Skip to main content

2023 | OriginalPaper | Buchkapitel

7. Testing and Analysis of Micro Fracture Properties

verfasst von : Ya Wei, Siming Liang, Weikang Kong

Erschienen in: Mechanical Properties of Cementitious Materials at Microscale

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fracture properties of cementitious materials have been mainly investigated at macro scale in the last several decades. In view of this, the existing methods for the fracture toughness measurement of the film materials and the rock materials at the micro scales are first summarized in this chapter, including the Lawn–Evans–Marshall (LEM) method and the energy-based method. As a different technique from the LEM method and the energy-based method, the nanoscratch method measures and calculates the fracture properties of individual phases based on the linear elastic fracture mechanics assumption, which is verified to perform well when characterizing the fracture properties of cementitious materials. The fracture toughness can be quantified for individual phases, including the ITZ phase between the unreacted grain and the surrounding hydrate. A linear relationship exists between the macro fracture properties of the paste and the micro fracture properties of the ITZ and the hydrates phases. The nanomaterials such as carbon nanotubes and nanosilica can improve the fracture toughness of both the hydrates and the ITZ phase. The content of this chapter provides guidance on evaluating the fracture behavior of cementitious materials at micro scale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akono, A. T., & Ulm, F. J. (2014). An improved technique for characterizing the fracture toughness via scratch test experiments. Wear, 313(1–2), 117–124.CrossRef Akono, A. T., & Ulm, F. J. (2014). An improved technique for characterizing the fracture toughness via scratch test experiments. Wear, 313(1–2), 117–124.CrossRef
Zurück zum Zitat Akono, A. T., & Ulm, F. J. (2017). Microscopic toughness of viscous solids via scratching: From amorphous polymers to gas shale. Journal of Nanomechanics and Micromechanics, 7(3), 04017009.CrossRef Akono, A. T., & Ulm, F. J. (2017). Microscopic toughness of viscous solids via scratching: From amorphous polymers to gas shale. Journal of Nanomechanics and Micromechanics, 7(3), 04017009.CrossRef
Zurück zum Zitat Akono, A. T., Reis, P. M., & Ulm, F. J. (2011). Scratching as a fracture process: From butter to steel. Physical Review Letters, 106, 204302.PubMedCrossRef Akono, A. T., Reis, P. M., & Ulm, F. J. (2011). Scratching as a fracture process: From butter to steel. Physical Review Letters, 106, 204302.PubMedCrossRef
Zurück zum Zitat Anstis, G. R., Chantikul P., Lawn, B. R., & Marshall, D. B. (1981). A critical-evaluation of indentation techniques for measuring fracture-toughness: I. Direct crack measurements. Journal of the American Ceramic Society, 64, 533. Anstis, G. R., Chantikul P., Lawn, B. R., & Marshall, D. B. (1981). A critical-evaluation of indentation techniques for measuring fracture-toughness: I. Direct crack measurements. Journal of the American Ceramic Society, 64, 533.
Zurück zum Zitat Argon, A. S., Hori, Y., & Orowan, E. (1960). Indentation strength of glass. Journal of the American Ceramic Society, 43(2), 86–96.CrossRef Argon, A. S., Hori, Y., & Orowan, E. (1960). Indentation strength of glass. Journal of the American Ceramic Society, 43(2), 86–96.CrossRef
Zurück zum Zitat Attaf, M. T. (2003). New ceramics related investigation of the indentation energy concept. Materials Letters, 57(30), 4684–4693.CrossRef Attaf, M. T. (2003). New ceramics related investigation of the indentation energy concept. Materials Letters, 57(30), 4684–4693.CrossRef
Zurück zum Zitat Auerbach, F. (1981). Absolute hardness measurements (in Ger.). Annals of Physical Chemistry, 43, 61–100. Auerbach, F. (1981). Absolute hardness measurements (in Ger.). Annals of Physical Chemistry, 43, 61–100.
Zurück zum Zitat Bernard, O., Ulm, F. J., & Lemarchand, E. (2003). A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research, 33(9), 1293–1309.CrossRef Bernard, O., Ulm, F. J., & Lemarchand, E. (2003). A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research, 33(9), 1293–1309.CrossRef
Zurück zum Zitat Bush, M. B. (1999). Simulation of contact-induced fracture. Engineering Analysis with Boundary Elements, 23, 59.CrossRef Bush, M. B. (1999). Simulation of contact-induced fracture. Engineering Analysis with Boundary Elements, 23, 59.CrossRef
Zurück zum Zitat Cao, M., Xie, C., & Guan, J. (2019). Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers. Composites Part a: Applied Science and Manufacturing, 120, 172–187.CrossRef Cao, M., Xie, C., & Guan, J. (2019). Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers. Composites Part a: Applied Science and Manufacturing, 120, 172–187.CrossRef
Zurück zum Zitat Chen, J. (2006). Energy based models to determine fracture toughness of thin coated systems by nanoindentation. Ph.D. Thesis University of Newcastle, UK. Chen, J. (2006). Energy based models to determine fracture toughness of thin coated systems by nanoindentation. Ph.D. Thesis University of Newcastle, UK.
