Skip to main content
Erschienen in: Journal of Materials Science 22/2020

30.04.2020 | Energy materials

Template-assisted synthesis of LiNi0.8Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries

verfasst von: Xiaoyu Wu, Junjie Lu, Yue Han, Huayu Wu, Lingli Bu, Ju Xie, Chen Qian, Haibo Li, Guowang Diao, Ming Chen

Erschienen in: Journal of Materials Science | Ausgabe 22/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on hydrothermal synthesis and solid-phase thermal reaction, LiNi0.8Co0.15Al0.05O2 hollow nanospheres (LNCA HNSs) were synthesized by using SiO2 hollow nanospheres as hard template. Firstly, the SiO2 HNSs were prepared. Then, (Ni0.8Co0.15Al0.05)CO3 nanosheets grew on the surface of SiO2 HNSs to form SiO2@(Ni0.8Co0.15Al0.05)CO3 hollow nanospheres with double shells by hydrothermal method. Finally, the above precursors and lithium source were calcined at high temperature, and then SiO2 template was etched to obtain hollow LNCA HNSs. The characterization results showed that the LNCA HNSs are hollow spheres with a diameter of about 1.8 μm. The shell thickness of LNCA HNSs is about 300 nm. Compared with LNCA nanoparticles and LNCA microparticles, LNCA HNSs showed excellent stability, high capacity, and good rate performance as cathode materials for lithium ion batteries. The LNCA HNSs exhibited a reversible capacity of 202.4 mA h g−1 at 0.1 C and good stability of 179.1 mA h g−1 at 1 C after 80 cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Choi NS, Chen ZH, Freunberger SA, Ji XL, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem-Int Ed 51(40):9994–10024CrossRef Choi NS, Chen ZH, Freunberger SA, Ji XL, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem-Int Ed 51(40):9994–10024CrossRef
2.
Zurück zum Zitat Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef
3.
Zurück zum Zitat Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4(6):2003–2019CrossRef Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4(6):2003–2019CrossRef
4.
Zurück zum Zitat Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295CrossRef Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295CrossRef
5.
Zurück zum Zitat Park M, Zhang XC, Chung MD, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929CrossRef Park M, Zhang XC, Chung MD, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929CrossRef
6.
Zurück zum Zitat Sun HX, Du HR, Yu MK, Huang KF, Yu N, Geng BY (2019) Vesicular Li3V2(PO4)(3)/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries. Nano Res 12(8):1937–1942CrossRef Sun HX, Du HR, Yu MK, Huang KF, Yu N, Geng BY (2019) Vesicular Li3V2(PO4)(3)/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries. Nano Res 12(8):1937–1942CrossRef
7.
Zurück zum Zitat Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54(15):4440–4457CrossRef Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54(15):4440–4457CrossRef
8.
Zurück zum Zitat Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223CrossRef Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223CrossRef
10.
Zurück zum Zitat Ryu HH, Park KJ, Yoon CS, Sun YK (2018) Capacity fading of Ni-Rich Li NixCoyMn1−x−yO−2 (0.6≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater 30(3):1155–1163CrossRef Ryu HH, Park KJ, Yoon CS, Sun YK (2018) Capacity fading of Ni-Rich Li NixCoyMn1xyO2 (0.6≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater 30(3):1155–1163CrossRef
11.
Zurück zum Zitat Vadivel S, Phattharasupakun N, Wutthiprom J, Duangdangchote S, Sawangphruk M (2019) High-performance Li-ion batteries using nickel-rich lithium nickel cobalt aluminium oxide-nanocarbon core-shell cathode: in operando X-ray diffraction. ACS Appl Mater Interfaces 11(34):30719–30727CrossRef Vadivel S, Phattharasupakun N, Wutthiprom J, Duangdangchote S, Sawangphruk M (2019) High-performance Li-ion batteries using nickel-rich lithium nickel cobalt aluminium oxide-nanocarbon core-shell cathode: in operando X-ray diffraction. ACS Appl Mater Interfaces 11(34):30719–30727CrossRef
12.
