Skip to main content

21.07.2017 | Regular Paper

Tell cause from effect: models and evaluation

verfasst von: Jing Song, Satoshi Oyama, Masahito Kurihara

Erschienen in: International Journal of Data Science and Analytics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Causal relationships differ from statistical relationships, and distinguishing cause from effect is a fundamental scientific problem that has attracted the interest of many researchers. Among causal discovery problems, discovering bivariate causal relationships is a special case. Causal relationships between two variables (“X causes Y” or “Y causes X”) belong to the same Markov equivalence class, and the well-known independence tests and conditional independence tests cannot distinguish directed acyclic graphs in the same Markov equivalence class. We empirically evaluated the performance of three state-of-the-art models for causal discovery in the bivariate case using both simulation and real-world data: the additive-noise model (ANM), the post-nonlinear (PNL) model, and the information geometric causal inference (IGCI) model. The performance metrics were accuracy, area under the ROC curve, and time to make a decision. The IGCI model was the fastest in terms of algorithm efficiency even when the dataset was large, while the PNL model took the most time to make a decision. In terms of decision accuracy, the IGCI model was susceptible to noise and thus performed well only under low-noise conditions. The PNL model was the most robust to noise. Simulation experiments showed that the IGCI model was the most susceptible to “confounding,” while the ANM and PNL models were able to avoid the effects of confounding to some degree.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For the definition of “confounding,” please refer to [13, 51].
 
2
The number of “confounders” is not limited to one.
 
3
There have been some efforts to deal with confounders. For example, Shimizu et al. [41] extended the linear non-Gaussian acyclic model to detect causal direction when there are “common causes” [14, 40].
 
4
Reference distributions are used to measure the complexity of \(P_{x}\) and \(P_{y}\). In [22], non-informative distributions like uniform and Gaussian ones are recommended.
 
6
The three models we evaluated cannot deal with multi-dimensional data.
 
7
Country and time information is not included in the table.
 
8
To avoid overfitting, we limited the size to 500 or less.
 
9
Since all three models have two outputs, e.g., \(\hat{V}_{X\rightarrow Y}\), \(\hat{V}_{Y\rightarrow X}\) corresponding to the two possible causal directions, we set thresholds based on the absolute difference between them \(|\hat{V}_{X \rightarrow Y}-\hat{V}_{Y \rightarrow X}|\) for use in deciding each decision rate and model accuracy.
 
10
Compared to our previous report [23], we reduced the program output so that the PNL model works faster. We have updated the results for time to make a decision for the PNL model accordingly.
 
11
We used the difference between \(\hat{V}_{X\rightarrow Y}\) and \(\hat{V}_{Y\rightarrow X}\) (Eqs. 4, 5) as the estimated result. For IGCI, \(\hat{V}_{X\rightarrow Y}\) is the opposite of \(\hat{V}_{Y\rightarrow X}\) if there is no repetitive data. Thus, we can infer that the correct causal direction is \(X\rightarrow Y\) if the estimated result is negative and that \(Y\rightarrow X\) is correct if the estimated result is positive.
 
12
The pair “length, diameter” was created from “cause: rings (abalone), effect: length” and “cause: rings (abalone), effect: diameter” using data for abalone [24].
 
