Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Tempered Stable Distributions

verfasst von : Michael Grabchak

Erschienen in: Tempered Stable Distributions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we formally define tempered stable distributions and discuss many of their properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A general reference on completely monotone functions is [72].
 
2
The measurability of the family means that for any Borel set A the function f(u) = Q u (A) is measurable.
 
3
This implies that X 1 has a proper p-tempered α-stable distribution.
 
4
The only other case where reasonable representations are known is when p = 2 and α ∈ (0, 2). In this case [9] gives formulas in terms of confluent hypergeometric functions.
 
5
This means that S is the smallest closed subset of \(\mathbb{R}^{d}\) with R(S c ) = 0.
 
6
In light of Theorem 3.17, it is clear that this is not a necessary condition when α ≤ 0.
 
7
We can use l’Hôpital’s rule because the denominator is real. However, in general, l’Hôpital’s rule may fail for complex valued functions of real numbers, see [18].
 
Literatur
2.
Zurück zum Zitat M. Abramowitz and I. A. Stegun (1972). Handbook of Mathematical Functions 10th ed. Dover Publications, New York.MATH M. Abramowitz and I. A. Stegun (1972). Handbook of Mathematical Functions 10th ed. Dover Publications, New York.MATH
6.
Zurück zum Zitat O. E. Barndorff-Nielsen, M. Maejima, and K. Sato (2006). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli, 12(1):1–33.MathSciNetMATH O. E. Barndorff-Nielsen, M. Maejima, and K. Sato (2006). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli, 12(1):1–33.MathSciNetMATH
9.
Zurück zum Zitat M. L. Bianchi, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi (2011). Tempered infinitely divisible distributions and processes. Theory of Probability and Its Applications, 55(1):2–26.MathSciNetCrossRefMATH M. L. Bianchi, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi (2011). Tempered infinitely divisible distributions and processes. Theory of Probability and Its Applications, 55(1):2–26.MathSciNetCrossRefMATH
10.
Zurück zum Zitat P. Billingsley (1995). Probability and Measure, 3rd Ed. Wiley, New York.MATH P. Billingsley (1995). Probability and Measure, 3rd Ed. Wiley, New York.MATH
12.
Zurück zum Zitat R. M. Blumenthal and R. K. Getoor (1961). Sample functions of stochastic processes with stationary independent increments. Journal of Mathematics and Mechanics, 10:493–516.MathSciNetMATH R. M. Blumenthal and R. K. Getoor (1961). Sample functions of stochastic processes with stationary independent increments. Journal of Mathematics and Mechanics, 10:493–516.MathSciNetMATH
18.
Zurück zum Zitat D. S. Carter (1958). L’Hospital’s rule for complex-valued functions. The American Mathematical Monthly, 65(4), 264–266.MathSciNetCrossRefMATH D. S. Carter (1958). L’Hospital’s rule for complex-valued functions. The American Mathematical Monthly, 65(4), 264–266.MathSciNetCrossRefMATH
22.
Zurück zum Zitat R. M. Dudley and R. Norvaiša (1998). An Introduction to p-Variation and Young Integrals with emphasis on sample functions of stochastic processes. Number 1 in MaPhySto Lecture Notes. Center for Mathematical Physics and Stochastics. R. M. Dudley and R. Norvaiša (1998). An Introduction to p-Variation and Young Integrals with emphasis on sample functions of stochastic processes. Number 1 in MaPhySto Lecture Notes. Center for Mathematical Physics and Stochastics.
23.
Zurück zum Zitat W. Feller (1971). An Introduction to Probability Theory and Its Applications Volume II, 2nd Ed. John Wiley & Sons, Inc., New York.MATH W. Feller (1971). An Introduction to Probability Theory and Its Applications Volume II, 2nd Ed. John Wiley & Sons, Inc., New York.MATH
24.
