Skip to main content

2013 | OriginalPaper | Buchkapitel

The Auditory Modeling Toolbox

verfasst von : P. L. Søndergaard, P. Majdak

Erschienen in: The Technology of Binaural Listening

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Auditory Modeling Toolbox, AMToolbox, is a Matlab/Octave toolbox for developing and applying auditory perceptual models with a particular focus on binaural models. The philosophy behind the AMToolbox is the consistent implementation of auditory models, good documentation, and user-friendly access in order to allow students and researchers to work with and to advance existing models. In addition to providing the model implementations, published human data and model demonstrations are provided. Further, model implementations can be evaluated by running so-called experiments aimed at reproducing results from the corresponding publications. AMToolbox includes many of the models described in this volume. It is freely available from http://​amtoolbox.​sourceforge.​net

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Much of the cooperation on the AMToolbox takes place within the framework of the AabbA group, an open group of scientist dealing with aural assessment by means of binaural algorithms.
 
6
http://​git-scm.​com/​, last viewed on 11.1.2013.
 
8
The current up-to-date status of the AMToolbox can be found under http://​amtoolbox.​sourceforge.​net/​notes/​amtnote006.​pdf, last viewed on 14.2.2013.
 
10
from http://​amtoolbox.​sourceforge.​net, last viewed on 9.1.2013.
 
Literatur
1.
Zurück zum Zitat American National Standards Institute, New York. Methods for calculation of the speech intelligibility index, ANSI S3.5-1997 edition, 1997. American National Standards Institute, New York. Methods for calculation of the speech intelligibility index, ANSI S3.5-1997 edition, 1997.
2.
Zurück zum Zitat C. Antweiler, A. Telle, P. Vary, and G. Enzner. Perfect-Sweep NLMS for Time-Variant Acoustic System Identification. In Proc. Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP, pages 517–529, Kyoto, Japan, 2012. C. Antweiler, A. Telle, P. Vary, and G. Enzner. Perfect-Sweep NLMS for Time-Variant Acoustic System Identification. In Proc. Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP, pages 517–529, Kyoto, Japan, 2012.
3.
Zurück zum Zitat R. Baumgartner, P. Majdak, and B. Laback. Assessment of sagittal-plane sound-localization performance in spatial-audio applications. In J. Blauert, editor, The technology of binaural listening, chapter 4. Springer, Berlin-Heidelberg-New York NY, 2013. R. Baumgartner, P. Majdak, and B. Laback. Assessment of sagittal-plane sound-localization performance in spatial-audio applications. In J. Blauert, editor, The technology of binaural listening, chapter 4. Springer, Berlin-Heidelberg-New York NY, 2013.
4.
Zurück zum Zitat R. A. Bentler and C. V. Pavlovic. Transfer Functions and Correction Factors used in Hearing Aid Evaluation and Research. Ear Hear, 10:58–63, 1989. R. A. Bentler and C. V. Pavlovic. Transfer Functions and Correction Factors used in Hearing Aid Evaluation and Research. Ear Hear, 10:58–63, 1989.
5.
Zurück zum Zitat L. Bernstein, S. van de Par, and C. Trahiotis. The normalized interaural correlation: Accounting for NoS\(\pi \) thresholds obtained with Gaussian and “low-noise” masking noise. J Acoust Soc Am, 106:870–876, 1999. L. Bernstein, S. van de Par, and C. Trahiotis. The normalized interaural correlation: Accounting for NoS\(\pi \) thresholds obtained with Gaussian and “low-noise” masking noise. J Acoust Soc Am, 106:870–876, 1999.
6.
Zurück zum Zitat J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. I. Model structure. J Acoust Soc Am, 110:1074–1088, 2001. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. I. Model structure. J Acoust Soc Am, 110:1074–1088, 2001.
7.
Zurück zum Zitat J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. J Acoust Soc Am, 110:1089–1104, 2001. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. J Acoust Soc Am, 110:1089–1104, 2001.
8.
Zurück zum Zitat J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. J Acoust Soc Am, 110:1105–1117, 2001. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. J Acoust Soc Am, 110:1105–1117, 2001.
9.