Literatur
1.
Zurück zum Zitat Chen, Y., Rangarajan, G., Feng, J., Ding, M.: Analyzing multiple nonlinear time series with extended granger causality. Phys. Lett. A 324(1), 26–35 (2004)MathSciNetCrossRefMATH Chen, Y., Rangarajan, G., Feng, J., Ding, M.: Analyzing multiple nonlinear time series with extended granger causality. Phys. Lett. A 324(1), 26–35 (2004)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Chen, Z., Zhang, K., Chan, L.: Causal discovery with scale-mixture model for spatiotemporal variance dependencies. In: Advances in Neural Information Processing Systems, pp. 1727–1735 (2012) Chen, Z., Zhang, K., Chan, L.: Causal discovery with scale-mixture model for spatiotemporal variance dependencies. In: Advances in Neural Information Processing Systems, pp. 1727–1735 (2012)
3.
Zurück zum Zitat Chen, Z., Zhang, K., Chan, L., Schölkopf, B.: Causal discovery via reproducing kernel hilbert space embeddings. Neural Comput. 26(7), 1484–1517 (2014)MathSciNetCrossRef Chen, Z., Zhang, K., Chan, L., Schölkopf, B.: Causal discovery via reproducing kernel hilbert space embeddings. Neural Comput. 26(7), 1484–1517 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Daniusis, P., Janzing, D., Mooij, J., Zscheischler, J., Steudel, B., Zhang, K., Schölkopf, B.: Inferring deterministic causal relations. arXiv preprint arXiv:1203.3475 (2012) Daniusis, P., Janzing, D., Mooij, J., Zscheischler, J., Steudel, B., Zhang, K., Schölkopf, B.: Inferring deterministic causal relations. arXiv preprint arXiv:​1203.​3475 (2012)
5.
Zurück zum Zitat Eberhardt, F.: Introduction to the foundations of causal discovery. Int. J. Data Sci. Anal., 1–11 (2017) Eberhardt, F.: Introduction to the foundations of causal discovery. Int. J. Data Sci. Anal., 1–11 (2017)
6.
Zurück zum Zitat Gong, M., Zhang, K., Schoelkopf, B., Tao, D., Geiger, P.: Discovering temporal causal relations from subsampled data. In: Proceedings of 32th International Conference on Machine Learning (ICML 2015) (2015) Gong, M., Zhang, K., Schoelkopf, B., Tao, D., Geiger, P.: Discovering temporal causal relations from subsampled data. In: Proceedings of 32th International Conference on Machine Learning (ICML 2015) (2015)
7.
Zurück zum Zitat Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 37, 424–438 (1969)MATH Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 37, 424–438 (1969)MATH
8.
9.
10.
Zurück zum Zitat Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.: Kernel methods for measuring independence. J. Mach. Learn. Res. 6(Dec), 2075–2129 (2005)MathSciNetMATH Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.: Kernel methods for measuring independence. J. Mach. Learn. Res. 6(Dec), 2075–2129 (2005)MathSciNetMATH
11.
Zurück zum Zitat Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J., et al.: A kernel statistical test of independence. NIPS 20, 585–592 (2008) Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J., et al.: A kernel statistical test of independence. NIPS 20, 585–592 (2008)
13.
Zurück zum Zitat Howards, P.P., Schisterman, E.F., Poole, C., Kaufman, J.S., Weinberg, C.R.: “Toward a clearer definition of confounding” revisited with directed acyclic graphs. Am. J. Epidemiol. 176(6), 506–511 (2012)CrossRef Howards, P.P., Schisterman, E.F., Poole, C., Kaufman, J.S., Weinberg, C.R.: “Toward a clearer definition of confounding” revisited with directed acyclic graphs. Am. J. Epidemiol. 176(6), 506–511 (2012)CrossRef
14.
Zurück zum Zitat Hoyer, P.O., Shimizu, S., Kerminen, A.J., Palviainen, M.: Estimation of causal effects using linear non-gaussian causal models with hidden variables. Int. J. Approx. Reason. 49(2), 362–378 (2008)MathSciNetCrossRefMATH Hoyer, P.O., Shimizu, S., Kerminen, A.J., Palviainen, M.: Estimation of causal effects using linear non-gaussian causal models with hidden variables. Int. J. Approx. Reason. 49(2), 362–378 (2008)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Hoyer, P.O., Janzing, D., Mooij, J.M., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Advances in neural information processing systems, pp. 689–696 (2009) Hoyer, P.O., Janzing, D., Mooij, J.M., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Advances in neural information processing systems, pp. 689–696 (2009)
16.