Zurück zum Zitat B. Fristedt and S. J. Taylor (1973). Strong variation for the sample functions of a stable process. Duke Mathematical Journal, 40(2):259–278.MathSciNetCrossRefMATH B. Fristedt and S. J. Taylor (1973). Strong variation for the sample functions of a stable process. Duke Mathematical Journal, 40(2):259–278.MathSciNetCrossRefMATH
27.
Zurück zum Zitat M. Grabchak (2012). On a new class of tempered stable distributions: Moments and regular variation. Journal of Applied Probability, 49(4):1015–1035.MathSciNetCrossRefMATH M. Grabchak (2012). On a new class of tempered stable distributions: Moments and regular variation. Journal of Applied Probability, 49(4):1015–1035.MathSciNetCrossRefMATH
51.
Zurück zum Zitat M. Maejima and G. Nakahara (2009). A note on new classes of infinitely divisible distributions on \(\mathbb{R}^{d}\). Electronic Communications in Probability, 14:358–371.MathSciNetCrossRefMATH M. Maejima and G. Nakahara (2009). A note on new classes of infinitely divisible distributions on \(\mathbb{R}^{d}\). Electronic Communications in Probability, 14:358–371.MathSciNetCrossRefMATH
54.
Zurück zum Zitat M. M. Meerschaert and H. Scheffler (2001). Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. John Wiley & Sons, New York.MATH M. M. Meerschaert and H. Scheffler (2001). Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. John Wiley & Sons, New York.MATH
56.
Zurück zum Zitat I. Monroe (1972). On the γ-variation of processes with stationary independent increments. Annals of Mathematical Statistics, 43(4):1213–1220.MathSciNetCrossRefMATH I. Monroe (1972). On the γ-variation of processes with stationary independent increments. Annals of Mathematical Statistics, 43(4):1213–1220.MathSciNetCrossRefMATH
65.
66.
Zurück zum Zitat J. Rosiński and J. L. Sinclair (2010). Generalized tempered stable processes. Banach Center Publications, 90:153–170.MathSciNetCrossRefMATH J. Rosiński and J. L. Sinclair (2010). Generalized tempered stable processes. Banach Center Publications, 90:153–170.MathSciNetCrossRefMATH
67.
Zurück zum Zitat E. L. Rvačeva (1962). On domains of attraction of multi-dimensional distributions. In Selected Translations in Mathematical Statistics and Probability Vol. 2, pg. 183–205. American Mathematical Society, Providence. Translated by S. G. Ghurye. E. L. Rvačeva (1962). On domains of attraction of multi-dimensional distributions. In Selected Translations in Mathematical Statistics and Probability Vol. 2, pg. 183–205. American Mathematical Society, Providence. Translated by S. G. Ghurye.
68.
Zurück zum Zitat G. Samorodnitsky and M. S. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York.MATH G. Samorodnitsky and M. S. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York.MATH
69.
Zurück zum Zitat K. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.MATH K. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.MATH
72.
Zurück zum Zitat R. L. Schilling, R. Song, and Z. Vondraček (2012). Bernstein Functions: Theory and Applications. DeGruyter, Berlin.CrossRefMATH R. L. Schilling, R. Song, and Z. Vondraček (2012). Bernstein Functions: Theory and Applications. DeGruyter, Berlin.CrossRefMATH
73.
Zurück zum Zitat P. J. Smith (1995). A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. The American Statistician, 49(2): 217–218.MathSciNet P. J. Smith (1995). A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. The American Statistician, 49(2): 217–218.MathSciNet
78.
Zurück zum Zitat V. V. Uchaikin and V. M. Zolotarev (1999). Chance and Stability: Stable Distributions and their Applications. VSP BV, Utrecht.CrossRefMATH V. V. Uchaikin and V. M. Zolotarev (1999). Chance and Stability: Stable Distributions and their Applications. VSP BV, Utrecht.CrossRefMATH
Metadaten
Titel
Tempered Stable Distributions
verfasst von
Michael Grabchak
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-24927-8_3