Zurück zum Zitat Chen, J. (2012). Indentation-based methods to assess fracture toughness for thin coatings. Journal of Physics D-Applied Physics, 45(20), 203001.CrossRef Chen, J. (2012). Indentation-based methods to assess fracture toughness for thin coatings. Journal of Physics D-Applied Physics, 45(20), 203001.CrossRef
Zurück zum Zitat Chen, J., & Bull, S. J. (2006). Assessment of the toughness of thin coatings using nanoindentation under displacement control. Thin Solid Films, 494(1–2), 1–7.CrossRef Chen, J., & Bull, S. J. (2006). Assessment of the toughness of thin coatings using nanoindentation under displacement control. Thin Solid Films, 494(1–2), 1–7.CrossRef
Zurück zum Zitat Chen, J., & Bull, S. J. (2007). Indentation fracture and toughness assessment for thin optical coatings on glass. Journal of Applied Physics, 40, 5401–5417. Chen, J., & Bull, S. J. (2007). Indentation fracture and toughness assessment for thin optical coatings on glass. Journal of Applied Physics, 40, 5401–5417.
Zurück zum Zitat Chen, J., & Bull, S. J. (2009). Finite element analysis of contact induced adhesion failure in multilayer coatings with weak interfaces. Thin Solid Films, 517, 3704.CrossRef Chen, J., & Bull, S. J. (2009). Finite element analysis of contact induced adhesion failure in multilayer coatings with weak interfaces. Thin Solid Films, 517, 3704.CrossRef
Zurück zum Zitat Cheng, Y., Li, Z., & Cheng, C. (1998). Relationships between hardness, elastic modulus, and the work of indentation. Applied Physics Letters, 73, 614–616.CrossRef Cheng, Y., Li, Z., & Cheng, C. (1998). Relationships between hardness, elastic modulus, and the work of indentation. Applied Physics Letters, 73, 614–616.CrossRef
Zurück zum Zitat Cheng, Y., Li, Z., & Cheng, C. (2002). Scaling relationships for indentation measurements. Philosophical Magazine A, 82, 1821–1829.CrossRef Cheng, Y., Li, Z., & Cheng, C. (2002). Scaling relationships for indentation measurements. Philosophical Magazine A, 82, 1821–1829.CrossRef
Zurück zum Zitat Cook, R. F., & Pharr, G. M. (1990). Direct observation and analysis of indentation cracking in glasses and ceramics. Journal of the American Ceramic Society, 73, 787.CrossRef Cook, R. F., & Pharr, G. M. (1990). Direct observation and analysis of indentation cracking in glasses and ceramics. Journal of the American Ceramic Society, 73, 787.CrossRef
Zurück zum Zitat Cuadrado, N., Seuba, J., Casellas, D., Anglada, M., & Jimenez-Pique, E. (2015). Geometry of nanoindentation cube-corner cracks observed by FIB tomography: Implication for fracture resistance estimation. Journal of the European Ceramic Society, 35(10), 2949–2955.CrossRef Cuadrado, N., Seuba, J., Casellas, D., Anglada, M., & Jimenez-Pique, E. (2015). Geometry of nanoindentation cube-corner cracks observed by FIB tomography: Implication for fracture resistance estimation. Journal of the European Ceramic Society, 35(10), 2949–2955.CrossRef
Zurück zum Zitat Cwirzen, A., & Penttala, V. (2005). Aggregate–cement paste transition zone properties affecting the salt–frost damage of high-performance concretes. Cement and Concrete Research, 35(4), 671–679.CrossRef Cwirzen, A., & Penttala, V. (2005). Aggregate–cement paste transition zone properties affecting the salt–frost damage of high-performance concretes. Cement and Concrete Research, 35(4), 671–679.CrossRef
Zurück zum Zitat Del Gado, E., Ioannidou, K., Masoero, E., Baronnet, A., Pellenq, R. J. M., & Yip, S. (2014). A softmatter in construction—statistical physics approach for formation and mechanics of CSH gels in cement. European Physical Journal Special Topics, 223, 2285–2295.CrossRef Del Gado, E., Ioannidou, K., Masoero, E., Baronnet, A., Pellenq, R. J. M., & Yip, S. (2014). A softmatter in construction—statistical physics approach for formation and mechanics of CSH gels in cement. European Physical Journal Special Topics, 223, 2285–2295.CrossRef
Zurück zum Zitat Draft RILEM Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 285–290. Draft RILEM Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 285–290.