Zurück zum Zitat Huang, B., Zhang, K., Schölkopf, B.: Identification of time-dependent causal model: A gaussian process treatment. In: The 24th International Joint Conference on Artificial Intelligence, Machine Learning Track, pp. 3561–3568. Buenos, Argentina (2015) Huang, B., Zhang, K., Schölkopf, B.: Identification of time-dependent causal model: A gaussian process treatment. In: The 24th International Joint Conference on Artificial Intelligence, Machine Learning Track, pp. 3561–3568. Buenos, Argentina (2015)
17.
Zurück zum Zitat Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000)CrossRef Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000)CrossRef
18.
Zurück zum Zitat Hyvärinen, A., Zhang, K., Shimizu, S., Hoyer, P.O.: Estimation of a structural vector autoregression model using non-gaussianity. J. Mach. Learn. Res. 11(May), 1709–1731 (2010)MathSciNetMATH Hyvärinen, A., Zhang, K., Shimizu, S., Hoyer, P.O.: Estimation of a structural vector autoregression model using non-gaussianity. J. Mach. Learn. Res. 11(May), 1709–1731 (2010)MathSciNetMATH
19.
Zurück zum Zitat Janzing, D., Scholkopf, B.: Causal inference using the algorithmic markov condition. IEEE Trans. Inf. Theory 56(10), 5168–5194 (2010)MathSciNetCrossRefMATH Janzing, D., Scholkopf, B.: Causal inference using the algorithmic markov condition. IEEE Trans. Inf. Theory 56(10), 5168–5194 (2010)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Janzing, D., Hoyer, P.O., Schölkopf, B.: Telling cause from effect based on high-dimensional observations. arXiv preprint arXiv:0909.4386 (2009) Janzing, D., Hoyer, P.O., Schölkopf, B.: Telling cause from effect based on high-dimensional observations. arXiv preprint arXiv:​0909.​4386 (2009)
21.
Zurück zum Zitat Janzing, D., MPG, T., Schölkopf, B.: Causality: Objectives and assessment (2010) Janzing, D., MPG, T., Schölkopf, B.: Causality: Objectives and assessment (2010)
22.
Zurück zum Zitat Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler, J., Daniušis, P., Steudel, B., Schölkopf, B.: Information-geometric approach to inferring causal directions. Artif. Intell. 182, 1–31 (2012)MathSciNetCrossRefMATH Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler, J., Daniušis, P., Steudel, B., Schölkopf, B.: Information-geometric approach to inferring causal directions. Artif. Intell. 182, 1–31 (2012)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Jing, S., Satoshi, O., Haruhiko, S., Masahito, K.: Evaluation of causal discovery models in bivariate case using real world data. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2016, pp. 291–296 (2016) Jing, S., Satoshi, O., Haruhiko, S., Masahito, K.: Evaluation of causal discovery models in bivariate case using real world data. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2016, pp. 291–296 (2016)
25.
Zurück zum Zitat Lopez-Paz, D., Muandet, K., Schölkopf, B., Tolstikhin, I.: Towards a learning theory of cause-effect inference. In: Proceedings of the 32nd International Conference on Machine Learning. JMLR: W&CP, Lille, France (2015) Lopez-Paz, D., Muandet, K., Schölkopf, B., Tolstikhin, I.: Towards a learning theory of cause-effect inference. In: Proceedings of the 32nd International Conference on Machine Learning. JMLR: W&CP, Lille, France (2015)
26.
Zurück zum Zitat Mooij, J.M., Janzing, D., Schölkopf, B.: Distinguishing between cause and effect. In: NIPS Causality: Objectives and Assessment, pp. 147–156 (2010) Mooij, J.M., Janzing, D., Schölkopf, B.: Distinguishing between cause and effect. In: NIPS Causality: Objectives and Assessment, pp. 147–156 (2010)
28.
Zurück zum Zitat Mooij, J.M., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.: Distinguishing cause from effect using observational data: methods and benchmarks. arXiv preprint arXiv:1412.3773 (2014b) Mooij, J.M., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.: Distinguishing cause from effect using observational data: methods and benchmarks. arXiv preprint arXiv:​1412.​3773 (2014b)
29.
Zurück zum Zitat Pearl, J., et al.: Models, reasoning and inference (2000) Pearl, J., et al.: Models, reasoning and inference (2000)
30.
Zurück zum Zitat Peters, J., Janzing, D., Gretton, A., Schölkopf, B.: Detecting the direction of causal time series. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 801–808. ACM, New York (2009) Peters, J., Janzing, D., Gretton, A., Schölkopf, B.: Detecting the direction of causal time series. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 801–808. ACM, New York (2009)
