechanisms that ensure a molecular template associates with functional monomers or the imprinted polymers, that is, through reversible covalent, noncovalent, and sacrificial covalent bonds, are then described. The main focus is put on noncovalent molecular imprinting using free radical polymerization. The merits of using classical radical polymerization and more sophisticated, controlled radical polymerization are analyzed. After these synthetic chemistry aspects, the chapter continues to discuss the different polymerization processes that can be used to prepare well-defined polymer monoliths, microspheres, and nanoparticles. New top-down processing techniques that produce micro- and nanopatterns of imprinted polymers are also reviewed. The chapter finishes with a brief introduction to using imprinted polymers as building blocks to construct new functional materials and devices, which we consider as one important direction for further development.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dickey FH (1949) The preparation of specific adsorbents. Proc Natl Acad Sci USA 35:227–229CrossRef Dickey FH (1949) The preparation of specific adsorbents. Proc Natl Acad Sci USA 35:227–229CrossRef
2.
Zurück zum Zitat Katada N, Niwa M (2006) The re-birth of molecular Imprinting on silica. In: Piletsky S, Turner A (eds) Molecular imprinting of polymers. Landes Bioscience, Georgetown, USA Katada N, Niwa M (2006) The re-birth of molecular Imprinting on silica. In: Piletsky S, Turner A (eds) Molecular imprinting of polymers. Landes Bioscience, Georgetown, USA
3.
Zurück zum Zitat Díaz-Gacía ME, Laíño RB (2005) Molecular imprinting in sol-gel materials: recent developments and applications. Microchim Acta 149:19–36CrossRef Díaz-Gacía ME, Laíño RB (2005) Molecular imprinting in sol-gel materials: recent developments and applications. Microchim Acta 149:19–36CrossRef
4.
Zurück zum Zitat Wulff G, Sarhan A (1972) The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed 11:341 Wulff G, Sarhan A (1972) The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed 11:341
5.
Zurück zum Zitat Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Macromol Chem Phys 182:687–692CrossRef Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Macromol Chem Phys 182:687–692CrossRef
6.
Zurück zum Zitat Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting—synthesis and characterization of polymeric receptors for chloresterol. J Am Chem Soc 117:7105–7111CrossRef Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting—synthesis and characterization of polymeric receptors for chloresterol. J Am Chem Soc 117:7105–7111CrossRef
7.
Zurück zum Zitat Matsumoto A (1995) Free-radical crosslinking polymerization and copolymerization of multivinyl compounds. Adv Polym Sci 123:41–80CrossRef Matsumoto A (1995) Free-radical crosslinking polymerization and copolymerization of multivinyl compounds. Adv Polym Sci 123:41–80CrossRef
8.
Zurück zum Zitat Wulff G, Knorr K (2002) Stoichiometric noncovalent interaction in molecular imprinting. Bioseparation 10:257–276CrossRef Wulff G, Knorr K (2002) Stoichiometric noncovalent interaction in molecular imprinting. Bioseparation 10:257–276CrossRef
9.
Zurück zum Zitat Sellergren B, Hall A (2013) Synthetic chemistry in molecular imprinting. In: Ye L (ed) Molecular imprinting: principles and applications of micro- and nanostructured polymers. Pan Stanford Publishing, Singapore Sellergren B, Hall A (2013) Synthetic chemistry in molecular imprinting. In: Ye L (ed) Molecular imprinting: principles and applications of micro- and nanostructured polymers. Pan Stanford Publishing, Singapore
10.
Zurück zum Zitat Lieberzeit PA, Glanznig G, Jenik M, Gazda-Miarecka S, Dickert FL, Leidl A (2005) Soft lithography in chemical sensing—analytes from molecules to cells. Sensors 5:509–518CrossRef Lieberzeit PA, Glanznig G, Jenik M, Gazda-Miarecka S, Dickert FL, Leidl A (2005) Soft lithography in chemical sensing—analytes from molecules to cells. Sensors 5:509–518CrossRef
11.
