Skip to main content

2019 | OriginalPaper | Buchkapitel

10. Techniques Concerning Computation Accuracy

verfasst von : Shin’chi Oishi, Yusuke Morikura, Kouta Sekine, Hisayasu Kuroda, Maho Nakata

Erschienen in: The Art of High Performance Computing for Computational Science, Vol. 1

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with fundamental theories on the accuracy of numerical calculation and some cases that seems to be important, somewhat different from previous chapters. We must remember that numerical errors are included in the output data of the computer. In particular, do not overlook the important points you need to know when parallelizing codes. Pursuit of calculation speed is, of course, the central theme of this book, however, it is premised that it produces correct results. This chapter introduces a numerical computation method with guaranteed accuracy in large-scale numerical computations, convergence accuracy problems in parallel computing, and high-precision calculation in HPC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For details on specifications in which there are two closest floating-point numbers or an arithmetic is approaching overflow, please consult the standard [1].
 
2
In Fortran language, when in conformity with the Fortran2003 standard, modules IEEE_ARITHMETIC or IEEE_FEATURES make it possible to change the rounding mode. For instance, by inputting the text CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST), round-to-nearest will be the selected mode. The mode will be changed to rounding up if IEEE_NEAREST is replaced with IEEE_UP, and changed to rounding down if replaced with IEEE_DOWN.
 
3
If the computation order is changed owing to compiler optimization, an operation not conforming to the IEEE 754 Standard may be performed, unintentionally resulting in an operation that does not constitute a numerical computation with guaranteed accuracy. Therefore, in order to inhibit optimization, it is necessary to add a volatile attribute stipulated in C language and Fortran2003 standards as a variable, or to set up arithmetic so that they more strictly conform if optimization options (-fp-model etc.) for floating-point numbers are included as compiler options.
 
4
When __float128 is defined in the standard C/C++, it is only necessary to switch __float128 with typedef. C/C++ are problematic in the size or interpretation of numbers; they may be different in different implementations or architectures, e.g., the “long double” can be either 80 bit (extended precision), IEEE 754 binary64 (double-precision), or IEEE 754 binary128 (quadruple precision). Moreover, “long double” means double-double by compilers on IBM Power processors. Even with the same 64-bit architecture, the data models such as LLP 64, LP 64, and ILP 64 are different; if two different binaries with the same program on the same machine and the same OS is compiled by two different compilers using different data models, they may give different results (segmentation fault usually occurs for unintended data model).
 
5
FMA performs \(a\times b+c\) in one clock, and it performs \(a\times b + c\) exactly and rounds the result to double-precision. It is often used for inner product calculations and matrix–matrix multiplications. Why such hardware is implemented in recent CPUs is that since every instruction must be processed in one clock, both an adder and multiplier must exist in its arithmetic unit. The processor would stall if this were not the case. Implementing FMA on a CPU is a good way to these utilizing these two operators maximally, as it fills up the adder and multiplier in the arithmetic unit.
 
6
SSE4 and AVX4 stand for Streaming SIMD Extensions and Intel Advanced Vector Extensions, and they can perform operations such as double-precision numbers collectively with one instruction.
 