Zurück zum Zitat Gaitero, J. J., Campillo, I., & Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 38(8–9), 1112–1118.CrossRef Gaitero, J. J., Campillo, I., & Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 38(8–9), 1112–1118.CrossRef
Zurück zum Zitat Gao, X., Wei, Y., & Huang, W. (2017). Effect of individual phases on multiscale modeling mechanical properties of hardened cement paste. Construction and Building Materials, 153, 25–35.CrossRef Gao, X., Wei, Y., & Huang, W. (2017). Effect of individual phases on multiscale modeling mechanical properties of hardened cement paste. Construction and Building Materials, 153, 25–35.CrossRef
Zurück zum Zitat Gautham, S., & Sasmal, S. (2019). Determination of fracture toughness of nano-scale cement composites using simulated nanoindentation technique. Theoretical and Applied Fracture Mechanics, 103, 102275.CrossRef Gautham, S., & Sasmal, S. (2019). Determination of fracture toughness of nano-scale cement composites using simulated nanoindentation technique. Theoretical and Applied Fracture Mechanics, 103, 102275.CrossRef
Zurück zum Zitat Gittus, J. (1975). Creep, viscoelasticity and creep fracture in solids (Vol. 16). Applied Science Publishers. Gittus, J. (1975). Creep, viscoelasticity and creep fracture in solids (Vol. 16). Applied Science Publishers.
Zurück zum Zitat Guinea, G. V., Planas, J., & Elices, M. (1992). Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures. Materials and Structures, 25(4), 212–218.CrossRef Guinea, G. V., Planas, J., & Elices, M. (1992). Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures. Materials and Structures, 25(4), 212–218.CrossRef
Zurück zum Zitat Guo, H., Jiang, C. B., Yang, B. J., & Wang, J. Q. (2017). Deformation behavior of Al-rich metallic glasses under nanoindentation. Journal of Materials Science and Technology, 33(11), 1272–1277.CrossRef Guo, H., Jiang, C. B., Yang, B. J., & Wang, J. Q. (2017). Deformation behavior of Al-rich metallic glasses under nanoindentation. Journal of Materials Science and Technology, 33(11), 1272–1277.CrossRef
Zurück zum Zitat Guo, H., Jiang, C. B., Yang, B. J., & Wang, J. Q. (2018). On the fracture toughness of bulk metallic glasses under Berkovich nanoindentation. Journal of Non-Crystalline Solids, 481, 321–328.CrossRef Guo, H., Jiang, C. B., Yang, B. J., & Wang, J. Q. (2018). On the fracture toughness of bulk metallic glasses under Berkovich nanoindentation. Journal of Non-Crystalline Solids, 481, 321–328.CrossRef
Zurück zum Zitat Hengst, R. R., & Tressler, R. E. (1983). Fracture of foamed Portland cements. Cement and Concrete Research, 13(1), 127–134.CrossRef Hengst, R. R., & Tressler, R. E. (1983). Fracture of foamed Portland cements. Cement and Concrete Research, 13(1), 127–134.CrossRef
Zurück zum Zitat Hertz, H. (1881). On the contact of elastic solids (in Ger.). Zeitschriff fur die Reine und Angewandte Mathematik, 92, 156–171. English translation in miscellaneous papers (D. E. Jones & G. A. Schott, Trans.) (pp. 146–162). Macmillan, 1896. Hertz, H. (1881). On the contact of elastic solids (in Ger.). Zeitschriff fur die Reine und Angewandte Mathematik, 92, 156–171. English translation in miscellaneous papers (D. E. Jones & G. A. Schott, Trans.) (pp. 146–162). Macmillan, 1896.
