Skip to main content

2022 | OriginalPaper | Buchkapitel

4. The Ackermann Function

verfasst von : George Tourlakis

Erschienen in: Computability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The “Ackermann function” was proposed, of course, by Ackermann. The version here is a simplification by Robert Ritchie.
It provides us with an example of a recursive function that is not in \(\mathcal {P}\mathcal {R}\). Unlike the example in Chap. 3, which provided an alternative such function by diagonalisation, the proof that the Ackermann function is not primitive recursive is by a majorisation argument. Simply, it is too big to be primitive recursive!
But this function is more than just intuitively computable! It is computable —no hedging —as we will show by showing it to be a member of \({\mathcal {R}}\).
Another thing it does is that it provides us with an example of a function \(\lambda \vec x.f(\vec x)\) that is “hard to compute” (in the sense \(f\notin \mathcal {P}\mathcal {R}\)) but whose graph\(\lambda y\vec x.y=f(\vec x)\)is nevertheless “easy to compute” (\({}\in \mathcal {P}\mathcal {R}_{*}\)). (Here the colloquialisms “easy to compute” and “hard to compute” are aliases for “primitive recursive” and “not primitive recursive”, respectively. This is a hopelessly coarse rendering of easy/hard and a much better gauge for the runtime complexity of a problem is on which side of O(2n) it lies. However, our gauge will have to do for now: All I want to leave you with is that for some functions it is easier to compute the graph —to the quantifiable extent that it is in \(\mathcal {P}\mathcal {R}_{*}\)— than the function itself, meaning that the latter fails to be primitive recursive.)

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here the colloquialisms “easy to compute” and “hard to compute” are aliases for “primitive recursive” and “not primitive recursive”, respectively. This is a hopelessly coarse rendering of easy/hard and a much better gauge for the runtime complexity of a problem is on which side of O(2n) it lies. However, our gauge will have to do for now: All I want to leave you with is that for some functions it is easier to compute the graph —to the quantifiable extent that it is in \(\mathcal {P}\mathcal {R}_{*}\)— than the function itself, meaning that the latter fails to be primitive recursive.
 
2
To be precise, what we are proving is “(∀n)(∀x)A n(x) > x + 1”. Thus, as we start on an induction on n, its I.H. is “(∀x)A n(x) > x + 1” for a fixed unspecified n.
 
3
To be precise, the step is to prove —from the basis and I.H.— “(∀x)A n+1(x) > x + 1” for the n that we fixed in the I.H. It turns out that this is best handled by induction on x.
 
4
The function that does the majorising.
 
5
Note that A n(x) = A n−1(A n(x − 1)).
 
Literatur
Zurück zum Zitat R. Péter, Recursive Functions (Academic Press, New York, 1967) R. Péter, Recursive Functions (Academic Press, New York, 1967)
Metadaten
Titel
The Ackermann Function
verfasst von
George Tourlakis
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-83202-5_4

Premium Partner