Zurück zum Zitat J. Buckheit and D. Donoho. Wavelab and Reproducible Research, pages 55–81. Springer, New York NY, 1995. J. Buckheit and D. Donoho. Wavelab and Reproducible Research, pages 55–81. Springer, New York NY, 1995.
10.
Zurück zum Zitat J. Claerbout. Electronic documents give reproducible research a new meaning. Expanded Abstracts, Soc Expl Geophys, 92:601–604, 1992. J. Claerbout. Electronic documents give reproducible research a new meaning. Expanded Abstracts, Soc Expl Geophys, 92:601–604, 1992.
11.
Zurück zum Zitat J. Culling. Evidence specifically favoring the equalization-cancellation theory of binaural unmasking. J Acoust Soc Am, 122:2803–2813, 2007. J. Culling. Evidence specifically favoring the equalization-cancellation theory of binaural unmasking. J Acoust Soc Am, 122:2803–2813, 2007.
12.
Zurück zum Zitat J. Culling, S. Jelfs, and M. Lavandier. Mapping Speech Intelligibility in Noisy Rooms. In Proc. 128th Conv. Audio Enginr. Soc. (AES), page Convention paper 8050, 2010. J. Culling, S. Jelfs, and M. Lavandier. Mapping Speech Intelligibility in Noisy Rooms. In Proc. 128th Conv. Audio Enginr. Soc. (AES), page Convention paper 8050, 2010.
13.
Zurück zum Zitat T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am, 102:2892–2905, 1997. T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am, 102:2892–2905, 1997.
14.
Zurück zum Zitat T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am, 102:2906–2919, 1997. T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am, 102:2906–2919, 1997.
15.
Zurück zum Zitat T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the effective signal processing in the auditory system. I. Model structure. J Acoust Soc Am, 99:3615–3622, 1996. T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the effective signal processing in the auditory system. I. Model structure. J Acoust Soc Am, 99:3615–3622, 1996.
16.
Zurück zum Zitat T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements. J Acoust Soc Am, 99:3623–3631, 1996. T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements. J Acoust Soc Am, 99:3623–3631, 1996.
17.
Zurück zum Zitat M. Dietz, S. D. Ewert, and V. Hohmann. Lateralization of stimuli with independent fine-structure and envelope-based temporal disparities. J Acoust Soc Am, 125:1622–1635, 2009. M. Dietz, S. D. Ewert, and V. Hohmann. Lateralization of stimuli with independent fine-structure and envelope-based temporal disparities. J Acoust Soc Am, 125:1622–1635, 2009.
18.
Zurück zum Zitat M. Dietz, S. D. Ewert, and V. Hohmann. Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Comm, 53:592–605, 2011. M. Dietz, S. D. Ewert, and V. Hohmann. Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Comm, 53:592–605, 2011.
19.
Zurück zum Zitat M. Dietz, S. D. Ewert, V. Hohmann, and B. Kollmeier. Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Res, 1220:234–245, 2008. M. Dietz, S. D. Ewert, V. Hohmann, and B. Kollmeier. Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Res, 1220:234–245, 2008.
20.
Zurück zum Zitat F. Dubbelboer and T. Houtgast. The concept of signal-to-noise ratio in the modulation domain and speech intelligibility. J Acoust Soc Am, 124:3937–3946, 2008. F. Dubbelboer and T. Houtgast. The concept of signal-to-noise ratio in the modulation domain and speech intelligibility. J Acoust Soc Am, 124:3937–3946, 2008.
21.
Zurück zum Zitat N. I. Durlach. Binaural signal detection: equalization and cancellation theory. In J. V. Tobias, editor, Foundations of Modern Auditory Theory. Vol. II, pages 369–462. Academic, New York, 1972. N. I. Durlach. Binaural signal detection: equalization and cancellation theory. In J. V. Tobias, editor, Foundations of Modern Auditory Theory. Vol. II, pages 369–462. Academic, New York, 1972.
22.
Zurück zum Zitat C. Elberling, J. Callø, and M. Don. Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation. J Acoust Soc Am, 128:215–223, 2010. C. Elberling, J. Callø, and M. Don. Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation. J Acoust Soc Am, 128:215–223, 2010.
23.