Zurück zum Zitat Hoover, C. G., & Ulm, F. (2015). Experimental chemo-mechanics of early-age fracture properties of cement paste. Cement and Concrete Research, 75, 42–52.CrossRef Hoover, C. G., & Ulm, F. (2015). Experimental chemo-mechanics of early-age fracture properties of cement paste. Cement and Concrete Research, 75, 42–52.CrossRef
Zurück zum Zitat Hu, Y., Luo, D., Li, P., Li, Q., & Sun, G. (2014). Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Construction and Building Materials, 70, 332–338.CrossRef Hu, Y., Luo, D., Li, P., Li, Q., & Sun, G. (2014). Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Construction and Building Materials, 70, 332–338.CrossRef
Zurück zum Zitat Jalal, M., Mansouri, E., Sharifipour, M., & Pouladkhan, A. R. (2012). Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Materials and Design, 34, 389–400.CrossRef Jalal, M., Mansouri, E., Sharifipour, M., & Pouladkhan, A. R. (2012). Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Materials and Design, 34, 389–400.CrossRef
Zurück zum Zitat Jennings, H. M., Thomas, J. J., Gevrenov, J. S., Constantinides, G., & Ulm, F. J. (2007). A multi-technique investigation of the nanoporosity of cement paste. Cement and Concrete Research, 37(3), 329–336.CrossRef Jennings, H. M., Thomas, J. J., Gevrenov, J. S., Constantinides, G., & Ulm, F. J. (2007). A multi-technique investigation of the nanoporosity of cement paste. Cement and Concrete Research, 37(3), 329–336.CrossRef
Zurück zum Zitat Jha, K. K., Suksawang, N., & Lahiri, D. (2015). A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load-displacement data. Materials and Structures, 48(9), 2915–2927.CrossRef Jha, K. K., Suksawang, N., & Lahiri, D. (2015). A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load-displacement data. Materials and Structures, 48(9), 2915–2927.CrossRef
Zurück zum Zitat Jia, P., Zhu, Z. D., Ma, E., & Xu, J. (2009). Notch toughness of Cu-based bulk metallic glasses. Scripta Materialia, 61, 137–140.CrossRef Jia, P., Zhu, Z. D., Ma, E., & Xu, J. (2009). Notch toughness of Cu-based bulk metallic glasses. Scripta Materialia, 61, 137–140.CrossRef
Zurück zum Zitat Jo, B. W., Kim, C. H., & Lim, J. H. (2007). Investigations on the development of powder concrete with nano-SiO2 particles. KSCE Journal of Civil Engineering, 11(1), 37–42.CrossRef Jo, B. W., Kim, C. H., & Lim, J. H. (2007). Investigations on the development of powder concrete with nano-SiO2 particles. KSCE Journal of Civil Engineering, 11(1), 37–42.CrossRef
Zurück zum Zitat Kabir, P., Ulm, F. J., & Akono, A. T. (2017). Rate-independent fracture toughness of gray and black kerogen-rich shales. Acta Geotechnica, 12(6), 1207–1227.CrossRef Kabir, P., Ulm, F. J., & Akono, A. T. (2017). Rate-independent fracture toughness of gray and black kerogen-rich shales. Acta Geotechnica, 12(6), 1207–1227.CrossRef
Zurück zum Zitat Karihaloo, B. L. (2003). Failure of concrete. In Comprehensive structural integrity (pp. 477–548). Elsevier Pergamon. Karihaloo, B. L. (2003). Failure of concrete. In Comprehensive structural integrity (pp. 477–548). Elsevier Pergamon.
Zurück zum Zitat Kawashima, A., Kurishita, H., Kimura, H., Zhang, T., & Inoue, A. (2005). Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing. Materials Transactions, 46(7), 1725–1732.CrossRef Kawashima, A., Kurishita, H., Kimura, H., Zhang, T., & Inoue, A. (2005). Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing. Materials Transactions, 46(7), 1725–1732.CrossRef
Zurück zum Zitat Knight, C. G., Swain, M. V., & Chaudhri, M. M. (1977). Impact of small steel spheres on glass surfaces. Journal of Materials Science, 12(8), 1573–1586.CrossRef Knight, C. G., Swain, M. V., & Chaudhri, M. M. (1977). Impact of small steel spheres on glass surfaces. Journal of Materials Science, 12(8), 1573–1586.CrossRef
Zurück zum Zitat Kong, W., Wei, Y., Wang, Y., & Sha, A. (2021). Development of micro and macro fracture properties of cementitious materials exposed to freeze-thaw environment at early ages. Construction and Building Materials, 271, 121502.CrossRef Kong, W., Wei, Y., Wang, Y., & Sha, A. (2021). Development of micro and macro fracture properties of cementitious materials exposed to freeze-thaw environment at early ages. Construction and Building Materials, 271, 121502.CrossRef
Zurück zum Zitat Korsunsky, A. M., Mcgurk, M. R., Bull, S. J., & Page, T. F. (1998). On the hardness of coated systems. Surface & Coatings Technology, 99(1–2), 171–183.CrossRef Korsunsky, A. M., Mcgurk, M. R., Bull, S. J., & Page, T. F. (1998). On the hardness of coated systems. Surface & Coatings Technology, 99(1–2), 171–183.CrossRef
Zurück zum Zitat Kuo, A. C. M. (1999). Polymer data handbook. Oxford University Press. Kuo, A. C. M. (1999). Polymer data handbook. Oxford University Press.