Zurück zum Zitat Ye L, Ramström O, Mosbach K (1998) Molecularly imprinted polymeric adsorbents for byproduct removal. Anal Chem 70:2789–2795CrossRef Ye L, Ramström O, Mosbach K (1998) Molecularly imprinted polymeric adsorbents for byproduct removal. Anal Chem 70:2789–2795CrossRef
12.
Zurück zum Zitat Ye L (2005) Molecularly imprinted polymers for solid phase extraction and byproduct removal. In: Yan M, Ramström O (eds) Molecularly imprinted materials. Science and Technology, Marcel Dekker Inc., New York Ye L (2005) Molecularly imprinted polymers for solid phase extraction and byproduct removal. In: Yan M, Ramström O (eds) Molecularly imprinted materials. Science and Technology, Marcel Dekker Inc., New York
13.
Zurück zum Zitat Cragg PJ (2010) Supramolecular chemistry: from biological inspiration to biomedical applications. Springer, LondonCrossRef Cragg PJ (2010) Supramolecular chemistry: from biological inspiration to biomedical applications. Springer, LondonCrossRef
14.
Zurück zum Zitat Takeuchi T, Hishiya T (2008) Molecular imprinting of proteins emerging as a tool for protein recognition. Org Biomol Chem 6:2459–2467CrossRef Takeuchi T, Hishiya T (2008) Molecular imprinting of proteins emerging as a tool for protein recognition. Org Biomol Chem 6:2459–2467CrossRef
15.
Zurück zum Zitat Sibrian-Vazquez M, Spivak DA (2004) Molecular imprinting made easy. J Am Chem Soc 126:7827–7833CrossRef Sibrian-Vazquez M, Spivak DA (2004) Molecular imprinting made easy. J Am Chem Soc 126:7827–7833CrossRef
16.
Zurück zum Zitat Hishiya T, Asanuma H, Komiyama M (2002) Spectroscopic anatomy of molecular imprinting of cyclodextrin. Evidence for preferential formation of ordered cyclodextrin assemblies. J Am Chem Soc 124:570–575CrossRef Hishiya T, Asanuma H, Komiyama M (2002) Spectroscopic anatomy of molecular imprinting of cyclodextrin. Evidence for preferential formation of ordered cyclodextrin assemblies. J Am Chem Soc 124:570–575CrossRef
17.
Zurück zum Zitat Andersson HS, Ramström O (1998) Crown ethers as a tool for the preparation of molecularly imprinted polymers. J Mol Recogn 11:103–106CrossRef Andersson HS, Ramström O (1998) Crown ethers as a tool for the preparation of molecularly imprinted polymers. J Mol Recogn 11:103–106CrossRef
18.
Zurück zum Zitat Viton F, White P S, Gagné MR (2003) Crown-ether functionalized second coordination sphere palladium catalysts by molecular imprinting. Chem Commun 39:3040–3041 Viton F, White P S, Gagné MR (2003) Crown-ether functionalized second coordination sphere palladium catalysts by molecular imprinting. Chem Commun 39:3040–3041
19.
Zurück zum Zitat Tsarevsky NV, Sumerlin BS (2013) Fundamentals of controlled/living radical polymerization. RSC Publishing, CambridgeCrossRef Tsarevsky NV, Sumerlin BS (2013) Fundamentals of controlled/living radical polymerization. RSC Publishing, CambridgeCrossRef
20.
Zurück zum Zitat Wei X, Li X, Husson SM (2005) Surface molecular imprinting by atom transfer radical polymerization. Biomacromolecules 6:1113–1121CrossRef Wei X, Li X, Husson SM (2005) Surface molecular imprinting by atom transfer radical polymerization. Biomacromolecules 6:1113–1121CrossRef
21.
