Skip to main content

2020 | OriginalPaper | Buchkapitel

Temperature Dependence of Microstructure in Liquid Aluminosilicate

verfasst von : Mai Van Dung, Le The Vinh, Vo Hoang Duy, Nguyen Kieu Tam, Tran Thanh Nam, Nguyen Manh Tuan, Truong Duc Quynh, Nguyen Van Yen

Erschienen in: AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure of liquid Al2O3.2SiO2 (AS2) have been investigated by means molecular dynamics simulation with the Born-Mayer potential at different temperatures. The structural characteristics are analyzed via the partial radial distribution functions, coordination number, bond angle and bond length distributions. The results show that, the structure of the liquid aluminosilicate consist the basic structural units TOx (T = Al, Si; x = 3, 4, 5). The fraction of TOx units have a small change, in which the shape and size of the basic structural units are identical and do not depended on temperature. Calculations also show that calculated data agree well with the experimental ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Horbach, J., Kob, W.: Static and dynamic properties of a viscous silica melt. Phys. Rev. B 60, 3169–3181 (1999)CrossRef Horbach, J., Kob, W.: Static and dynamic properties of a viscous silica melt. Phys. Rev. B 60, 3169–3181 (1999)CrossRef
2.
Zurück zum Zitat Oligschleger, C.: Dynamics of SiO2 glasses. Phys. Rev. B 60, 3182–3193 (1999)CrossRef Oligschleger, C.: Dynamics of SiO2 glasses. Phys. Rev. B 60, 3182–3193 (1999)CrossRef
3.
Zurück zum Zitat Vollmayr-Lee, K., Zippelius, A.: Temperature-dependent defect dynamics in the network glass SiO2. Phys. Rev. E 88, 052145 (2013)CrossRef Vollmayr-Lee, K., Zippelius, A.: Temperature-dependent defect dynamics in the network glass SiO2. Phys. Rev. E 88, 052145 (2013)CrossRef
4.
Zurück zum Zitat Koziatek, P., Barrat, J.L., Rodney, D.: Short- and medium-range orders in as-quenched and deformed SiO2 glasses: an atomistic study. J. Non-Cryst. Solids 414, 7–15 (2015)CrossRef Koziatek, P., Barrat, J.L., Rodney, D.: Short- and medium-range orders in as-quenched and deformed SiO2 glasses: an atomistic study. J. Non-Cryst. Solids 414, 7–15 (2015)CrossRef
5.
Zurück zum Zitat Jin, W., Kalia, R.K., Vashishta, P., et al.: Structural transformation in densified silica glass: a molecular-dynamics study. Phys. Rev. B 50, 118–131 (1994)CrossRef Jin, W., Kalia, R.K., Vashishta, P., et al.: Structural transformation in densified silica glass: a molecular-dynamics study. Phys. Rev. B 50, 118–131 (1994)CrossRef
6.
Zurück zum Zitat Sato, T., Funamori, N.: High-pressure structural transformation of SiO2 glass up to 100 Gpa. Phys. Rev. B 82, 184102 (2010)CrossRef Sato, T., Funamori, N.: High-pressure structural transformation of SiO2 glass up to 100 Gpa. Phys. Rev. B 82, 184102 (2010)CrossRef
7.
Zurück zum Zitat Trachenko, K., Dove, M.T.: Densification of silica glass under pressure. J. Phys.: Condens. Matter 14, 7449–7459 (2002) Trachenko, K., Dove, M.T.: Densification of silica glass under pressure. J. Phys.: Condens. Matter 14, 7449–7459 (2002)
8.
Zurück zum Zitat Inamura, Y., Arai, M., Nakamura, M., et al.: Intermediate range structure and lowenergy dynamics of densified vitreous silica. J. Non-Cryst. Solids 293–295, 389–393 (2002) Inamura, Y., Arai, M., Nakamura, M., et al.: Intermediate range structure and lowenergy dynamics of densified vitreous silica. J. Non-Cryst. Solids 293–295, 389–393 (2002)
9.