Zurück zum Zitat Laugier, M. T. (1987). Palmqvist indentation toughness in WC–Co composites. Journal of Material Science Letters, 6, 897.CrossRef Laugier, M. T. (1987). Palmqvist indentation toughness in WC–Co composites. Journal of Material Science Letters, 6, 897.CrossRef
Zurück zum Zitat Lawn, B. R. (1993). Fracture of brittle solids. Cambridge University Press. chapter 8.CrossRef Lawn, B. R. (1993). Fracture of brittle solids. Cambridge University Press. chapter 8.CrossRef
Zurück zum Zitat Lawn, B. R. (1998). Indentation of ceramics with spheres: A century after Hertz. Journal of the American Ceramic Society, 81(8), 1977–1994.CrossRef Lawn, B. R. (1998). Indentation of ceramics with spheres: A century after Hertz. Journal of the American Ceramic Society, 81(8), 1977–1994.CrossRef
Zurück zum Zitat Lawn, B. R., & Swain, M. V. (1975). Microfracture beneath point indentations in brittle solids. Journal of Materials Science, 10(1), 113–122.CrossRef Lawn, B. R., & Swain, M. V. (1975). Microfracture beneath point indentations in brittle solids. Journal of Materials Science, 10(1), 113–122.CrossRef
Zurück zum Zitat Lawn, B. R., Evans, A. G., & Marshall, D. B. (1980). Elastic/plastic indentation damage in ceramics: The median/radial crack system. Journal of the American Ceramic Society, 63, 574–581.CrossRef Lawn, B. R., Evans, A. G., & Marshall, D. B. (1980). Elastic/plastic indentation damage in ceramics: The median/radial crack system. Journal of the American Ceramic Society, 63, 574–581.CrossRef
Zurück zum Zitat Lewandowski, J. J., Gu, X. J., Shamimi Nouri, A., Poon, S. J., & Shiflet, G. J. (2008). Tough Fe-based bulk metallic glasses. Applied Physics Letters, 92, 091918–091920.CrossRef Lewandowski, J. J., Gu, X. J., Shamimi Nouri, A., Poon, S. J., & Shiflet, G. J. (2008). Tough Fe-based bulk metallic glasses. Applied Physics Letters, 92, 091918–091920.CrossRef
Zurück zum Zitat Li, X. D., & Bhushan, B. (1998). Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Filmes, 315, 214–221.CrossRef Li, X. D., & Bhushan, B. (1998). Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Filmes, 315, 214–221.CrossRef
Zurück zum Zitat Li, X. D., Diao, D. F., & Bhushan, B. (1997). Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Materialia, 45(11), 4453–4461.CrossRef Li, X. D., Diao, D. F., & Bhushan, B. (1997). Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Materialia, 45(11), 4453–4461.CrossRef
Zurück zum Zitat Liang, S., Wei, Y., & Gao, X. (2017). Strain-rate sensitivity of cement paste by microindentation continuous stiffness measurement: Implication to isotache approach for creep modeling. Cement and Concrete Research, 100, 84–95.CrossRef Liang, S., Wei, Y., & Gao, X. (2017). Strain-rate sensitivity of cement paste by microindentation continuous stiffness measurement: Implication to isotache approach for creep modeling. Cement and Concrete Research, 100, 84–95.CrossRef
Zurück zum Zitat Liu, Y. (2015). Fracture toughness assessment of shales by nanoindentation. University of Massachusetts-Amherst. Liu, Y. (2015). Fracture toughness assessment of shales by nanoindentation. University of Massachusetts-Amherst.
Zurück zum Zitat Lizarazo-Marriaga, J., Higuera, C., & Claisse, P. (2014). Measuring the effect of the ITZ on the transport related properties of mortar using electrochemical impedance. Construction and Building Materials, 52, 9–16.CrossRef Lizarazo-Marriaga, J., Higuera, C., & Claisse, P. (2014). Measuring the effect of the ITZ on the transport related properties of mortar using electrochemical impedance. Construction and Building Materials, 52, 9–16.CrossRef
Zurück zum Zitat Mallick, S., Anoop, M. B., & Rao, K. B. (2019). Early age creep of cement paste-governing mechanisms and role of water—A microindentation study. Cement and Concrete Research, 116, 284–298.CrossRef Mallick, S., Anoop, M. B., & Rao, K. B. (2019). Early age creep of cement paste-governing mechanisms and role of water—A microindentation study. Cement and Concrete Research, 116, 284–298.CrossRef
Zurück zum Zitat Markar, J. M., & Chan, G. W. (2009). Growth of cement hydration products on single-walled carbon nanotubes. Journal of the American Ceramic Society, 92(6), 1303–1310.CrossRef Markar, J. M., & Chan, G. W. (2009). Growth of cement hydration products on single-walled carbon nanotubes. Journal of the American Ceramic Society, 92(6), 1303–1310.CrossRef
Zurück zum Zitat Markar, J. M., Margeson, J. C., & Luh, J. (2005). Carbon nanotube/cement composites—early results and potential applications. In 3rd International Conference on Construction Materials: Performing Innovations and Structural Implications (pp. 1–10). NRC Publications Record. Markar, J. M., Margeson, J. C., & Luh, J. (2005). Carbon nanotube/cement composites—early results and potential applications. In 3rd International Conference on Construction Materials: Performing Innovations and Structural Implications (pp. 1–10). NRC Publications Record.