Zurück zum Zitat G. Enzner. Analysis and optimal control of LMS-type adaptive filtering for continuous-azimuth acquisition of head related impulse responses. In Proc. Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP, pages 393–396, Las Vegas NV, 2008. G. Enzner. Analysis and optimal control of LMS-type adaptive filtering for continuous-azimuth acquisition of head related impulse responses. In Proc. Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP, pages 393–396, Las Vegas NV, 2008.
24.
Zurück zum Zitat G. Enzner. 3D-continuous-azimuth acquisition of head-related impulse responses using multi-channel adaptive filtering. In Proc. IEEE Worksh. Appl. of Signal Process. to Audio and Acoustics, WASPAA, pages 325–328, New Paltz NY, 2009. G. Enzner. 3D-continuous-azimuth acquisition of head-related impulse responses using multi-channel adaptive filtering. In Proc. IEEE Worksh. Appl. of Signal Process. to Audio and Acoustics, WASPAA, pages 325–328, New Paltz NY, 2009.
25.
Zurück zum Zitat S. Ewert and T. Dau. Characterizing frequency selectivity for envelope fluctuations. J Acoust Soc Am, 108:1181–1196, 2000. S. Ewert and T. Dau. Characterizing frequency selectivity for envelope fluctuations. J Acoust Soc Am, 108:1181–1196, 2000.
26.
Zurück zum Zitat G. Fant. Analysis and synthesis of speech processes. In B. Malmberg, editor, Manual of phonetics. North-Holland, Amsterdam, 1968. G. Fant. Analysis and synthesis of speech processes. In B. Malmberg, editor, Manual of phonetics. North-Holland, Amsterdam, 1968.
27.
Zurück zum Zitat R. Fassel and D. Püschel. Modulation detection and masking using deterministic and random maskers, pages 419–429. Universitätsgesellschaft, Oldenburg, 1993. R. Fassel and D. Püschel. Modulation detection and masking using deterministic and random maskers, pages 419–429. Universitätsgesellschaft, Oldenburg, 1993.
28.
Zurück zum Zitat D. Gabor. Theory of communication. J IEE, 93:429–457, 1946. D. Gabor. Theory of communication. J IEE, 93:429–457, 1946.
29.
Zurück zum Zitat E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Trans Audio Speech Lang Proc, submitted. E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Trans Audio Speech Lang Proc, submitted.
30.
Zurück zum Zitat E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Extracting sound-source-distance information from binaural signals. In J. Blauert, editor, The technology of binaural listening, chapter 7. Springer, Berlin-Heidelberg-New York NY, 2013. E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Extracting sound-source-distance information from binaural signals. In J. Blauert, editor, The technology of binaural listening, chapter 7. Springer, Berlin-Heidelberg-New York NY, 2013.
31.
Zurück zum Zitat B. R. Glasberg and B. Moore. Derivation of auditory filter shapes from notched-noise data. Hear Res, 47:103–138, 1990. B. R. Glasberg and B. Moore. Derivation of auditory filter shapes from notched-noise data. Hear Res, 47:103–138, 1990.
32.
Zurück zum Zitat R. Goode, M. Killion, K. Nakamura, and S. Nishihara. New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol, 15:145–154, 1994. R. Goode, M. Killion, K. Nakamura, and S. Nishihara. New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol, 15:145–154, 1994.
33.
Zurück zum Zitat L. Han and T. Poulsen. Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz. Scandinavian Audiology, 27:105–112, 1998. L. Han and T. Poulsen. Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz. Scandinavian Audiology, 27:105–112, 1998.
34.
Zurück zum Zitat M. Hofman and J. Van Opstal. Binaural weighting of pinna cues in human sound localization. Exp Brain Res, 148:458–70, 2003. M. Hofman and J. Van Opstal. Binaural weighting of pinna cues in human sound localization. Exp Brain Res, 148:458–70, 2003.
35.
Zurück zum Zitat V. Hohmann. Frequency analysis and synthesis using a gammatone filterbank. Acta Acust./ Acustica, 88:433–442, 2002. V. Hohmann. Frequency analysis and synthesis using a gammatone filterbank. Acta Acust./ Acustica, 88:433–442, 2002.
36.