Zurück zum Zitat Boonpangrak S, Whitcombe MJ, Prachayasittikul V, Mosbach K, Ye L (2006) Preparation of molecularly imprinted polymers using nitroxide-mediated living radical polymerization. Biosens Bioelectron 22:349–354CrossRef Boonpangrak S, Whitcombe MJ, Prachayasittikul V, Mosbach K, Ye L (2006) Preparation of molecularly imprinted polymers using nitroxide-mediated living radical polymerization. Biosens Bioelectron 22:349–354CrossRef
22.
Zurück zum Zitat Titirici M-M, Sellergren B (2006) Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem Mater 18:1773–1779CrossRef Titirici M-M, Sellergren B (2006) Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem Mater 18:1773–1779CrossRef
23.
Zurück zum Zitat Zhang H (2014) Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 55:699–714CrossRef Zhang H (2014) Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 55:699–714CrossRef
24.
Zurück zum Zitat Zhou T, Jørgensen L, Mattebjerg MA, Chronakis IS, Ye L (2014) Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multi-functionalities. RSC Adv 4:30292–30299CrossRef Zhou T, Jørgensen L, Mattebjerg MA, Chronakis IS, Ye L (2014) Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multi-functionalities. RSC Adv 4:30292–30299CrossRef
25.
Zurück zum Zitat Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711CrossRef Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711CrossRef
26.
Zurück zum Zitat Patel A, Fouace S, Steinke J H G (2003) Enantioselective molecularly imprinted polymers via ring-opening metathesis polymerization. Chem Commun 39:88–89 Patel A, Fouace S, Steinke J H G (2003) Enantioselective molecularly imprinted polymers via ring-opening metathesis polymerization. Chem Commun 39:88–89
27.
Zurück zum Zitat Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Synthetic hosts by monomolecular imprinting inside dendrimers. Nature 418:399–403CrossRef Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Synthetic hosts by monomolecular imprinting inside dendrimers. Nature 418:399–403CrossRef
28.
Zurück zum Zitat Iacob B-C, Bodoki E, Oprean R (2014) Recent advances in capillary electrochromatography using molecularly imprinted polymers. Electrophoresis 35:2722−2732 Iacob B-C, Bodoki E, Oprean R (2014) Recent advances in capillary electrochromatography using molecularly imprinted polymers. Electrophoresis 35:2722−2732
29.
Zurück zum Zitat Schweitz L, Andersson LI, Nilsson S (1997) Capillary electrochromatography with predetermined obtained through molecular imprinting. Anal Chem 69:1179–1183CrossRef Schweitz L, Andersson LI, Nilsson S (1997) Capillary electrochromatography with predetermined obtained through molecular imprinting. Anal Chem 69:1179–1183CrossRef
30.
Zurück zum Zitat Svec F, Fréchet JMJ (1999) Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications. Ind Eng Chem Res 38:34–48CrossRef Svec F, Fréchet JMJ (1999) Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications. Ind Eng Chem Res 38:34–48CrossRef
31.
Zurück zum Zitat Yan M, Kapua A (2001) Fabrication of molecularly imprinted microstructures. Anal Chim Acta 435:163–167CrossRef Yan M, Kapua A (2001) Fabrication of molecularly imprinted microstructures. Anal Chim Acta 435:163–167CrossRef
32.
Zurück zum Zitat Lalo H, Ayela C, Dague E, Vieu C, Haupt K (2010) Nanopatterning molecularly imprinted polymers by soft lithography: a hierarchical approach. Lab Chip 10:1316–1318CrossRef Lalo H, Ayela C, Dague E, Vieu C, Haupt K (2010) Nanopatterning molecularly imprinted polymers by soft lithography: a hierarchical approach. Lab Chip 10:1316–1318CrossRef
33.
Zurück zum Zitat Shimizu KD, Stephenson C (2010) Molecularly imprinted polymer sensor arrays. Curr Opinion Chem Biol 14:743–750CrossRef Shimizu KD, Stephenson C (2010) Molecularly imprinted polymer sensor arrays. Curr Opinion Chem Biol 14:743–750CrossRef
34.