Zurück zum Zitat Marshall, D. B., Lawn, B. R., & Evans, A. G. (1982). Elastic plastic indentation damage in ceramics: The lateral crack system. Journal of the American Ceramic Society, 65, 561.CrossRef Marshall, D. B., Lawn, B. R., & Evans, A. G. (1982). Elastic plastic indentation damage in ceramics: The lateral crack system. Journal of the American Ceramic Society, 65, 561.CrossRef
Zurück zum Zitat Mencik, J., & Swain, M. V. (1994). Micro-indentation tests with pointed indenters. Materials Forum, 18, 277–288. Mencik, J., & Swain, M. V. (1994). Micro-indentation tests with pointed indenters. Materials Forum, 18, 277–288.
Zurück zum Zitat Metaxa, Z. S., Seo, J. W. T., Konsta-Gdoutos, M. S., Hersam, M. C., & Shah, S. P. (2012). Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement and Concrete Composites, 34(5), 612–617.CrossRef Metaxa, Z. S., Seo, J. W. T., Konsta-Gdoutos, M. S., Hersam, M. C., & Shah, S. P. (2012). Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement and Concrete Composites, 34(5), 612–617.CrossRef
Zurück zum Zitat Nazerigivi, A., Nejati, H. R., Ghazvinian, A., & Najigivi, A. (2018). Effects of SiO2 nanoparticles dispersion on concrete fracture toughness. Construction and Building Materials, 171, 672–679.CrossRef Nazerigivi, A., Nejati, H. R., Ghazvinian, A., & Najigivi, A. (2018). Effects of SiO2 nanoparticles dispersion on concrete fracture toughness. Construction and Building Materials, 171, 672–679.CrossRef
Zurück zum Zitat Němeček, J., & Hrbek, V. (2016). Nanoindentation assessed fracture toughness of cement paste. In Defect and diffusion forum (Vol. 368, pp. 186–189). Trans Tech Publications. Němeček, J., & Hrbek, V. (2016). Nanoindentation assessed fracture toughness of cement paste. In Defect and diffusion forum (Vol. 368, pp. 186–189). Trans Tech Publications.
Zurück zum Zitat Němeček, J., Hrbek, V., Polívka, L., & Jager, A. (2016). Combined investigation of low-scale fracture in hydrated cement assessed by nanoindentation and fib. In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Fracture Mechanics for Concrete and Concrete Structures (pp. 1–6). Němeček, J., Hrbek, V., Polívka, L., & Jager, A. (2016). Combined investigation of low-scale fracture in hydrated cement assessed by nanoindentation and fib. In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Fracture Mechanics for Concrete and Concrete Structures (pp. 1–6).
Zurück zum Zitat Nguyen, D. T., Alizadeh, R., Beaudoin, J. J., Pourbeik, P., & Raki, L. (2014). Microindentation creep of monophasic calcium–silicate–hydrates. Cement and Concrete Composites, 48, 118–126.CrossRef Nguyen, D. T., Alizadeh, R., Beaudoin, J. J., Pourbeik, P., & Raki, L. (2014). Microindentation creep of monophasic calcium–silicate–hydrates. Cement and Concrete Composites, 48, 118–126.CrossRef
Zurück zum Zitat Niihara, K., Morena, R., & Hasselman D. P. H. (1982). Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters, 1, 13. Niihara, K., Morena, R., & Hasselman D. P. H. (1982). Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters, 1, 13.
Zurück zum Zitat Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583.CrossRef Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583.CrossRef
Zurück zum Zitat Plassard, C., Lesniewska, E., Pochard, I., & Nonat, A. (2005). Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir, 21(16), 7263–7270.PubMedCrossRef Plassard, C., Lesniewska, E., Pochard, I., & Nonat, A. (2005). Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir, 21(16), 7263–7270.PubMedCrossRef
Zurück zum Zitat Prasad, B. K., Saha, R. K., & Gopalakrishnan, A. R. (2010). Fracture behavior of plain concrete beams–experimental verification of one parameter model. ICCES, 14(3), 65–83. Prasad, B. K., Saha, R. K., & Gopalakrishnan, A. R. (2010). Fracture behavior of plain concrete beams–experimental verification of one parameter model. ICCES, 14(3), 65–83.
Zurück zum Zitat Qing, L., Dong, M., & Guan, J. (2018). Determining initial fracture toughness of concrete for split-tension specimens based on the extreme theory. Engineering Fracture Mechanics, 189, 427–438.CrossRef Qing, L., Dong, M., & Guan, J. (2018). Determining initial fracture toughness of concrete for split-tension specimens based on the extreme theory. Engineering Fracture Mechanics, 189, 427–438.CrossRef
Zurück zum Zitat Quercia, G., & Brouwers, H. J. H. (2010). Application of nano-silica (nS) in concrete mixtures. In 8th fib PhD Symposium in Kgs. Quercia, G., & Brouwers, H. J. H. (2010). Application of nano-silica (nS) in concrete mixtures. In 8th fib PhD Symposium in Kgs.