31.
Zurück zum Zitat Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Identifiability of causal graphs using functional models. arXiv preprint arXiv:1202.3757 (2012) Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Identifiability of causal graphs using functional models. arXiv preprint arXiv:​1202.​3757 (2012)
32.
Zurück zum Zitat Peters, J., Janzing, D., Schölkopf, B.: Causal inference on time series using restricted structural equation models. In: Advances in Neural Information Processing Systems, pp. 154–162 (2013) Peters, J., Janzing, D., Schölkopf, B.: Causal inference on time series using restricted structural equation models. In: Advances in Neural Information Processing Systems, pp. 154–162 (2013)
33.
Zurück zum Zitat Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT press, Cambridge (2006)MATH Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT press, Cambridge (2006)MATH
34.
Zurück zum Zitat Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (gpml) toolbox. J. Mach. Learn. Res. 11(Nov), 3011–3015 (2010a)MathSciNetMATH Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (gpml) toolbox. J. Mach. Learn. Res. 11(Nov), 3011–3015 (2010a)MathSciNetMATH
36.
Zurück zum Zitat Scheines, R.: An introduction to causal inference (1997) Scheines, R.: An introduction to causal inference (1997)
37.
Zurück zum Zitat Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning. arXiv preprint arXiv:1206.6471 (2012) Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning. arXiv preprint arXiv:​1206.​6471 (2012)
38.
Zurück zum Zitat Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.: Inference of cause and effect with unsupervised inverse regression. In: AISTATS (2015) Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.: Inference of cause and effect with unsupervised inverse regression. In: AISTATS (2015)
39.
Zurück zum Zitat Shajarisales, N., Janzing, D., Schoelkopf, B., Besserve, M.: Telling cause from effect in deterministic linear dynamical systems. arXiv preprint arXiv:1503.01299 (2015) Shajarisales, N., Janzing, D., Schoelkopf, B., Besserve, M.: Telling cause from effect in deterministic linear dynamical systems. arXiv preprint arXiv:​1503.​01299 (2015)
40.
Zurück zum Zitat Shimizu, S., Bollen, K.: Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-gaussian distributions. J. Mach. Learn. Res. 15(1), 2629–2652 (2014)MathSciNetMATH Shimizu, S., Bollen, K.: Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-gaussian distributions. J. Mach. Learn. Res. 15(1), 2629–2652 (2014)MathSciNetMATH
41.
Zurück zum Zitat Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(Oct), 2003–2030 (2006)MathSciNetMATH Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(Oct), 2003–2030 (2006)MathSciNetMATH
42.
Zurück zum Zitat Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K.: Directlingam: a direct method for learning a linear non-gaussian structural equation model. J. Mach. Learn. Res. 12(Apr), 1225–1248 (2011)MathSciNetMATH Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K.: Directlingam: a direct method for learning a linear non-gaussian structural equation model. J. Mach. Learn. Res. 12(Apr), 1225–1248 (2011)MathSciNetMATH
43.
Zurück zum Zitat Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016)CrossRef Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016)CrossRef
44.
Zurück zum Zitat Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT press, Cambridge (2000)MATH Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT press, Cambridge (2000)MATH
45.
Zurück zum Zitat Stegle, O., Janzing, D., Zhang, K., Mooij, J.M., Schölkopf, B.: Probabilistic latent variable models for distinguishing between cause and effect. In: Advances in Neural Information Processing Systems, pp. 1687–1695 (2010) Stegle, O., Janzing, D., Zhang, K., Mooij, J.M., Schölkopf, B.: Probabilistic latent variable models for distinguishing between cause and effect. In: Advances in Neural Information Processing Systems, pp. 1687–1695 (2010)
46.
Zurück zum Zitat Sun, X., Janzing, D., Schölkopf, B.: Causal inference by choosing graphs with most plausible markov kernels. In: ISAIM (2006) Sun, X., Janzing, D., Schölkopf, B.: Causal inference by choosing graphs with most plausible markov kernels. In: ISAIM (2006)