Zurück zum Zitat Forchheimer D, Luo G, Montelius L, Ye L (2010) Molecularly imprinted nanostructures by nanoimprint lithography. Analyst 135:1219–1223CrossRef Forchheimer D, Luo G, Montelius L, Ye L (2010) Molecularly imprinted nanostructures by nanoimprint lithography. Analyst 135:1219–1223CrossRef
35.
Zurück zum Zitat Minko S (2008) Grafting on solid surfaces: “grafting to and “grafting from” methods. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Heidelberg Minko S (2008) Grafting on solid surfaces: “grafting to and “grafting from” methods. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Heidelberg
36.
Zurück zum Zitat Sellergren B, Bückert B, Hall AJ (2002) Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports. Adv Mater 14:1204–1208CrossRef Sellergren B, Bückert B, Hall AJ (2002) Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports. Adv Mater 14:1204–1208CrossRef
37.
Zurück zum Zitat Pérez-Moral N, Mayes AG (2007) Molecularly imprinted multi-layer core-shell nanoparticles—a surface grafting approach. Macromol Rapid Commun 28:2170–2175CrossRef Pérez-Moral N, Mayes AG (2007) Molecularly imprinted multi-layer core-shell nanoparticles—a surface grafting approach. Macromol Rapid Commun 28:2170–2175CrossRef
38.
Zurück zum Zitat Gonzato C, Courty M, Pasetto P, Haupt K (2011) Magnetic molecularly imprinted polymer nanocomposites via surface-initiated RAFT polymerization. Adv Funct Mater 21:3947–3953CrossRef Gonzato C, Courty M, Pasetto P, Haupt K (2011) Magnetic molecularly imprinted polymer nanocomposites via surface-initiated RAFT polymerization. Adv Funct Mater 21:3947–3953CrossRef
39.
Zurück zum Zitat Qu P, Lei J, Ouyang R, Ju H (2009) Enantioseparation and amperometric detection of chiral compounds by in situ molecular imprinting on the microchannel wall. Anal Chem 81:9651–9656CrossRef Qu P, Lei J, Ouyang R, Ju H (2009) Enantioseparation and amperometric detection of chiral compounds by in situ molecular imprinting on the microchannel wall. Anal Chem 81:9651–9656CrossRef
40.
Zurück zum Zitat Wang H-J, Zhou W-H, Yin X-F, Zhuang Z-X, Yang H-H, Wang X-R (2006) Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J Am Chem Soc 128:15954–15955CrossRef Wang H-J, Zhou W-H, Yin X-F, Zhuang Z-X, Yang H-H, Wang X-R (2006) Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J Am Chem Soc 128:15954–15955CrossRef
41.
Zurück zum Zitat Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev 43:911–933CrossRef Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev 43:911–933CrossRef
42.
Zurück zum Zitat Ye L, Yilmaz E (2005) Molecularly imprinted polymer beads. In: Yan M, Ramström O (eds) Molecularly imprinted materials. Science and Technology, Marcel Dekker Inc., New York Ye L, Yilmaz E (2005) Molecularly imprinted polymer beads. In: Yan M, Ramström O (eds) Molecularly imprinted materials. Science and Technology, Marcel Dekker Inc., New York
43.
Zurück zum Zitat Awino JK, Zhao Y (2013) Protein-mimetic, molecularly imprinted nanoparticles for selective binding of bile salt derivatives in water. J Am Chem Soc 135:12552–12555CrossRef Awino JK, Zhao Y (2013) Protein-mimetic, molecularly imprinted nanoparticles for selective binding of bile salt derivatives in water. J Am Chem Soc 135:12552–12555CrossRef
44.
Zurück zum Zitat Zeng Z, Hoshino Y, Rodriguez A, Yoo H, Shea KJ (2010) Synthetic polymer nanoparticles with antibody-like affinity for a hydrophilic peptide. ACS Nano 4:199–204CrossRef Zeng Z, Hoshino Y, Rodriguez A, Yoo H, Shea KJ (2010) Synthetic polymer nanoparticles with antibody-like affinity for a hydrophilic peptide. ACS Nano 4:199–204CrossRef
45.