Literatur
1.
Zurück zum Zitat IEEE Standard for Floating-Point Arithmetic, Std 754–2008 (2008) IEEE Standard for Floating-Point Arithmetic, Std 754–2008 (2008)
2.
Zurück zum Zitat S. Oishi, Numerical Methods with Guaranteed Accuracy (Corona-sya, 2000, Japanese) S. Oishi, Numerical Methods with Guaranteed Accuracy (Corona-sya, 2000, Japanese)
3.
Zurück zum Zitat E. Ramon, R. Moore, B. Kearfott, J. Michael, Introduction to Interval Analysis (Society for Industrial and Applied Mathematics, Cloud, 2009) E. Ramon, R. Moore, B. Kearfott, J. Michael, Introduction to Interval Analysis (Society for Industrial and Applied Mathematics, Cloud, 2009)
4.
Zurück zum Zitat S. Oishi, S.M. Rump, Fast verification of solutions of matrix equations. Numer. Math. 90(4), 755–773 (2002)MathSciNetCrossRef S. Oishi, S.M. Rump, Fast verification of solutions of matrix equations. Numer. Math. 90(4), 755–773 (2002)MathSciNetCrossRef
5.
Zurück zum Zitat T. Ogita, S.M. Rump, S. Oishi, Verified solution of linear systems without directed rounding, Technical Report 2005–04 (Waseda University, Tokyo, Japan, Advanced Research Institute for Science and Engineering, 2005) T. Ogita, S.M. Rump, S. Oishi, Verified solution of linear systems without directed rounding, Technical Report 2005–04 (Waseda University, Tokyo, Japan, Advanced Research Institute for Science and Engineering, 2005)
6.
Zurück zum Zitat N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM Publications, Philadelphia, 2002)CrossRef N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM Publications, Philadelphia, 2002)CrossRef
7.
Zurück zum Zitat T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product. SIAM J. Sci. Comput. (SISC) 26(6), 1955–1988 (2005)MathSciNetCrossRef T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product. SIAM J. Sci. Comput. (SISC) 26(6), 1955–1988 (2005)MathSciNetCrossRef
8.
Zurück zum Zitat S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci. Eng. 123, 421–434 (1996)CrossRef S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci. Eng. 123, 421–434 (1996)CrossRef
9.
Zurück zum Zitat H. Togawa, Conjugate Gradient Method (Kyoiku Shuppan, 1977, in Japanese) H. Togawa, Conjugate Gradient Method (Kyoiku Shuppan, 1977, in Japanese)
10.
Zurück zum Zitat IEEE, IEEE standard for floating-point arithmetic, IEEE Std 754-2008, pp. 1–70 (2008) IEEE, IEEE standard for floating-point arithmetic, IEEE Std 754-2008, pp. 1–70 (2008)
11.
Zurück zum Zitat D.H. Bailey, R. Barrio, J.M. Borwein, High precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218, 10106–10121 (2012)MathSciNetCrossRef D.H. Bailey, R. Barrio, J.M. Borwein, High precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218, 10106–10121 (2012)MathSciNetCrossRef
12.
Zurück zum Zitat D.H. Bailey, J.M. Borwein, High-precision arithmetic in mathematical physics. Mathematics 3, 337–367 (2015)CrossRef D.H. Bailey, J.M. Borwein, High-precision arithmetic in mathematical physics. Mathematics 3, 337–367 (2015)CrossRef
13.
Zurück zum Zitat G. Beliakov, Y. Matiyasevich, A parallel algorithm for calculation of large determinants with high accuracy for GPUs and MPI clusters. arXiv:1308.1536v2 G. Beliakov, Y. Matiyasevich, A parallel algorithm for calculation of large determinants with high accuracy for GPUs and MPI clusters. arXiv:​1308.​1536v2
14.
Zurück zum Zitat N.J. Higham, SIAM: Society for Industrial and Applied Mathematics, 2nd edn. (2002) N.J. Higham, SIAM: Society for Industrial and Applied Mathematics, 2nd edn. (2002)
15.
Zurück zum Zitat H. Hasegawa, Utilizing the quadruple-precision floating-point arithmetic operation for the krylov subspace methods, in Proceedings of the 8th SIAM Conference on Applied Linear Algebra, vol. 25 (2012) H. Hasegawa, Utilizing the quadruple-precision floating-point arithmetic operation for the krylov subspace methods, in Proceedings of the 8th SIAM Conference on Applied Linear Algebra, vol. 25 (2012)
16.