47.
Zurück zum Zitat Sun, X., Janzing, D., Schölkopf, B.: Distinguishing between cause and effect via kernel-based complexity measures for conditional distributions. In: ESANN, pp. 441–446 (2007a) Sun, X., Janzing, D., Schölkopf, B.: Distinguishing between cause and effect via kernel-based complexity measures for conditional distributions. In: ESANN, pp. 441–446 (2007a)
48.
Zurück zum Zitat Sun, X., Janzing, D., Schölkopf, B., Fukumizu, K.: A kernel-based causal learning algorithm. In: Proceedings of the 24th international conference on Machine learning, pp. 855–862. ACM, New York (2007b) Sun, X., Janzing, D., Schölkopf, B., Fukumizu, K.: A kernel-based causal learning algorithm. In: Proceedings of the 24th international conference on Machine learning, pp. 855–862. ACM, New York (2007b)
49.
Zurück zum Zitat Sun, X., Janzing, D., Schölkopf, B.: Causal reasoning by evaluating the complexity of conditional densities with kernel methods. Neurocomputing 71(7), 1248–1256 (2008)CrossRef Sun, X., Janzing, D., Schölkopf, B.: Causal reasoning by evaluating the complexity of conditional densities with kernel methods. Neurocomputing 71(7), 1248–1256 (2008)CrossRef
50.
Zurück zum Zitat Tillman, R.E., Gretton, A., Spirtes, P.: Nonlinear directed acyclic structure learning with weakly additive noise models. In: Advances in Neural Information Processing Systems, pp. 1847–1855 (2009) Tillman, R.E., Gretton, A., Spirtes, P.: Nonlinear directed acyclic structure learning with weakly additive noise models. In: Advances in Neural Information Processing Systems, pp. 1847–1855 (2009)
51.
52.
Zurück zum Zitat Zhang, K., Chan, L.W.: Extensions of ICA for causality discovery in the Hong Kong stock market. In: International Conference on Neural Information Processing, pp. 400–409. Springer, Berlin (2006) Zhang, K., Chan, L.W.: Extensions of ICA for causality discovery in the Hong Kong stock market. In: International Conference on Neural Information Processing, pp. 400–409. Springer, Berlin (2006)
53.
Zurück zum Zitat Zhang, K., Hyvärinen, A.: Distinguishing causes from effects using nonlinear acyclic causal models. In: Journal of Machine Learning Research, Workshop and Conference Proceedings (NIPS 2008 Causality Workshop), vol. 6, pp. 157–164 (2008) Zhang, K., Hyvärinen, A.: Distinguishing causes from effects using nonlinear acyclic causal models. In: Journal of Machine Learning Research, Workshop and Conference Proceedings (NIPS 2008 Causality Workshop), vol. 6, pp. 157–164 (2008)
54.
Zurück zum Zitat Zhang, K., Hyvärinen, A.: On the identifiability of the post-nonlinear causal model. In: Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial Intelligence, pp. 647–655. AUAI Press, Corvallis (2009) Zhang, K., Hyvärinen, A.: On the identifiability of the post-nonlinear causal model. In: Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial Intelligence, pp. 647–655. AUAI Press, Corvallis (2009)
55.
Zurück zum Zitat Zhang, K., Schölkopf, B., Janzing, D.: Invariant gaussian process latent variable models and application in causal discovery. arXiv preprint arXiv:1203.3534 (2012) Zhang, K., Schölkopf, B., Janzing, D.: Invariant gaussian process latent variable models and application in causal discovery. arXiv preprint arXiv:​1203.​3534 (2012)
56.
Zurück zum Zitat Zhang, K., Wang, Z., Schölkopf, B.: On estimation of functional causal models: post-nonlinear causal model as an example. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 139–146. IEEE (2013) Zhang, K., Wang, Z., Schölkopf, B.: On estimation of functional causal models: post-nonlinear causal model as an example. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 139–146. IEEE (2013)
57.
Zurück zum Zitat Zhang, K., Zhang, J., Schölkopf, B.: Distinguishing cause from effect based on exogeneity. arXiv preprint arXiv:1504.05651 (2015) Zhang, K., Zhang, J., Schölkopf, B.: Distinguishing cause from effect based on exogeneity. arXiv preprint arXiv:​1504.​05651 (2015)
Metadaten
Titel
Tell cause from effect: models and evaluation
verfasst von
Jing Song
Satoshi Oyama
Masahito Kurihara
Publikationsdatum
21.07.2017
Verlag
Springer International Publishing
Erschienen in
International Journal of Data Science and Analytics / Ausgabe 2/2017
Print ISSN: 2364-415X
Elektronische ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-017-0063-0