Skip to main content

2019 | OriginalPaper | Buchkapitel

12. Tackling Climate Change: A Breeder’s Perspective

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The threat of climate change is well evident by the fact of increasing temperature and more frequent severe drought and floods in recent times, and higher incidence of insects-pest and diseases impacting agriculture and food production. This situation has aggravated the scarcity of food and hunger around the world. To mitigate the ill effects of climate change, developing climate resilient varieties for heat, cold, drought and flood stresses is one of the options, where breeders can play major role. Several Institutions in the world are engaged in developing viable strategies. This will require a much better understanding of our genetic resources, the underlying mechanism of gene interactions and pyramiding multi-stress related genes for developing new variety or improving the already cultivated variety. The most suited approaches should involve conventional breeding as well as new emerging technologies like doubled haploidy, marker-assisted selection, high throughput phenotyping and bioinformatics to hasten the crop improvement. For breeders, ample opportunity lies in developing climate resilient high-yielding varieties, resistant/tolerant to biotic and abiotic stresses that help increasing food production and productivity, thus ease the cultivation under climate change regime. In this direction, several international institutes have initiated work on developing climate resilient crops, for example, the International Rice Research Institute (IRRI) has released 44 varieties of rice that are resilient to the effects of climate change and work is underway on a tripartite rice variation to cope with stresses like droughts, floods and saltiness. Even, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) identified 40 germplasm lines of chickpea with resistance to extreme weather conditions such as drought, high temperature and salinity. In India, various ICAR institutes and state agricultural universities, under National Innovations on Climate Resilient Agriculture (NICRA) programme, made the concerted efforts to develop different high yielding cultivars with enhanced tolerance to heat, drought, flooding, chilling and salinity stresses for different agro-climatic zones. Thus, effect of climate change can be withstand to a greater extent with a suitable genetic blue print in our cultivars and that need more focussed research and development from breeder’s side.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed, M., Asif, M., Sajad, M., Khattak, J. Z. K., Ijaz, W., Fayyaz-ul-Hassan, W.,. A., & Chun, J. A. (2013). Could agricultural system be adapted to climate change? Review. Australian Journal of Crop Sciences., 7(11), 1642–1653. Ahmed, M., Asif, M., Sajad, M., Khattak, J. Z. K., Ijaz, W., Fayyaz-ul-Hassan, W.,. A., & Chun, J. A. (2013). Could agricultural system be adapted to climate change? Review. Australian Journal of Crop Sciences., 7(11), 1642–1653.
Zurück zum Zitat Bradbury, L. M. T., Fitzgerald, T. L., Henry, R. J., Jin, Q. S., & Waters, D. L. E. (2005). The gene for fragrance in rice. Plant Biotechnology, 3(3), 363–370. Bradbury, L. M. T., Fitzgerald, T. L., Henry, R. J., Jin, Q. S., & Waters, D. L. E. (2005). The gene for fragrance in rice. Plant Biotechnology, 3(3), 363–370.
Zurück zum Zitat Ceccarelli, S., Valkoun, J., Erskine, W., Weigand, S., Miller, R., & Van Leur, J. A. G. (1991). Plant genetic resources and plant improvement as tools to develop sustainable agriculture. Experimental Agriculture, 28, 89–98.CrossRef Ceccarelli, S., Valkoun, J., Erskine, W., Weigand, S., Miller, R., & Van Leur, J. A. G. (1991). Plant genetic resources and plant improvement as tools to develop sustainable agriculture. Experimental Agriculture, 28, 89–98.CrossRef
Zurück zum Zitat Chakraborty, S. (2005). Potential impact of climate change on plant-pathogen interactions. Australasian Plant Pathology, 34, 443–448.CrossRef Chakraborty, S. (2005). Potential impact of climate change on plant-pathogen interactions. Australasian Plant Pathology, 34, 443–448.CrossRef
Zurück zum Zitat Coakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426.CrossRef Coakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426.CrossRef
Zurück zum Zitat Dagar, J. C. (2005). Salinity Research in India: An Overview [In: Gupta et al. (Editors), Ecology and Environmental Management: Issues and Research Needs] Bulletin of the National Institute of Ecology 15: 69–80. Dagar, J. C. (2005). Salinity Research in India: An Overview [In: Gupta et al. (Editors), Ecology and Environmental Management: Issues and Research Needs] Bulletin of the National Institute of Ecology 15: 69–80.
Zurück zum Zitat Devreux, M., & Scarascia Mugnozza, G. T. (1964). Effects of gamma radiation of the gametes, zygote and proembryo in Nicotiana tabacum L. Radition Botany, 4, 373–386.CrossRef Devreux, M., & Scarascia Mugnozza, G. T. (1964). Effects of gamma radiation of the gametes, zygote and proembryo in Nicotiana tabacum L. Radition Botany, 4, 373–386.CrossRef
Zurück zum Zitat FAO. (2005). Impact of climate change, pests and diseases on food security and poverty reduction. Special event background document for the 31st Session of the Committee on World Food Security. Rome. May 2005 p. 23–26 FAO. (2005). Impact of climate change, pests and diseases on food security and poverty reduction. Special event background document for the 31st Session of the Committee on World Food Security. Rome. May 2005 p. 23–26