Zurück zum Zitat T. Houtgast, H. Steeneken, and R. Plomp. Predicting speech intelligibility in rooms from the modulation transfer function. i. general room acoustics. Acustica, 46:60–72, 1980. T. Houtgast, H. Steeneken, and R. Plomp. Predicting speech intelligibility in rooms from the modulation transfer function. i. general room acoustics. Acustica, 46:60–72, 1980.
37.
Zurück zum Zitat ISO 226:2003. Acoustics - Normal equal-loudness-level contours. International Organization for Standardization, Geneva, Switzerland, 2003. ISO 226:2003. Acoustics - Normal equal-loudness-level contours. International Organization for Standardization, Geneva, Switzerland, 2003.
38.
Zurück zum Zitat ISO 389–2:1994(E). Acoustics - Reference zero for the calibration of audiometric equipment - Part 2: Reference equivalent threshold sound pressure levels for pure tones and insert earphones. International Organization for Standardization, Geneva, Switzerland, 1994. ISO 389–2:1994(E). Acoustics - Reference zero for the calibration of audiometric equipment - Part 2: Reference equivalent threshold sound pressure levels for pure tones and insert earphones. International Organization for Standardization, Geneva, Switzerland, 1994.
39.
Zurück zum Zitat ISO 389–5:2006. Acoustics - Reference zero for the calibration of audiometric equipment - Part 5: Reference equivalent threshold sound pressure levels for pure tones in the frequency range 8 kHz to 16 kHz. International Organization for Standardization, Geneva, Switzerland, 2006. ISO 389–5:2006. Acoustics - Reference zero for the calibration of audiometric equipment - Part 5: Reference equivalent threshold sound pressure levels for pure tones in the frequency range 8 kHz to 16 kHz. International Organization for Standardization, Geneva, Switzerland, 2006.
40.
Zurück zum Zitat ISO 389–8:2004. Acoustics - Reference zero for the calibration of audiometric equipment - Part 8: Reference equivalent threshold sound pressure levels for pure tones and circumaural earphones. International Organization for Standardization, Geneva, Switzerland, 2004. ISO 389–8:2004. Acoustics - Reference zero for the calibration of audiometric equipment - Part 8: Reference equivalent threshold sound pressure levels for pure tones and circumaural earphones. International Organization for Standardization, Geneva, Switzerland, 2004.
41.
Zurück zum Zitat L. Jeffress. A place theory of sound localization. J Comp Physiol Psych, 41:35–39, 1948. L. Jeffress. A place theory of sound localization. J Comp Physiol Psych, 41:35–39, 1948.
42.
Zurück zum Zitat S. Jelfs, J. Culling, and M. Lavandier. Revision and validation of a binaural model for speech intelligibility in noise. Hear Res, 2011. S. Jelfs, J. Culling, and M. Lavandier. Revision and validation of a binaural model for speech intelligibility in noise. Hear Res, 2011.
43.
Zurück zum Zitat J. Jetzt. Critical distance measurement of rooms from the sound energy spectral response. J Acoust Soc Am, 65:1204–1211, 1979. J. Jetzt. Critical distance measurement of rooms from the sound energy spectral response. J Acoust Soc Am, 65:1204–1211, 1979.
44.
Zurück zum Zitat S. Jørgensen and T. Dau. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. J Acoust Soc Am, 130:1475–1487, 2011. S. Jørgensen and T. Dau. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. J Acoust Soc Am, 130:1475–1487, 2011.
45.
Zurück zum Zitat E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human sound localization. J Acoust Soc Am, 112:1583–1596, 2002. E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human sound localization. J Acoust Soc Am, 112:1583–1596, 2002.
46.
Zurück zum Zitat M. Lavandier and J. Culling. Prediction of binaural speech intelligibility against noise in rooms. J Acoust Soc Am, 127:387–399, 2010. M. Lavandier and J. Culling. Prediction of binaural speech intelligibility against noise in rooms. J Acoust Soc Am, 127:387–399, 2010.
47.
Zurück zum Zitat W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. J Acoust Soc Am, 80:1608–1622, 1986. W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. J Acoust Soc Am, 80:1608–1622, 1986.
48.