Zurück zum Zitat Chen T, Li X, Wang H, Yan XX, Wang L, Deng BW, Ge WJ, Qu MZ (2018) The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J Power Sources 374:1–11CrossRef Chen T, Li X, Wang H, Yan XX, Wang L, Deng BW, Ge WJ, Qu MZ (2018) The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J Power Sources 374:1–11CrossRef
13.
Zurück zum Zitat Mukherjee P, Faenza NV, Pereira N, Ciston J, Piper LFJ, Amatucci GG, Cosandey F (2018) Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.050O2 (NCA) under high voltage and elevated temperature conditions. Chem Mater 30(23):8431–8445CrossRef Mukherjee P, Faenza NV, Pereira N, Ciston J, Piper LFJ, Amatucci GG, Cosandey F (2018) Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.050O2 (NCA) under high voltage and elevated temperature conditions. Chem Mater 30(23):8431–8445CrossRef
14.
Zurück zum Zitat Zheng JC, Yang Z, He ZJ, Tong H, Yu WJ, Zhang JF (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621CrossRef Zheng JC, Yang Z, He ZJ, Tong H, Yu WJ, Zhang JF (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621CrossRef
15.
Zurück zum Zitat Li J, Harlow J, Stakheiko N, Zhang N, Paulsen J, Dahn J (2018) Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J Electrochem Soc 165(11):A2682–A2695CrossRef Li J, Harlow J, Stakheiko N, Zhang N, Paulsen J, Dahn J (2018) Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J Electrochem Soc 165(11):A2682–A2695CrossRef
16.
Zurück zum Zitat Zhu XH, Revilla RI, Jaguemont J, Van Mierlo J, Hubin A (2019) Insights into cycling aging of LiNi0.8Co0.15Al0.05O2 cathode induced by surface inhomogeneity: a post-mortem analysis. J Phys Chem C 123(50):30046–30058CrossRef Zhu XH, Revilla RI, Jaguemont J, Van Mierlo J, Hubin A (2019) Insights into cycling aging of LiNi0.8Co0.15Al0.05O2 cathode induced by surface inhomogeneity: a post-mortem analysis. J Phys Chem C 123(50):30046–30058CrossRef
17.
Zurück zum Zitat Li XR, Xiao X, Li Q, Wei JL, Xue HG, Pang H (2018) Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg Chem Front 5(1):11–28CrossRef Li XR, Xiao X, Li Q, Wei JL, Xue HG, Pang H (2018) Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg Chem Front 5(1):11–28CrossRef
18.
Zurück zum Zitat Zhang HH, Guan B, Gu JN, Li Y, Ma C, Zhao J, Wang TY, Cheng CJ (2016) One-step synthesis of nickel cobalt sulphides particles: tuning the composition for high performance supercapacitors. RSC Adv 6(64):58916–58924CrossRef Zhang HH, Guan B, Gu JN, Li Y, Ma C, Zhao J, Wang TY, Cheng CJ (2016) One-step synthesis of nickel cobalt sulphides particles: tuning the composition for high performance supercapacitors. RSC Adv 6(64):58916–58924CrossRef
19.
Zurück zum Zitat Hou PY, Zhang HZ, Deng XL, Xu XJ, Zhang LQ (2017) Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29643–29653CrossRef Hou PY, Zhang HZ, Deng XL, Xu XJ, Zhang LQ (2017) Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29643–29653CrossRef
20.
Zurück zum Zitat Kim Y, Kim D (2012) Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method. ACS Appl Mater Interfaces 4(2):586–589CrossRef Kim Y, Kim D (2012) Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method. ACS Appl Mater Interfaces 4(2):586–589CrossRef
21.