Zurück zum Zitat Roesler, F. C. (1956). Brittle fractures near equilibrium. Proceedings of the Physical Society, 69(10), 981–992.CrossRef Roesler, F. C. (1956). Brittle fractures near equilibrium. Proceedings of the Physical Society, 69(10), 981–992.CrossRef
Zurück zum Zitat Saenz, E. E., Carlsson, L. A., & Karlsson, A. (2011). Characterization of fracture toughness (Gc) of PVC and PES foams. Journal of Materials Science, 46(9), 3207–3215.CrossRef Saenz, E. E., Carlsson, L. A., & Karlsson, A. (2011). Characterization of fracture toughness (Gc) of PVC and PES foams. Journal of Materials Science, 46(9), 3207–3215.CrossRef
Zurück zum Zitat Schiffmann, K. I. (2011). Determination of fracture toughness of bulk materials and thin films by nanoindentation: Comparison of different models. Philosophical Magazine, 91(7–9), 1163–1178.CrossRef Schiffmann, K. I. (2011). Determination of fracture toughness of bulk materials and thin films by nanoindentation: Comparison of different models. Philosophical Magazine, 91(7–9), 1163–1178.CrossRef
Zurück zum Zitat Sneddon, I. N. (1965). The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3(1), 47–57.CrossRef Sneddon, I. N. (1965). The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3(1), 47–57.CrossRef
Zurück zum Zitat Soliman, E. M., Aboubakr, S. H., & Taha, M. R. (2017). Estimating fracture toughness of C–S–H using nanoindentation and the extended finite element method. International Journal of Advances in Engineering Sciences and Applied Mathematics, 11, 1–15. Soliman, E. M., Aboubakr, S. H., & Taha, M. R. (2017). Estimating fracture toughness of C–S–H using nanoindentation and the extended finite element method. International Journal of Advances in Engineering Sciences and Applied Mathematics, 11, 1–15.
Zurück zum Zitat Soler, R., Gleich, S., Kirchlechner, C., Scheua, C., Schneider, J. M., & Dehma, G. (2018). Fracture toughness of Mo2BC thin films: Intrinsic toughness versus system toughening. Materials and Design, 154, 20–27.CrossRef Soler, R., Gleich, S., Kirchlechner, C., Scheua, C., Schneider, J. M., & Dehma, G. (2018). Fracture toughness of Mo2BC thin films: Intrinsic toughness versus system toughening. Materials and Design, 154, 20–27.CrossRef
Zurück zum Zitat Stefanidou, M., & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B: Engineering, 43(6), 2706–2710.CrossRef Stefanidou, M., & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B: Engineering, 43(6), 2706–2710.CrossRef
Zurück zum Zitat Taha, M. R., Soliman, E., & Sheyka, M. (2010). Fracture toughness of hydrated cement paste using nanoindentation. In Fracture mechanics of concrete and concrete structures—Recent advances in fracture mechanics concrete (pp. 105–111). Seoul. Taha, M. R., Soliman, E., & Sheyka, M. (2010). Fracture toughness of hydrated cement paste using nanoindentation. In Fracture mechanics of concrete and concrete structures—Recent advances in fracture mechanics concrete (pp. 105–111). Seoul.
Zurück zum Zitat Toonder, J. D., Malzbender, J., With, G. D., & Balkenende, R. (2002). Fracture toughness and adhesion energy of sol-gel coatings on glass. Journal of Materials Research, 17(1), 224–233.CrossRef Toonder, J. D., Malzbender, J., With, G. D., & Balkenende, R. (2002). Fracture toughness and adhesion energy of sol-gel coatings on glass. Journal of Materials Research, 17(1), 224–233.CrossRef
Zurück zum Zitat Vandamme, M., & Ulm, F. J. (2009). Nanogranular origin of concrete creep. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10552–10557.PubMedPubMedCentralCrossRef Vandamme, M., & Ulm, F. J. (2009). Nanogranular origin of concrete creep. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10552–10557.PubMedPubMedCentralCrossRef
Zurück zum Zitat Vandamme, M., & Ulm, F. J. (2013). Nanoindentation investigation of creep properties of calcium silicate hydrates. Cement and Concrete Research, 52, 38–52.CrossRef Vandamme, M., & Ulm, F. J. (2013). Nanoindentation investigation of creep properties of calcium silicate hydrates. Cement and Concrete Research, 52, 38–52.CrossRef
Zurück zum Zitat Wang, B., Han, Y., & Liu, S. (2013). Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Construction and Building Materials, 46, 8–12.CrossRef Wang, B., Han, Y., & Liu, S. (2013). Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Construction and Building Materials, 46, 8–12.CrossRef