Zurück zum Zitat E. Lopez-Poveda and R. Meddis. A human nonlinear cochlear filterbank. J Acoust Soc Am, 110:3107–3118, 2001. E. Lopez-Poveda and R. Meddis. A human nonlinear cochlear filterbank. J Acoust Soc Am, 110:3107–3118, 2001.
49.
Zurück zum Zitat R. Lyon. All pole models of auditory filtering. In E. Lewis, G. Long, R. Lyon, P. Narins, C. Steele, and E. Hecht-Poinar, editors, Diversity in Auditory Mechanics: Proc. Intl. Symp., University of California, Berkeley. World Scientific Publishing, 1996. R. Lyon. All pole models of auditory filtering. In E. Lewis, G. Long, R. Lyon, P. Narins, C. Steele, and E. Hecht-Poinar, editors, Diversity in Auditory Mechanics: Proc. Intl. Symp., University of California, Berkeley. World Scientific Publishing, 1996.
50.
Zurück zum Zitat R. Lyon, A. Katsiamis, and E. Drakakis. History and future of auditory filter models. In Proc. 2010 IEEE Intl. Symp. Circuits and Systems, ISCAS, pages 3809–3812, 2010. R. Lyon, A. Katsiamis, and E. Drakakis. History and future of auditory filter models. In Proc. 2010 IEEE Intl. Symp. Circuits and Systems, ISCAS, pages 3809–3812, 2010.
51.
Zurück zum Zitat P. Majdak, P. Balazs, and B. Laback. Multiple exponential sweep method for fast measurement of head-related transfer functions. J Audio Eng Soc, 55:623–637, 2007. P. Majdak, P. Balazs, and B. Laback. Multiple exponential sweep method for fast measurement of head-related transfer functions. J Audio Eng Soc, 55:623–637, 2007.
52.
Zurück zum Zitat P. Majdak, B. Masiero, and J. Fels. Sound localization in individualized and non-individualized crosstalk cancellation systems. J Acoust Soc Am, 133:2055–2068, 2013. P. Majdak, B. Masiero, and J. Fels. Sound localization in individualized and non-individualized crosstalk cancellation systems. J Acoust Soc Am, 133:2055–2068, 2013.
53.
Zurück zum Zitat P. Majdak, T. Necciari, B. Baumgartner, and B. Laback. Modeling sound-localization performance in vertical planes: level dependence. In Poster at the 16th International Symposium on Hearing (ISH), Cambridge, UK, 2012. P. Majdak, T. Necciari, B. Baumgartner, and B. Laback. Modeling sound-localization performance in vertical planes: level dependence. In Poster at the 16th International Symposium on Hearing (ISH), Cambridge, UK, 2012.
54.
Zurück zum Zitat T. May, S. van de Par, and A. Kohlrausch. Binaural localization and detection of speakers in complex acoustic scenes. In J. Blauert, editor, The technology of binaural listening, chapter 15. Springer, Berlin-Heidelberg-New York NY, 2013. T. May, S. van de Par, and A. Kohlrausch. Binaural localization and detection of speakers in complex acoustic scenes. In J. Blauert, editor, The technology of binaural listening, chapter 15. Springer, Berlin-Heidelberg-New York NY, 2013.
55.
Zurück zum Zitat D. McAlpine and B. Grothe. Sound localization and delay lines-do mammals fit the model? Trends in Neurosciences, 26:347–350, 2003. D. McAlpine and B. Grothe. Sound localization and delay lines-do mammals fit the model? Trends in Neurosciences, 26:347–350, 2003.
56.
Zurück zum Zitat R. Meddis, M. J. Hewitt, and T. M. Shackleton. Implementation details of a computation model of the inner hair-cell auditory-nerve synapse. J Acoust Soc Am, 87:1813–1816, 1990. R. Meddis, M. J. Hewitt, and T. M. Shackleton. Implementation details of a computation model of the inner hair-cell auditory-nerve synapse. J Acoust Soc Am, 87:1813–1816, 1990.
57.
Zurück zum Zitat R. Meddis, L. O’Mard, and E. Lopez-Poveda. A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am, 109:2852–2861, 2001. R. Meddis, L. O’Mard, and E. Lopez-Poveda. A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am, 109:2852–2861, 2001.
58.