Zurück zum Zitat Liang, Y., Miranda, C.R., Scandolo, S.: Mechanical strength and coordination defects in compressed silica glass: molecular dynamics simulations. Phys. Rev. B 75, 024205 (2007)CrossRef Liang, Y., Miranda, C.R., Scandolo, S.: Mechanical strength and coordination defects in compressed silica glass: molecular dynamics simulations. Phys. Rev. B 75, 024205 (2007)CrossRef
10.
Zurück zum Zitat Trachenko, K., Dove, M.T.: Compressibility, kinetics, and phase transition in pressurized amorphous silica. Phys. Rev. B 67, 064107 (2003)CrossRef Trachenko, K., Dove, M.T.: Compressibility, kinetics, and phase transition in pressurized amorphous silica. Phys. Rev. B 67, 064107 (2003)CrossRef
11.
Zurück zum Zitat Gutierrez, G., Belonoshko, A.B., Ahuja, R., et al.: Structural properties of liquid Al2O3: a molecular dynamics study. Phys. Rev. E 61(3), 2723–2729 (2000)CrossRef Gutierrez, G., Belonoshko, A.B., Ahuja, R., et al.: Structural properties of liquid Al2O3: a molecular dynamics study. Phys. Rev. E 61(3), 2723–2729 (2000)CrossRef
12.
Zurück zum Zitat Hoang, V.V.: About an order of liquid–liquid phase transition in simulated liquid Al2O3. Phys. Lett. A 335, 439–443 (2005)CrossRef Hoang, V.V.: About an order of liquid–liquid phase transition in simulated liquid Al2O3. Phys. Lett. A 335, 439–443 (2005)CrossRef
13.
Zurück zum Zitat Hemmati, M.: Structure of liquid Al2O3 from a computer simulation model. J. Phys. Chem. B 103, 4023–4028 (1999)CrossRef Hemmati, M.: Structure of liquid Al2O3 from a computer simulation model. J. Phys. Chem. B 103, 4023–4028 (1999)CrossRef
14.
Zurück zum Zitat Vashishta, P., Kalia, R.K., Nakano, A., et al.: Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J. Appl. Phys. 103, 083504 (2008)CrossRef Vashishta, P., Kalia, R.K., Nakano, A., et al.: Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J. Appl. Phys. 103, 083504 (2008)CrossRef
15.
Zurück zum Zitat Kushiro, I.: Changes in viscosity and structure of melt of NaA1SiO6 composition at high pressures. J. Geophys. Res. 81, 6347 (1976)CrossRef Kushiro, I.: Changes in viscosity and structure of melt of NaA1SiO6 composition at high pressures. J. Geophys. Res. 81, 6347 (1976)CrossRef
16.
Zurück zum Zitat Watson, E.B.: Calcium diffusion in a simple silicate melt to 30 kbar. Geochim. Cosmochim. Acta 43, 313 (1979)CrossRef Watson, E.B.: Calcium diffusion in a simple silicate melt to 30 kbar. Geochim. Cosmochim. Acta 43, 313 (1979)CrossRef
17.
Zurück zum Zitat Watson, E.B.: Diffusion in magmas at depth in the earth: the effects of pressure and dissolved H2O. Earth Planet. Sci. Lett. 52, 291 (1981)CrossRef Watson, E.B.: Diffusion in magmas at depth in the earth: the effects of pressure and dissolved H2O. Earth Planet. Sci. Lett. 52, 291 (1981)CrossRef
18.
Zurück zum Zitat Morikawa, H., Miwa, S.I., Miyake, M., Marumo, F.: Structural analysis of SiO2-Al2O3. J. Am. Ceram. Soc. 65, 78 (1982)CrossRef Morikawa, H., Miwa, S.I., Miyake, M., Marumo, F.: Structural analysis of SiO2-Al2O3. J. Am. Ceram. Soc. 65, 78 (1982)CrossRef
19.
Zurück zum Zitat Okuno, M., Zotov, N., Schmucker, M., Schneider, H.: Structure of SiO2–Al2O3 glasses: combined X-ray diffraction, IR and Raman studies. J. Non-Cryst. Solids 351, 1032 (2005)CrossRef Okuno, M., Zotov, N., Schmucker, M., Schneider, H.: Structure of SiO2–Al2O3 glasses: combined X-ray diffraction, IR and Raman studies. J. Non-Cryst. Solids 351, 1032 (2005)CrossRef
20.