Zurück zum Zitat Gilligan, D. M., Briscoe, D. A., & Frankham, R. (2005). Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila. Genetical Research, 85, 47–55.CrossRef Gilligan, D. M., Briscoe, D. A., & Frankham, R. (2005). Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila. Genetical Research, 85, 47–55.CrossRef
Zurück zum Zitat Grando, S., Von Bothmer, R., & Ceccarelli, S. (2001). Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. In H. D. Cooper, C. Spillane, & T. Hodgink (Eds.), Broadening the Genetic Base of Crop Production (pp. 351–372).CrossRef Grando, S., Von Bothmer, R., & Ceccarelli, S. (2001). Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. In H. D. Cooper, C. Spillane, & T. Hodgink (Eds.), Broadening the Genetic Base of Crop Production (pp. 351–372).CrossRef
Zurück zum Zitat Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.CrossRef Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.CrossRef
Zurück zum Zitat Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1–13.CrossRef Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1–13.CrossRef
Zurück zum Zitat Honnay, O., Jacquemyn, H., & Aerts, R. (2012). Crop wild relatives: more common ground for breeders and ecologists. Frontiers in Ecology and the Environment, 10, 121–121.CrossRef Honnay, O., Jacquemyn, H., & Aerts, R. (2012). Crop wild relatives: more common ground for breeders and ecologists. Frontiers in Ecology and the Environment, 10, 121–121.CrossRef
Zurück zum Zitat IAB. (2000). Indian Agriculture in Brief (27th ed.). New Delhi: Agriculture Statistics Division, Ministry of Agriculture, Govt. of India. IAB. (2000). Indian Agriculture in Brief (27th ed.). New Delhi: Agriculture Statistics Division, Ministry of Agriculture, Govt. of India.
Zurück zum Zitat Ismail, A. M., Heuer, S., Thomson, M. J., & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 65, 547–570.CrossRef Ismail, A. M., Heuer, S., Thomson, M. J., & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 65, 547–570.CrossRef
Zurück zum Zitat Janiesch, P. (1991). Eco-physiological adaptation of higher plants in natural communities to water logging. In J. Rozema & J. A. C. Verkleij (Eds.), Ecological Responses to Environmental Stresses (pp. 50–60). The Netherlands: Kluwer Academic Publishers.CrossRef Janiesch, P. (1991). Eco-physiological adaptation of higher plants in natural communities to water logging. In J. Rozema & J. A. C. Verkleij (Eds.), Ecological Responses to Environmental Stresses (pp. 50–60). The Netherlands: Kluwer Academic Publishers.CrossRef
Zurück zum Zitat Kozlowski, T. T. (1984). Plant responses to flooding of soil. Bioscience, 34, 162–167.CrossRef Kozlowski, T. T. (1984). Plant responses to flooding of soil. Bioscience, 34, 162–167.CrossRef
Zurück zum Zitat Kulwal, P. L., Thudi, M., & Varshney, R. K. (2011). Genomics interventions in crop breeding for sustainable agriculture. In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology (pp. 2527–2540). NewYork: Springer. Kulwal, P. L., Thudi, M., & Varshney, R. K. (2011). Genomics interventions in crop breeding for sustainable agriculture. In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology (pp. 2527–2540). NewYork: Springer.
Zurück zum Zitat Muthamilarasan, M., Venkata Suresh, B., Pandey, G., Kumari, K., Parida, S. K., & Prasad, M. (2014). Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Research, 21, 41–52. Muthamilarasan, M., Venkata Suresh, B., Pandey, G., Kumari, K., Parida, S. K., & Prasad, M. (2014). Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Research, 21, 41–52.
Zurück zum Zitat Salvi, S., & Tuberosa, R. (2005). To clone or not to clone plant QTLs: present and future challenges. TRENDS in Plant Science, 10(6), 297–304. Salvi, S., & Tuberosa, R. (2005). To clone or not to clone plant QTLs: present and future challenges. TRENDS in Plant Science, 10(6), 297–304.
Zurück zum Zitat Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal, 31, 279–292.CrossRef Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal, 31, 279–292.CrossRef
Zurück zum Zitat Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of National Academy of Sciences USA, 99, 9043–9048. Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of National Academy of Sciences USA, 99, 9043–9048.
Zurück zum Zitat Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10, 621–630.CrossRef Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10, 621–630.CrossRef
Zurück zum Zitat Wassmann, R., & Jagadish, S. (2009). Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advances in Agronomy, 102, 91–133.CrossRef Wassmann, R., & Jagadish, S. (2009). Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advances in Agronomy, 102, 91–133.CrossRef
Zurück zum Zitat World Resources Institute (WRI) in collaboration with United Nations Development Programme, United Nations Environment Programme, and World Bank, (2005): World Resources 2005: The Wealth of the Poor—Managing Ecosystems to Fight Poverty. Washington, DC World Resources Institute (WRI) in collaboration with United Nations Development Programme, United Nations Environment Programme, and World Bank, (2005): World Resources 2005: The Wealth of the Poor—Managing Ecosystems to Fight Poverty. Washington, DC
Zurück zum Zitat Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., et al. (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 172, 1213–1228.CrossRef Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., et al. (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 172, 1213–1228.CrossRef
Metadaten
Titel
Tackling Climate Change: A Breeder’s Perspective
verfasst von
P. K. Singh
R. S. Singh
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-90086-5_12