Zurück zum Zitat M. Nakata, B.J. Braams, K. Fujisawa, M. Fukuda, J.K. Percus, M. Yamashita, Z. Zhao, Variational calculation of second-order reduced density matrices by strong n-representability conditions and an accurate semidefinite programming solver. J. Chem. Phys. 128, 164113 (2008)CrossRef M. Nakata, B.J. Braams, K. Fujisawa, M. Fukuda, J.K. Percus, M. Yamashita, Z. Zhao, Variational calculation of second-order reduced density matrices by strong n-representability conditions and an accurate semidefinite programming solver. J. Chem. Phys. 128, 164113 (2008)CrossRef
17.
Zurück zum Zitat H. Waki, M. Nakata, M. Muramatsu, Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimization. Comput. Opt. Appl. 53, 823 (2012)MathSciNetCrossRef H. Waki, M. Nakata, M. Muramatsu, Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimization. Comput. Opt. Appl. 53, 823 (2012)MathSciNetCrossRef
18.
Zurück zum Zitat F. Bornemann, D. Laurie, S. Wagon, J. Waldvogel, The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing (Society for Industrial and Applied Mathematics, SIAM, 2004) F. Bornemann, D. Laurie, S. Wagon, J. Waldvogel, The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing (Society for Industrial and Applied Mathematics, SIAM, 2004)
19.
Zurück zum Zitat D.E. Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edn. (Addison-Wesley Professional, 1997) D.E. Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edn. (Addison-Wesley Professional, 1997)
20.
Zurück zum Zitat T.J. Dekker, A floating-point technique for extending the available precision. Numerische Math. 18, 224–242 (1971)MathSciNetCrossRef T.J. Dekker, A floating-point technique for extending the available precision. Numerische Math. 18, 224–242 (1971)MathSciNetCrossRef
21.
Zurück zum Zitat Y. Hida, X.S. Li, D.H. Bailey, Library for double-double and quad-double arithmetic, Technical report (Lawrence Berkeley National Laboratory, 2008) Y. Hida, X.S. Li, D.H. Bailey, Library for double-double and quad-double arithmetic, Technical report (Lawrence Berkeley National Laboratory, 2008)
22.
Zurück zum Zitat M. Nakata, Y. Takao, S. Noda, R. Himeno, A fast implementation of matrix-matrix product in double-double precision on nvidia C2050 and application to semidefinite programming, in Third International Conference on Networking and Computing (ICNC) (2012) M. Nakata, Y. Takao, S. Noda, R. Himeno, A fast implementation of matrix-matrix product in double-double precision on nvidia C2050 and application to semidefinite programming, in Third International Conference on Networking and Computing (ICNC) (2012)
23.
Zurück zum Zitat T. Granlund, Gmp Development Team, GNU MP 6.0 Multiple Precision Arithmetic Library (Samurai Media Limited, United Kingdom, 2015) T. Granlund, Gmp Development Team, GNU MP 6.0 Multiple Precision Arithmetic Library (Samurai Media Limited, United Kingdom, 2015)
24.
Zurück zum Zitat L. Fousse, G. Hanrot, V. Lefevre, P. Pélissier, P. Zimmermann, MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 13 (2007)CrossRef L. Fousse, G. Hanrot, V. Lefevre, P. Pélissier, P. Zimmermann, MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 13 (2007)CrossRef
25.
Zurück zum Zitat A. Enge, M. Gastineau, P. Théveny, P. Zimmermann, mpc—a library for multiprecision complex arithmetic with exact rounding, INRIA, 1.0.3 edn., Feb 2015 A. Enge, M. Gastineau, P. Théveny, P. Zimmermann, mpc—a library for multiprecision complex arithmetic with exact rounding, INRIA, 1.0.3 edn., Feb 2015
26.
Zurück zum Zitat M. Nakata, MPACK, RIKEN, 0.8.0 edn. (2012) M. Nakata, MPACK, RIKEN, 0.8.0 edn. (2012)
27.
Zurück zum Zitat M. Nakata, Mpack0.6.7: a high precision linear algebra library. Appl. Math. 2110 (2011, In Japanese) M. Nakata, Mpack0.6.7: a high precision linear algebra library. Appl. Math. 2110 (2011, In Japanese)
28.
Zurück zum Zitat T. Koya, BNCpack, 0.7 edn. (Shizuoka Institute of Science and Technology, 2011) T. Koya, BNCpack, 0.7 edn. (Shizuoka Institute of Science and Technology, 2011)
29.
Zurück zum Zitat B.N. Parlett, The Symmetric Eigenvalue Problem (Classics in Applied Mathematics) (Society for Industrial Mathematics, 1987) B.N. Parlett, The Symmetric Eigenvalue Problem (Classics in Applied Mathematics) (Society for Industrial Mathematics, 1987)
Metadaten
Titel
Techniques Concerning Computation Accuracy
verfasst von
Shin’chi Oishi
Yusuke Morikura
Kouta Sekine
Hisayasu Kuroda
Maho Nakata
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6194-4_10