Zurück zum Zitat Natarajan S, Moodakare SB, Shanmugam V, Haridoss P, Gopalan R (2018) Infrared spectroscopy signatures of aluminum segregation and partial oxygen substitution by sulfur in LiNi0.8Co0.15Al0.05O2. ACS Appl Energy Mater 1(6):2536–2545CrossRef Natarajan S, Moodakare SB, Shanmugam V, Haridoss P, Gopalan R (2018) Infrared spectroscopy signatures of aluminum segregation and partial oxygen substitution by sulfur in LiNi0.8Co0.15Al0.05O2. ACS Appl Energy Mater 1(6):2536–2545CrossRef
22.
Zurück zum Zitat Yang XR, Chen JW, Zheng QF, Tu WQ, Xing LD, Liao YH, Xu MQ, Huang QM, Cao GZ, Li WS (2018) Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. J Mater Chem A 6(33):16149–16163CrossRef Yang XR, Chen JW, Zheng QF, Tu WQ, Xing LD, Liao YH, Xu MQ, Huang QM, Cao GZ, Li WS (2018) Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. J Mater Chem A 6(33):16149–16163CrossRef
23.
Zurück zum Zitat Chen T, Li X, Wang H, Yan XX, Wang L, Deng BW, Ge WJ, Qu MZ (2018) The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J Power Sources 374:1–11CrossRef Chen T, Li X, Wang H, Yan XX, Wang L, Deng BW, Ge WJ, Qu MZ (2018) The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J Power Sources 374:1–11CrossRef
24.
Zurück zum Zitat Liu BS, Sui XL, Zhang SH, Yu FD, Xue Y, Zhang Y, Zhou YX, Wang ZB (2018) Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2. J Alloys Compd 739:961–971CrossRef Liu BS, Sui XL, Zhang SH, Yu FD, Xue Y, Zhang Y, Zhou YX, Wang ZB (2018) Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2. J Alloys Compd 739:961–971CrossRef
25.
Zurück zum Zitat Liu WM, Guo HH, Qin ML, Deng JY, Xu L, Yi S, Hong TL (2018) Effect of voltage range and BiPO4 coating on the electrochemical properties of LiNi0.8Co−0.15Al0.05O2. ChemistrySelect 3(26):7660–7666CrossRef Liu WM, Guo HH, Qin ML, Deng JY, Xu L, Yi S, Hong TL (2018) Effect of voltage range and BiPO4 coating on the electrochemical properties of LiNi0.8Co0.15Al0.05O2. ChemistrySelect 3(26):7660–7666CrossRef
26.
Zurück zum Zitat Liu ZH, Wang Z, Lu TZ, Dai PP, Gao P, Zhu YM (2018) Modification of LiNi0.8Co0.15Al0.05O2 using nanoscale carbon coating. J Alloys Compd 763:701–710CrossRef Liu ZH, Wang Z, Lu TZ, Dai PP, Gao P, Zhu YM (2018) Modification of LiNi0.8Co0.15Al0.05O2 using nanoscale carbon coating. J Alloys Compd 763:701–710CrossRef
27.
Zurück zum Zitat Chen JC, Zhu L, Jia D, Jiang XB, Wu YM, Hao QL, Xia XF, Ouyang Y, Peng LM, Tang WP, Liu T (2019) LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating. Electrochim Acta 312:179–187CrossRef Chen JC, Zhu L, Jia D, Jiang XB, Wu YM, Hao QL, Xia XF, Ouyang Y, Peng LM, Tang WP, Liu T (2019) LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating. Electrochim Acta 312:179–187CrossRef
28.