Zurück zum Zitat Wang, X. Y., Dong, S. F., Ashour, A., Zhang, W., & Han, B. G. (2020). Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Materials, 240, 117942.CrossRef Wang, X. Y., Dong, S. F., Ashour, A., Zhang, W., & Han, B. G. (2020). Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Materials, 240, 117942.CrossRef
Zurück zum Zitat Wei, Y., Liang, S., & Gao, X. (2017a). Indentation creep of cementitious materials: Experimental investigation from nano to micro length scales. Construction and Building Materials, 143, 222–233.CrossRef Wei, Y., Liang, S., & Gao, X. (2017a). Indentation creep of cementitious materials: Experimental investigation from nano to micro length scales. Construction and Building Materials, 143, 222–233.CrossRef
Zurück zum Zitat Wei, Y., Liang, S., & Gao, X. (2017b). Phase quantification in cementitious materials by dynamic modulus mapping. Materials Characterization, 127, 348–356.CrossRef Wei, Y., Liang, S., & Gao, X. (2017b). Phase quantification in cementitious materials by dynamic modulus mapping. Materials Characterization, 127, 348–356.CrossRef
Zurück zum Zitat Wei, Y., Gao, X., & Liang, S. (2018). A combined SPM/NI/EDS method to quantify properties of inner and outer CSH in OPC and slag-blended cement pastes. Cement and Concrete Composites, 85, 56–66.CrossRef Wei, Y., Gao, X., & Liang, S. (2018). A combined SPM/NI/EDS method to quantify properties of inner and outer CSH in OPC and slag-blended cement pastes. Cement and Concrete Composites, 85, 56–66.CrossRef
Zurück zum Zitat Wei, Y., Kong, W., & Wang, Y. (2021). Strengthening mechanism of fracture properties by nano materials for cementitious materials subject to early-age frost attack. Cement and Concrete Composites, 119, 104025.CrossRef Wei, Y., Kong, W., & Wang, Y. (2021). Strengthening mechanism of fracture properties by nano materials for cementitious materials subject to early-age frost attack. Cement and Concrete Composites, 119, 104025.CrossRef
Zurück zum Zitat Xi, X. K., Zhao, D. Q., Pan, M. X., Wang, W. H., Wu, Y., & Lewandowski, J. J. (2005). Fracture of brittle metallic glasses: Brittleness or plasticity. Physical Review Letters, 94, 125510–125513.PubMedCrossRef Xi, X. K., Zhao, D. Q., Pan, M. X., Wang, W. H., Wu, Y., & Lewandowski, J. J. (2005). Fracture of brittle metallic glasses: Brittleness or plasticity. Physical Review Letters, 94, 125510–125513.PubMedCrossRef
Zurück zum Zitat Xu, S., Feng, Y., Liu, J., & Zeng, Q. (2018). Microfracture characterization of cement paste at early age by indentation test. Journal of Materials in Civil Engineering, 30(6), 04018110.CrossRef Xu, S., Feng, Y., Liu, J., & Zeng, Q. (2018). Microfracture characterization of cement paste at early age by indentation test. Journal of Materials in Civil Engineering, 30(6), 04018110.CrossRef
Zurück zum Zitat Xu, S., Feng, Y., Liu, J., & Zeng, Q. (2020). Micro indentation fracture of cement paste assessed by energy-based method: The method improvement and affecting factors. Construction and Building Materials, 231, 117136.CrossRef Xu, S., Feng, Y., Liu, J., & Zeng, Q. (2020). Micro indentation fracture of cement paste assessed by energy-based method: The method improvement and affecting factors. Construction and Building Materials, 231, 117136.CrossRef
Zurück zum Zitat Zeng, Q., Feng, Y., & Xu, S. (2017). A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach. Journal of Natural Gas Science and Engineering, 42, 187–189. Zeng, Q., Feng, Y., & Xu, S. (2017). A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach. Journal of Natural Gas Science and Engineering, 42, 187–189.
Zurück zum Zitat Zeng, Q., Wu, Y., Liu, Y., & Zhang, G. (2019). Determining the micro-fracture properties of Antrim gas shale by an improved micro-indentation method. Journal of Natural Gas Science and Engineering, 62, 224–235.CrossRef Zeng, Q., Wu, Y., Liu, Y., & Zhang, G. (2019). Determining the micro-fracture properties of Antrim gas shale by an improved micro-indentation method. Journal of Natural Gas Science and Engineering, 62, 224–235.CrossRef
Zurück zum Zitat Zhu, Z. D., Jia, P., & Xu, J. (2011). Optimization for toughness in metalloid-free Ni-based bulk metallic glasses. Scripta Materialia, 64, 785–788.CrossRef Zhu, Z. D., Jia, P., & Xu, J. (2011). Optimization for toughness in metalloid-free Ni-based bulk metallic glasses. Scripta Materialia, 64, 785–788.CrossRef
Metadaten
Titel
Testing and Analysis of Micro Fracture Properties
verfasst von
Ya Wei
Siming Liang
Weikang Kong
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-6883-9_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.