Zurück zum Zitat B. Moore and B. Glasberg. Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am, 74:750–753, 1983. B. Moore and B. Glasberg. Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am, 74:750–753, 1983.
59.
Zurück zum Zitat S. Neely, S. Norton, M. Gorga, and J. W. Latency of auditory brain-stem responses and otoacoustic emissions using tone-burst stimuli. J Acoust Soc Am, 83:652–656, 1988. S. Neely, S. Norton, M. Gorga, and J. W. Latency of auditory brain-stem responses and otoacoustic emissions using tone-burst stimuli. J Acoust Soc Am, 83:652–656, 1988.
60.
Zurück zum Zitat P. O’Mard. Development system for auditory modelling. Technical report, Centre for the Neural Basis of Hearing, University of Essex, UK, 2004. P. O’Mard. Development system for auditory modelling. Technical report, Centre for the Neural Basis of Hearing, University of Essex, UK, 2004.
61.
Zurück zum Zitat M. Park, P. A. Nelson, and K. Kang. A model of sound localisation applied to the evaluation of systems for stereophony. Acta Acustica/Acust., 94:825–839, 2008. M. Park, P. A. Nelson, and K. Kang. A model of sound localisation applied to the evaluation of systems for stereophony. Acta Acustica/Acust., 94:825–839, 2008.
62.
Zurück zum Zitat R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient auditory filterbank based on the gammatone function. APU report, 2341, 1988. R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient auditory filterbank based on the gammatone function. APU report, 2341, 1988.
63.
Zurück zum Zitat R. D. Patterson, M. H. Allerhand, and C. Giguère. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J Acoust Soc Am, 98:1890–1894, 1995. R. D. Patterson, M. H. Allerhand, and C. Giguère. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J Acoust Soc Am, 98:1890–1894, 1995.
64.
Zurück zum Zitat D. Pralong and S. Carlile. The role of individualized headphone calibration for the generation of high fidelity virtual auditory space. J Acoust Soc Am, 100:3785–3793, 1996. D. Pralong and S. Carlile. The role of individualized headphone calibration for the generation of high fidelity virtual auditory space. J Acoust Soc Am, 100:3785–3793, 1996.
65.
Zurück zum Zitat V. Pulkki and T. Hirvonen. Functional count-comparison model for binaural decoding. Acta Acustica/Acust., 95:883–900, 2009. V. Pulkki and T. Hirvonen. Functional count-comparison model for binaural decoding. Acta Acustica/Acust., 95:883–900, 2009.
66.
Zurück zum Zitat D. Püschel. Prinzipien der zeitlichen Analyse beim Hören. PhD thesis, Universität Göttingen, 1988. D. Püschel. Prinzipien der zeitlichen Analyse beim Hören. PhD thesis, Universität Göttingen, 1988.
67.
Zurück zum Zitat A. Recio and W. Rhode. Basilar membrane responses to broadband stimuli. J Acoust Soc Am, 108:2281–2298, 2000. A. Recio and W. Rhode. Basilar membrane responses to broadband stimuli. J Acoust Soc Am, 108:2281–2298, 2000.
68.
Zurück zum Zitat F. Rønne, J. Harte, C. Elberling, and T. Dau. Modeling auditory evoked brainstem responses to transient stimuli. J Acoust Soc Am, 131:3903–3913, 2012. F. Rønne, J. Harte, C. Elberling, and T. Dau. Modeling auditory evoked brainstem responses to transient stimuli. J Acoust Soc Am, 131:3903–3913, 2012.
69.
Zurück zum Zitat M. Schroeder. Die statistischen Parameter der Frequenzkurven von grossen Räumen. Acustica, 4:594–600, 1954. M. Schroeder. Die statistischen Parameter der Frequenzkurven von grossen Räumen. Acustica, 4:594–600, 1954.
70.
Zurück zum Zitat C. Shera. Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics. J Acoust Soc Am, 110:332–348, 2001. C. Shera. Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics. J Acoust Soc Am, 110:332–348, 2001.
71.
72.
Zurück zum Zitat P. L. Søndergaard, B. Torrésani, and P. Balazs. The Linear Time Frequency Analysis Toolbox. Int J Wavelets Multi, 10:1250032 [27 pages], 2012. P. L. Søndergaard, B. Torrésani, and P. Balazs. The Linear Time Frequency Analysis Toolbox. Int J Wavelets Multi, 10:1250032 [27 pages], 2012.