Zurück zum Zitat Hong, N.V., Yen, N.V., Lan, M.T., Hung, P.K.: Coordination and polyamorphism of aluminium silicate under high pressure: insight from analysis and visualization of molecular dynamics data. Can. J. Phys. 92, 1573–1580 (2014)CrossRef Hong, N.V., Yen, N.V., Lan, M.T., Hung, P.K.: Coordination and polyamorphism of aluminium silicate under high pressure: insight from analysis and visualization of molecular dynamics data. Can. J. Phys. 92, 1573–1580 (2014)CrossRef
21.
Zurück zum Zitat Mai, L.T., Yen, N.V., Hong, N.V., Hung, P.K.: Visualisation based analysis of structure and dynamics of liquid aluminosilicate under compression. Phys. Chem. Liq. 55(1), 62–84 (2017) Mai, L.T., Yen, N.V., Hong, N.V., Hung, P.K.: Visualisation based analysis of structure and dynamics of liquid aluminosilicate under compression. Phys. Chem. Liq. 55(1), 62–84 (2017)
22.
Zurück zum Zitat Winkler, A., Horbach, J., Kob, W., et al.: Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation. J. Chem. Phys. 120, 384–393 (2004)CrossRef Winkler, A., Horbach, J., Kob, W., et al.: Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation. J. Chem. Phys. 120, 384–393 (2004)CrossRef
23.
Zurück zum Zitat Hoang, V.V., Linh, N.N., Hung, N.H.: Structure and dynamics of liquid and amorphous Al2O3.2SiO2. Eur. Phys. J. Appl. Phys. 37, 111–118 (2007)CrossRef Hoang, V.V., Linh, N.N., Hung, N.H.: Structure and dynamics of liquid and amorphous Al2O3.2SiO2. Eur. Phys. J. Appl. Phys. 37, 111–118 (2007)CrossRef
24.
Zurück zum Zitat Linh, N.N., Hoang, V.V.: Evolution of structure of liquid and amorphous Al2O3.2SiO2 nanoparticles upon cooling from the melts. World Sci. 2(4), 227–232 (2007) Linh, N.N., Hoang, V.V.: Evolution of structure of liquid and amorphous Al2O3.2SiO2 nanoparticles upon cooling from the melts. World Sci. 2(4), 227–232 (2007)
25.
Zurück zum Zitat Hoang, V.V.: Dynamical heterogeneity and diffusion in high-density Al2O3.2SiO2 melts. Physica B 400, 278–286 (2007)CrossRef Hoang, V.V.: Dynamical heterogeneity and diffusion in high-density Al2O3.2SiO2 melts. Physica B 400, 278–286 (2007)CrossRef
26.
Zurück zum Zitat Hoang, V.V., Hung, N.H., Linh, N.N.: Liquid–liquid phase transition in simulated liquid Al2O3·2SiO2. Phys. Scr. 74, 697–701 (2006)CrossRef Hoang, V.V., Hung, N.H., Linh, N.N.: Liquid–liquid phase transition in simulated liquid Al2O3·2SiO2. Phys. Scr. 74, 697–701 (2006)CrossRef
27.
Zurück zum Zitat Narayanan, B., Reimanis, I.E., Ciobanu, C.V.: Atomic-scale mechanism for pressure-induced amorphization of β-eucryptite. J. Appl. Phys. 114, 083520 (2013)CrossRef Narayanan, B., Reimanis, I.E., Ciobanu, C.V.: Atomic-scale mechanism for pressure-induced amorphization of β-eucryptite. J. Appl. Phys. 114, 083520 (2013)CrossRef
28.
Zurück zum Zitat Grandi, S., Costa, L.: Lanthanide-doped SiO2–Al2O3 aerogels and densified glasses. J. Non-Crystall. Solids 225, 141–145 (1998)CrossRef Grandi, S., Costa, L.: Lanthanide-doped SiO2–Al2O3 aerogels and densified glasses. J. Non-Crystall. Solids 225, 141–145 (1998)CrossRef
29.