Zurück zum Zitat Gruber-Traub C, Weber A, Dettling M, Herz M, Herold M, Brunner H, Tovar GEM (2006) NANOCYTES—inverse miniemulsion polymerization technology for specific protein recognition. Polym Preprints 47:901–902 Gruber-Traub C, Weber A, Dettling M, Herz M, Herold M, Brunner H, Tovar GEM (2006) NANOCYTES—inverse miniemulsion polymerization technology for specific protein recognition. Polym Preprints 47:901–902
46.
Zurück zum Zitat Downey JS, Mclsaac G, Frank RS, Stöver HDH (2001) Poly(divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization. Macromolecules 34:4534–4541CrossRef Downey JS, Mclsaac G, Frank RS, Stöver HDH (2001) Poly(divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization. Macromolecules 34:4534–4541CrossRef
47.
Zurück zum Zitat Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584:112–121CrossRef Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584:112–121CrossRef
48.
Zurück zum Zitat Long Y, Philip JYN, Schillén K, Liu F, Ye L (2011) Insight into molecular imprinting in precipitation polymerization systems using solution NMR and dynamic light scattering. J Mol Recogn 24:619–630CrossRef Long Y, Philip JYN, Schillén K, Liu F, Ye L (2011) Insight into molecular imprinting in precipitation polymerization systems using solution NMR and dynamic light scattering. J Mol Recogn 24:619–630CrossRef
49.
Zurück zum Zitat Yang K, Berg MM, Zhao C, Ye L (2009) One-pot synthesis of hydrophilic molecularly imprinted nanoparticles. Macromolecules 42:8739–8746CrossRef Yang K, Berg MM, Zhao C, Ye L (2009) One-pot synthesis of hydrophilic molecularly imprinted nanoparticles. Macromolecules 42:8739–8746CrossRef
50.
Zurück zum Zitat Lai J-P, Lu X-Y, Lu C-Y, Ju H-F, He X-W (2001) Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase. Anal Chim Acta 442:105–111CrossRef Lai J-P, Lu X-Y, Lu C-Y, Ju H-F, He X-W (2001) Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase. Anal Chim Acta 442:105–111CrossRef
51.
Zurück zum Zitat Zourob M, Mohr S, Mayes AG, Macaskill A, Pérez-Moral N, Fielden PR, Goddard NJ (2006) A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab Chip 6:296–301CrossRef Zourob M, Mohr S, Mayes AG, Macaskill A, Pérez-Moral N, Fielden PR, Goddard NJ (2006) A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab Chip 6:296–301CrossRef
52.
Zurück zum Zitat Haginaka J, Takehira H, Hosoya K, Tanaka N (1999) Unifor-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer. J Chromatogr A 849:331–339CrossRef Haginaka J, Takehira H, Hosoya K, Tanaka N (1999) Unifor-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer. J Chromatogr A 849:331–339CrossRef
53.
Zurück zum Zitat Mayes A, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68:3769–3774CrossRef Mayes A, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68:3769–3774CrossRef
54.
Zurück zum Zitat Pérez-Moral N, Mayes AG (2006) Direct rapid synthesis of MIP beads in SPE cartridges. Biosens Bioelectron 21:1798–1803CrossRef Pérez-Moral N, Mayes AG (2006) Direct rapid synthesis of MIP beads in SPE cartridges. Biosens Bioelectron 21:1798–1803CrossRef
55.
Zurück zum Zitat Shen X, Ye L (2011) Molecular imprinting in Pickering emulsions: new insight into molecular recognition in water. Chem Commun 47:10359–10361CrossRef Shen X, Ye L (2011) Molecular imprinting in Pickering emulsions: new insight into molecular recognition in water. Chem Commun 47:10359–10361CrossRef
56.
Zurück zum Zitat Shen X, Zhou T, Ye L (2012) Molecular imprinting of protein in Pickering emulsion. Chem Commun 48:8198–8200CrossRef Shen X, Zhou T, Ye L (2012) Molecular imprinting of protein in Pickering emulsion. Chem Commun 48:8198–8200CrossRef
57.
