Skip to main content

2015 | OriginalPaper | Buchkapitel

12. System Modelling for Hybrid Solar Hydrogen Generation and Solar Heating Configurations for Domestic Application

verfasst von : Krisztian Ronaszegi, Dan J L Brett, Eric S Fraga

Erschienen in: Renewable Energy in the Service of Mankind Vol I

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen generation has the potential to deliver an environmentally friendly, low-cost, and renewable energy source. One promising generation method is solar water splitting via a photoelectrochemical (PEC) reaction as an alternative to a combined photovoltaic-electrolyser system. Although PEC technology shows potential, the efficiency of this technology is currently limited by thermodynamics and technical issues in implementation. The development of novel materials is one route for improvements in PEC system efficiencies. In particular, with multiple band-gap electrodes, the thermodynamic efficiency, and so the overall generated hydrogen quantity, can be increased.
In the case of applications where there are heating requirements beyond the need to generate hydrogen, there are further options for extracting energy from the solar resource. Longer wavelength radiation not used by the PEC system may be available for use. Just as it is possible to have a photovoltaic–thermal (PV/T) hybrid system which generates both electricity and heat, a PEC unit may also be combined with a solar thermal unit as a hybrid PEC/T system. This combined heat and power (CHP) system will deliver heat directly and also both heat and power through the use of the hydrogen as a fuel in, for instance, a fuel cell.
Despite the promise of PEC technology, there is little research in modelling and system simulation and especially for hybrid systems. Systems’ modelling is a prerequisite for optimal design, especially for the design and exploration of novel configurations. A system model of a dwelling, with varying heat and power demands, together with a hybrid PEC/T system for meeting these demands, has been developed and implemented in Matrix Laboratory (MATLAB). The full system integrates a PEC unit for hydrogen generation, a solar thermal unit, a proton exchange membrane (PEM) fuel cell, a hydrogen storage tank, and a buffer tank for heat storage. The model has been evaluated through a case study consisting of a typical three-person household in the UK. The aim of the case study is to investigate present and near-future capabilities of renewable energy supply and CO2 emission reduction subject to the UK building energy regulations. Results show that single band-gap photo-electrode materials are not able to meet the energy demands of the household adequately if the demand includes power and both space and hot water heating. However, with novel multiple band-gap electrodes, in a hybrid CHP system, the system efficiency can be significantly increased, and we demonstrate the potential to help meet the comprehensive demands of a typical household through the development of novel materials for PEC reactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dubey S, Sandhu GS, Tiwari GN (2009) Analytical expression for electrical efficiency of PV/T hybrid air collector. Appl Energy 86:697–705CrossRef Dubey S, Sandhu GS, Tiwari GN (2009) Analytical expression for electrical efficiency of PV/T hybrid air collector. Appl Energy 86:697–705CrossRef
2.
Zurück zum Zitat Joshi AS, Dincer I, Reddy BV (2009) Performance analysis of photovoltaic systems: a review. Renew Sustain Energy Rev 13:1884–1897CrossRef Joshi AS, Dincer I, Reddy BV (2009) Performance analysis of photovoltaic systems: a review. Renew Sustain Energy Rev 13:1884–1897CrossRef
3.
Zurück zum Zitat da Silva RM, Fernandes JLM (2010) Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab. Sol Energy 84:1985–1996CrossRef da Silva RM, Fernandes JLM (2010) Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab. Sol Energy 84:1985–1996CrossRef
4.
Zurück zum Zitat Kumar R, Rosen MA (2011) A critical review of photovoltaic-thermal solar collectors for air heating. Appl Energy 88:3603–3614CrossRef Kumar R, Rosen MA (2011) A critical review of photovoltaic-thermal solar collectors for air heating. Appl Energy 88:3603–3614CrossRef
5.
Zurück zum Zitat DECC (2011) 2050 Pathways analysis. Part 1, 2 DECC (2011) 2050 Pathways analysis. Part 1, 2
6.
Zurück zum Zitat Conibeer GJ, Richards BS (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. Int J Hydrogen Energy 32:2703–2711CrossRef Conibeer GJ, Richards BS (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. Int J Hydrogen Energy 32:2703–2711CrossRef
7.
Zurück zum Zitat Wingens J, Krost G, Ostermann D, Damm U, Hess J (2008) Application of photo-electrochemical hydrogen production for autonomous solar based electricity supply. Third international conference on electric utility deregulation and restructuring and power technologies, 2008 DRPT. pp. 2470–2475 Wingens J, Krost G, Ostermann D, Damm U, Hess J (2008) Application of photo-electrochemical hydrogen production for autonomous solar based electricity supply. Third international conference on electric utility deregulation and restructuring and power technologies, 2008 DRPT. pp. 2470–2475
8.
Zurück zum Zitat James BD, Baum GN, Perez J, Baum KN, Square OV (2009). Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production. DOE report James BD, Baum GN, Perez J, Baum KN, Square OV (2009). Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production. DOE report
9.
Zurück zum Zitat Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002CrossRef Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002CrossRef
10.
Zurück zum Zitat Ross RT, Hsiao T-L (1977) Limits on the yield of photochemical solar energy conversion. J Appl Phys 48:4783–4785CrossRef Ross RT, Hsiao T-L (1977) Limits on the yield of photochemical solar energy conversion. J Appl Phys 48:4783–4785CrossRef
12.
Zurück zum Zitat Buzás J, Farkas I, Biró A, Németh R (1998) Modelling and simulation aspects of a solar hot water system. Math Comput Simul 48:33–46CrossRef Buzás J, Farkas I, Biró A, Németh R (1998) Modelling and simulation aspects of a solar hot water system. Math Comput Simul 48:33–46CrossRef
13.
Zurück zum Zitat Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295CrossRef Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295CrossRef
14.
Zurück zum Zitat International A (2003) ASTM Standard C33, 2003—specification for concrete aggregates. West Conshohocken, PA International A (2003) ASTM Standard C33, 2003—specification for concrete aggregates. West Conshohocken, PA
15.
Zurück zum Zitat Gueymard CA (2001) Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol Energy 71:325–346CrossRef Gueymard CA (2001) Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol Energy 71:325–346CrossRef
Metadaten
Titel
System Modelling for Hybrid Solar Hydrogen Generation and Solar Heating Configurations for Domestic Application
verfasst von
Krisztian Ronaszegi
Dan J L Brett
Eric S Fraga
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17777-9_12