Zurück zum Zitat Liang LW, Sun X, Wu C, Hou LR, Sun JF, Zhang XG, Yuan CZ (2018) Nasicon-type surface functional modification in core shell LiNi(0.5)Mno(3)Co(0.2)O(2)@NaTi2(PO4)(3) cathode enhances its high-voltage cycling stability and rate capacity toward Li-ion batteries. ACS Appl Mater Interfaces 10(6):5498–5510CrossRef Liang LW, Sun X, Wu C, Hou LR, Sun JF, Zhang XG, Yuan CZ (2018) Nasicon-type surface functional modification in core shell LiNi(0.5)Mno(3)Co(0.2)O(2)@NaTi2(PO4)(3) cathode enhances its high-voltage cycling stability and rate capacity toward Li-ion batteries. ACS Appl Mater Interfaces 10(6):5498–5510CrossRef
29.
Zurück zum Zitat Lu JJ, Li WL, Shen C, Tang DM, Dai LX, Diao GW, Chen M (2019) Nano-scale hollow structure carbon-coated LiFePO4 as cathode material for lithium ion battery. Ionics 25(9):4075–4082CrossRef Lu JJ, Li WL, Shen C, Tang DM, Dai LX, Diao GW, Chen M (2019) Nano-scale hollow structure carbon-coated LiFePO4 as cathode material for lithium ion battery. Ionics 25(9):4075–4082CrossRef
30.
Zurück zum Zitat Zhao JK, Wang ZX, Guo HJ, Li XH (2017) Enhanced electrochemical properties of LiNiO2-based cathode materials by nanoscale manganese carbonate treatment. Appl Surf Sci 403:426–434CrossRef Zhao JK, Wang ZX, Guo HJ, Li XH (2017) Enhanced electrochemical properties of LiNiO2-based cathode materials by nanoscale manganese carbonate treatment. Appl Surf Sci 403:426–434CrossRef
31.
Zurück zum Zitat Huang YQ, Huang YH, Hu XL (2017) Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4. Electrochim. Acta 231:294–299CrossRef Huang YQ, Huang YH, Hu XL (2017) Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4. Electrochim. Acta 231:294–299CrossRef
32.
Zurück zum Zitat Ni LB, Zhao GJ, Wang YT, Wu Z, Wang W, Liao YY, Yang G, Diao GW (2017) Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium–sulfur batteries. Chem Asian J 12(24):3128–3134CrossRef Ni LB, Zhao GJ, Wang YT, Wu Z, Wang W, Liao YY, Yang G, Diao GW (2017) Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium–sulfur batteries. Chem Asian J 12(24):3128–3134CrossRef
33.
Zurück zum Zitat Ao X, Jiang JJ, Ruan YJ, Li ZS, Zhang Y, Sun JW, Wang CD (2017) Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. J Power Sources 359:340–348CrossRef Ao X, Jiang JJ, Ruan YJ, Li ZS, Zhang Y, Sun JW, Wang CD (2017) Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. J Power Sources 359:340–348CrossRef
36.
Zurück zum Zitat Zhu L, Liu Y, Wu WY, Wu XW, Tang WP, Wu YP (2015) Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J Mater Chem A 3(29):15156–15162CrossRef Zhu L, Liu Y, Wu WY, Wu XW, Tang WP, Wu YP (2015) Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J Mater Chem A 3(29):15156–15162CrossRef
37.
Zurück zum Zitat Li XL, Liang M, Sheng J, Song DW, Zhang HZ, Shi XX, Zhang LQ (2019) Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB. Energy Storage Mater 18:100–106CrossRef Li XL, Liang M, Sheng J, Song DW, Zhang HZ, Shi XX, Zhang LQ (2019) Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB. Energy Storage Mater 18:100–106CrossRef
38.
Zurück zum Zitat Luo ZY, Zhang H, Yu L, Huang DH, Shen JQ (2019) Improving long-term cyclic performance of LiNi0.8Co0.15Al0.05O2 cathode by introducing a film forming additive. J Electroanal Chem 833:520–526CrossRef Luo ZY, Zhang H, Yu L, Huang DH, Shen JQ (2019) Improving long-term cyclic performance of LiNi0.8Co0.15Al0.05O2 cathode by introducing a film forming additive. J Electroanal Chem 833:520–526CrossRef
39.