Zurück zum Zitat Zhou T, Shen X, Chaudhary S, Ye L (2014) Molecularly imprinted polymer beads prepared by Pickering emulsion polymerization for steroid recognition. J Appl Polym Sci 131:39606 Zhou T, Shen X, Chaudhary S, Ye L (2014) Molecularly imprinted polymer beads prepared by Pickering emulsion polymerization for steroid recognition. J Appl Polym Sci 131:39606
58.
Zurück zum Zitat Shen X, Ye L (2011) Interfacial molecular imprinting in nanoparticle-stabilized emulsions. Macromolecules 44:5631–5637CrossRef Shen X, Ye L (2011) Interfacial molecular imprinting in nanoparticle-stabilized emulsions. Macromolecules 44:5631–5637CrossRef
59.
Zurück zum Zitat Shen X, Bonde JS, Bülow L, Leo JC, Linke D, Ye L (2014) Bacterial imprinting at Pickering emulsion interfaces. Angew Chem Int Ed 53:10687−10690 Shen X, Bonde JS, Bülow L, Leo JC, Linke D, Ye L (2014) Bacterial imprinting at Pickering emulsion interfaces. Angew Chem Int Ed 53:10687−10690
60.
Zurück zum Zitat Bompart M, De Wilde Y, Haupt K (2010) Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv Mater 22:2343–2348CrossRef Bompart M, De Wilde Y, Haupt K (2010) Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv Mater 22:2343–2348CrossRef
61.
Zurück zum Zitat Zhao M, Zhang C, Zhang Y, Guo X, Yan H, Zhang H (2014) Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample. Chem Commun 50:2208–2210CrossRef Zhao M, Zhang C, Zhang Y, Guo X, Yan H, Zhang H (2014) Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample. Chem Commun 50:2208–2210CrossRef
62.
Zurück zum Zitat Ma Y, Li H, He S, Zhang H, Zhang H (2014) Efficient one-pot synthesis of water-compatible and photoresponsive molecularly imprinted polymer nanoparticles by facile RAFT precipitation polymerization. J Polym Sci A Polym Chem 52:1941–1952CrossRef Ma Y, Li H, He S, Zhang H, Zhang H (2014) Efficient one-pot synthesis of water-compatible and photoresponsive molecularly imprinted polymer nanoparticles by facile RAFT precipitation polymerization. J Polym Sci A Polym Chem 52:1941–1952CrossRef
63.
Zurück zum Zitat Piacham T, Josell Å, Arwin H, Prachayasittikul V, Ye L (2005) Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal Chim Acta 536:191–196CrossRef Piacham T, Josell Å, Arwin H, Prachayasittikul V, Ye L (2005) Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal Chim Acta 536:191–196CrossRef
64.
Zurück zum Zitat Poma A, Guerreiro A, Caygill S, Moczko E, Piletsky S (2014) Automatic reactor for solid-phase synthesis of molecularly imprinted nanoparticles (MIP NPs) in water. RSC Advances 4:4203–4206CrossRef Poma A, Guerreiro A, Caygill S, Moczko E, Piletsky S (2014) Automatic reactor for solid-phase synthesis of molecularly imprinted nanoparticles (MIP NPs) in water. RSC Advances 4:4203–4206CrossRef
65.
Zurück zum Zitat Chronakis IS, Jakob A, Hagström B, Ye L (2006) Encapsulation and selective recognition of molecularly imprinted theophylline and 17β-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 22:8960–8965CrossRef Chronakis IS, Jakob A, Hagström B, Ye L (2006) Encapsulation and selective recognition of molecularly imprinted theophylline and 17β-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 22:8960–8965CrossRef
66.
Zurück zum Zitat Yoshimatsu K, Ye L, Linberg J, Chronakis IS (2008) Selective molecular adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron 23:1208–1215CrossRef Yoshimatsu K, Ye L, Linberg J, Chronakis IS (2008) Selective molecular adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron 23:1208–1215CrossRef
67.