Zurück zum Zitat Yang, Y., Takahashi, M., Abe, H., Kawazoe, Y.: Structural, electronic and optical properties of the Al2O3 doped SiO2: first principles calculations. Mater. Trans. 49(11), 2474–2479 (2008)CrossRef Yang, Y., Takahashi, M., Abe, H., Kawazoe, Y.: Structural, electronic and optical properties of the Al2O3 doped SiO2: first principles calculations. Mater. Trans. 49(11), 2474–2479 (2008)CrossRef
30.
Zurück zum Zitat Boe, P.T., Mcmillan, P.F.: Al and Si coordination in SiO2-A12O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem. Geol. 96, 333–349 (1992)CrossRef Boe, P.T., Mcmillan, P.F.: Al and Si coordination in SiO2-A12O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem. Geol. 96, 333–349 (1992)CrossRef
31.
Zurück zum Zitat Binder, K., Horbach, J., Winkler, A., Kob, W.: Modeling glass materials. Ceram. Int. 31, 713–717 (2005)CrossRef Binder, K., Horbach, J., Winkler, A., Kob, W.: Modeling glass materials. Ceram. Int. 31, 713–717 (2005)CrossRef
32.
Zurück zum Zitat Shimoda, K., Saito, K.: Detailed structure elucidation of the blast furnace slag by molecular dynamics simulation. ISIJ Int. 47, 1275–1279 (2007)CrossRef Shimoda, K., Saito, K.: Detailed structure elucidation of the blast furnace slag by molecular dynamics simulation. ISIJ Int. 47, 1275–1279 (2007)CrossRef
33.
Zurück zum Zitat Zheng, K., Zhang, Z., Yang, F., Sridhar, S.: Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying A12O3/SiO2 ratios. ISIJ Int. 52(3), 342–349 (2012)CrossRef Zheng, K., Zhang, Z., Yang, F., Sridhar, S.: Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying A12O3/SiO2 ratios. ISIJ Int. 52(3), 342–349 (2012)CrossRef
34.
Zurück zum Zitat Takei, T., Kameshima, Y., Yasumori, A., Okada, K.: Crystallization kinetics of mullite from A12O3– SiO2 glasses under non-isothermal conditions. J. Mater. Res. 15(1) (2000) Takei, T., Kameshima, Y., Yasumori, A., Okada, K.: Crystallization kinetics of mullite from A12O3– SiO2 glasses under non-isothermal conditions. J. Mater. Res. 15(1) (2000)
35.
Zurück zum Zitat Pfleiderer, P., Horbach, J., Binder, K.: Structure and transport properties of amorphous aluminium silicates: computer simulation studies. Chem. Geol. 229, 186–197 (2006)CrossRef Pfleiderer, P., Horbach, J., Binder, K.: Structure and transport properties of amorphous aluminium silicates: computer simulation studies. Chem. Geol. 229, 186–197 (2006)CrossRef
36.
Zurück zum Zitat Bauchy, M.: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J. Chem. Phys. 141(2), 024507 (2014)CrossRef Bauchy, M.: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J. Chem. Phys. 141(2), 024507 (2014)CrossRef
37.
Zurück zum Zitat Tossell, J.A., Cohen, R.E.: Calculation of the electric field gradients at tricluster-like O atoms in the polymorphs of Al2SiO5 and in aluminosilicate molecules: models for tricluster O atoms in glasses. J. Non-Cryst. Solids 286, 187–199 (2001)CrossRef Tossell, J.A., Cohen, R.E.: Calculation of the electric field gradients at tricluster-like O atoms in the polymorphs of Al2SiO5 and in aluminosilicate molecules: models for tricluster O atoms in glasses. J. Non-Cryst. Solids 286, 187–199 (2001)CrossRef
Metadaten
Titel
Temperature Dependence of Microstructure in Liquid Aluminosilicate
verfasst von
Mai Van Dung
Le The Vinh
Vo Hoang Duy
Nguyen Kieu Tam
Tran Thanh Nam
Nguyen Manh Tuan
Truong Duc Quynh
Nguyen Van Yen
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-14907-9_43

Neuer Inhalt