Zurück zum Zitat Meng HJ, Zhou PF, Zhang Z, Tao ZL, Chen J (2017) Preparation and characterization of LiNi0.8Co0.15Al0.05O2 with high cycling stability by using AlO2-as Al source. Ceram Int 43(4):3885–3892CrossRef Meng HJ, Zhou PF, Zhang Z, Tao ZL, Chen J (2017) Preparation and characterization of LiNi0.8Co0.15Al0.05O2 with high cycling stability by using AlO2-as Al source. Ceram Int 43(4):3885–3892CrossRef
40.
Zurück zum Zitat Qiu ZP, Zhang YJ, Dong P, Wang D, Xia SB (2017) A ternary oxide precursor with trigonal structure for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material. J Solid State Electrochem 21(10):3037–3046CrossRef Qiu ZP, Zhang YJ, Dong P, Wang D, Xia SB (2017) A ternary oxide precursor with trigonal structure for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material. J Solid State Electrochem 21(10):3037–3046CrossRef
42.
Zurück zum Zitat Xie HB, Hu GR, Du K, Peng ZD, Cao YB (2016) An improved continuous co-precipitation method to synthesize LiNi0.8Co0.15Al0.05O2 cathode material. J Alloys Compd 666:84–87CrossRef Xie HB, Hu GR, Du K, Peng ZD, Cao YB (2016) An improved continuous co-precipitation method to synthesize LiNi0.8Co0.15Al0.05O2 cathode material. J Alloys Compd 666:84–87CrossRef
44.
Zurück zum Zitat Zhao JK, Wang ZX, Wang JX, Guo HJ, Li XH, Gui WH, Chen N, Yan GC (2018) Anchoring K+ in Li+ sites of LiNi0.8Co0.15Al0.05O2 cathode material to suppress its structural degradation during high-voltage cycling. Energy Technol 6(12):2358–2366CrossRef Zhao JK, Wang ZX, Wang JX, Guo HJ, Li XH, Gui WH, Chen N, Yan GC (2018) Anchoring K+ in Li+ sites of LiNi0.8Co0.15Al0.05O2 cathode material to suppress its structural degradation during high-voltage cycling. Energy Technol 6(12):2358–2366CrossRef
46.
Zurück zum Zitat Li X, Ge WJ, Wang H, Yan XX, Deng BW, Chen T, Qu MZ (2017) Enhancing cycle stability and storage property of LiNi0.8Co0.15Al0.05O2 by using fast cooling method. Electrochim Acta 227:225–234CrossRef Li X, Ge WJ, Wang H, Yan XX, Deng BW, Chen T, Qu MZ (2017) Enhancing cycle stability and storage property of LiNi0.8Co0.15Al0.05O2 by using fast cooling method. Electrochim Acta 227:225–234CrossRef
47.
Zurück zum Zitat Chen YJ, Li P, Zhao SJ, Zhuang Y, Zhao SY, Zhou Q, Zheng JW (2017) Influence of integrated microstructure on the performance of LiNi0.8Co0.15Al0.05O2 as a cathodic material for lithium ion batteries. RSC Adv 7(46):29233–29239CrossRef Chen YJ, Li P, Zhao SJ, Zhuang Y, Zhao SY, Zhou Q, Zheng JW (2017) Influence of integrated microstructure on the performance of LiNi0.8Co0.15Al0.05O2 as a cathodic material for lithium ion batteries. RSC Adv 7(46):29233–29239CrossRef
Metadaten
Titel
Template-assisted synthesis of LiNi0.8Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries
verfasst von
Xiaoyu Wu
Junjie Lu
Yue Han
Huayu Wu
Lingli Bu
Ju Xie
Chen Qian
Haibo Li
Guowang Diao
Ming Chen
Publikationsdatum
30.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04627-1

Weitere Artikel der Ausgabe 22/2020

Journal of Materials Science 22/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.