Zurück zum Zitat Yoshimatsu K, Ye L, Stenlund P, Chronakis IS (2008) A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability. Chem Commun 44:2022−2024 Yoshimatsu K, Ye L, Stenlund P, Chronakis IS (2008) A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability. Chem Commun 44:2022−2024
68.
Zurück zum Zitat Reimhult K, Yoshimatsu K, Risveden K, Chen S, Ye L, Krozer A (2008) Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosens Bioelectron 23:1908–1914CrossRef Reimhult K, Yoshimatsu K, Risveden K, Chen S, Ye L, Krozer A (2008) Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosens Bioelectron 23:1908–1914CrossRef
69.
Zurück zum Zitat Hajizadeh S, Xu C, Kirsebom H, Ye L, Mattiasson B (2013) Cryogelation of molecularly imprinted nanoparticles: a macroporous structure as affinity chromatography column for removal of β–blockers from complex samples. J Chromatogr A 1274:6–12CrossRef Hajizadeh S, Xu C, Kirsebom H, Ye L, Mattiasson B (2013) Cryogelation of molecularly imprinted nanoparticles: a macroporous structure as affinity chromatography column for removal of β–blockers from complex samples. J Chromatogr A 1274:6–12CrossRef
70.
Zurück zum Zitat Xu C, Ye L (2011) Clickable molecularly imprinted nanoparticles. Chem Commun 47:6096–6098CrossRef Xu C, Ye L (2011) Clickable molecularly imprinted nanoparticles. Chem Commun 47:6096–6098CrossRef
71.
Zurück zum Zitat Xu C, Shen X, Ye L (2012) Molecularly imprinted magnetic materials prepared from modular and clickable nanoparticles. J Mater Chem 22:7427–7433CrossRef Xu C, Shen X, Ye L (2012) Molecularly imprinted magnetic materials prepared from modular and clickable nanoparticles. J Mater Chem 22:7427–7433CrossRef
72.
Zurück zum Zitat Shen X, Xu C, Uddin KMA, Larsson P-O, Ye L (2013) Molecular recognition with colloidosomes enabled by imprinted polymer nanoparticles and fluorogenic boronic acid. J Mater Chem B 1:4612–4618CrossRef Shen X, Xu C, Uddin KMA, Larsson P-O, Ye L (2013) Molecular recognition with colloidosomes enabled by imprinted polymer nanoparticles and fluorogenic boronic acid. J Mater Chem B 1:4612–4618CrossRef
73.
Zurück zum Zitat Chaudhary S, Kamra T, Uddin KMA, Snezhkova O, Jayawardena HSN, Yan M, Montelius L, Schnadt J, Ye L (2014) Controlled short-linkage assembly of functional nano-objects. Appl Sur Sci 300:22–28CrossRef Chaudhary S, Kamra T, Uddin KMA, Snezhkova O, Jayawardena HSN, Yan M, Montelius L, Schnadt J, Ye L (2014) Controlled short-linkage assembly of functional nano-objects. Appl Sur Sci 300:22–28CrossRef
74.
Zurück zum Zitat Liu L-H, Yan M (2010) Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc Chem Res 43:1434–1443CrossRef Liu L-H, Yan M (2010) Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc Chem Res 43:1434–1443CrossRef
75.
Zurück zum Zitat Xu C, Uddin KMA, Shen X, Jayawardena HSN, Yan M, Ye L (2013) Photoconjugation of molecularly imprinted polymer with magnetic nanoparticles. ACS Appl Mater Interfaces 5:5208–5213CrossRef Xu C, Uddin KMA, Shen X, Jayawardena HSN, Yan M, Ye L (2013) Photoconjugation of molecularly imprinted polymer with magnetic nanoparticles. ACS Appl Mater Interfaces 5:5208–5213CrossRef
Metadaten
Titel
Synthetic Strategies in Molecular Imprinting
verfasst von
Lei Ye
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/10_2015_313

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.