73.
Zurück zum Zitat C. Spille, B. Meyer, M. Dietz, and V. Hohmann. Binaural scene analysis with multi-dimensional statistical filters. In J. Blauert, editor, The technology of binaural listening, chapter 6. Springer, Berlin-Heidelberg-New York NY, 2013. C. Spille, B. Meyer, M. Dietz, and V. Hohmann. Binaural scene analysis with multi-dimensional statistical filters. In J. Blauert, editor, The technology of binaural listening, chapter 6. Springer, Berlin-Heidelberg-New York NY, 2013.
74.
Zurück zum Zitat S. Stevens, J. Volkmann, and E. Newman. A scale for the measurement of the psychological magnitude pitch. J Acoust Soc Am, 8:185–190, 1937. S. Stevens, J. Volkmann, and E. Newman. A scale for the measurement of the psychological magnitude pitch. J Acoust Soc Am, 8:185–190, 1937.
75.
Zurück zum Zitat M. Takanen, O. Santala, and V. Pulkki. Binaural assessment of parametrically coded spatial audio signals. In J. Blauert, editor, The technology of binaural listening, chapter 13. Springer, Berlin-Heidelberg-New York NY, 2013. M. Takanen, O. Santala, and V. Pulkki. Binaural assessment of parametrically coded spatial audio signals. In J. Blauert, editor, The technology of binaural listening, chapter 13. Springer, Berlin-Heidelberg-New York NY, 2013.
76.
Zurück zum Zitat P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible research in signal processing - what, why, and how. IEEE Signal Proc Mag, 26:37–47, 2009. P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible research in signal processing - what, why, and how. IEEE Signal Proc Mag, 26:37–47, 2009.
77.
Zurück zum Zitat G. von Békésy. Zur theorie des hörens; Über das Richtungshören bei einer Zeitdefferenz oder Lautstärkenungleichheit der beiderseitigen Schalleinwirkungen. Phys Z, 31:824–835, 1930. G. von Békésy. Zur theorie des hörens; Über das Richtungshören bei einer Zeitdefferenz oder Lautstärkenungleichheit der beiderseitigen Schalleinwirkungen. Phys Z, 31:824–835, 1930.
78.
Zurück zum Zitat P. Ziegelwanger, H Majdak. Continuous-direction model of the time-of-arrival in the head-related transfer functions.J Acoust Soc Am, submitted. P. Ziegelwanger, H Majdak. Continuous-direction model of the time-of-arrival in the head-related transfer functions.J Acoust Soc Am, submitted.
79.
Zurück zum Zitat M. S. A. Zilany and I. C. Bruce. Representation of the vowel \(/\epsilon /\) in normal and impaired auditory nerve fibers: Model predictions of responses in cats. J Acoust Soc Am, 122:402–248, 2007. M. S. A. Zilany and I. C. Bruce. Representation of the vowel \(/\epsilon /\) in normal and impaired auditory nerve fibers: Model predictions of responses in cats. J Acoust Soc Am, 122:402–248, 2007.
80.
Zurück zum Zitat G. Zweig. Finding the impedance of the organ of corti. J Acoust Soc Am, 89:1229–1254, 1991. G. Zweig. Finding the impedance of the organ of corti. J Acoust Soc Am, 89:1229–1254, 1991.
81.
Zurück zum Zitat E. Zwicker. Subdivision of the audible frequency range into critical bands (frequenzgruppen). J Acoust Soc Am, 33:248–248, 1961. E. Zwicker. Subdivision of the audible frequency range into critical bands (frequenzgruppen). J Acoust Soc Am, 33:248–248, 1961.
82.
Zurück zum Zitat E. Zwicker and H. Fastl. Psychoacoustics: Facts and models. Springer Berlin, 1999. E. Zwicker and H. Fastl. Psychoacoustics: Facts and models. Springer Berlin, 1999.
Metadaten
Titel
The Auditory Modeling Toolbox
verfasst von
P. L. Søndergaard
P. Majdak
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37762-4_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.