Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 6/2020

01.11.2020 | ARTIFICIAL INTELLIGENCE

The Concept of Constructing an Artificial Dispatcher Intelligent System Based on Deep Reinforcement Learning for the Automatic Control System of Electric Networks

verfasst von: N. V. Tomin

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concept of the Artificial Dispatcher autonomous intelligent control system for integrating into modern automatic control systems of electric networks in order to improve the efficiency of managing the modes of electric power systems is proposed. This intelligent control system is implemented based on the deep machine learning technology and joint use of the Monte Carlo tree search method and deep artificial neural networks. It is shown that the efficient training of the Artificial Dispatcher intelligent control system is achievable through an innovative self-play algorithm, without using large databases of circuit-mode situations and expertise in managing the modes of electric power systems. Calculation examples of using agents created based on the concept of the Artificial Dispatcher intelligent control system in the problems of the automation of substation technological processes (managing voltage and reactive power controllers) and industrial enterprises (DC servomotor control) are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Statistical process control is a method of monitoring the production process using statistical tools for the purpose of product quality control “directly in-process.”
 
2
Considering that the RL methods are based on the MDMP theory, when the strategy of control is optimal, if it achieves the best (maximum) expected reward from any state [30], the initial statistical distributions for functions V(s) or Q(s,a) do not play any role. Although formally, the maximization of a state value function for an unknown initial distribution would require V(s) = \(E\left[ {R({{s}_{0}},{{a}_{0}}) + {{\gamma }}R({{s}_{1}},{{a}_{1}}) + \ldots |{{\pi }}} \right]\) [31].
 
3
Superhuman performance is a term introduced to evaluate the actions of machine intelligence that lead to more efficient problem-solving in the subject area than the expert would have achieved [37].
 
Literatur
1.
Zurück zum Zitat A. D. Drozdov, A. S. Zasypkin, A. A. Alliluev, et al., Automation of Energy Systems, The School-Book (Moscow, Energiya, 1977) [in Russian]. A. D. Drozdov, A. S. Zasypkin, A. A. Alliluev, et al., Automation of Energy Systems, The School-Book (Moscow, Energiya, 1977) [in Russian].
2.
Zurück zum Zitat “The world market study of SCADA, energy management systems, distribution management systems and outage management systems in electric utilities: 2017–2019,” 4-Volume Report (Newton-Evans Research Comp., Dublin, 2017). “The world market study of SCADA, energy management systems, distribution management systems and outage management systems in electric utilities: 2017–2019,” 4-Volume Report (Newton-Evans Research Comp., Dublin, 2017).
3.
Zurück zum Zitat N. I. Voropai, N. V. Tomin, D. N. Sidorov, et al., “A suite of intelligent tools for early detection and prevention of blackouts in power interconnections,” Autom Remote Control. 79, 1741–1755 (2018).CrossRef N. I. Voropai, N. V. Tomin, D. N. Sidorov, et al., “A suite of intelligent tools for early detection and prevention of blackouts in power interconnections,” Autom Remote Control. 79, 1741–1755 (2018).CrossRef
4.
Zurück zum Zitat D. A. Panasetskii, “Improving the structure and algorithms of emergency control of EPSs to prevent an avalanche of voltage and cascade shutdown of lines,” Cand. Sci. (Tech. Sci.) Dissertation (Melentiev Energy Syst. Inst. Siber. Branch of RAS, Irkutsk, 2015). D. A. Panasetskii, “Improving the structure and algorithms of emergency control of EPSs to prevent an avalanche of voltage and cascade shutdown of lines,” Cand. Sci. (Tech. Sci.) Dissertation (Melentiev Energy Syst. Inst. Siber. Branch of RAS, Irkutsk, 2015).
5.
Zurück zum Zitat A. M. Suleimanova, “Intelligent advisor disaster management electricity system,” Cand. Sci. (Tech. Sci.) Dissertation (Ufa State Aviation Tech. Univ., Ufa, 1993). A. M. Suleimanova, “Intelligent advisor disaster management electricity system,” Cand. Sci. (Tech. Sci.) Dissertation (Ufa State Aviation Tech. Univ., Ufa, 1993).
6.
Zurück zum Zitat D. A. Pospelov, “Principles of situation management,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 2, 3–10 (1971). D. A. Pospelov, “Principles of situation management,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 2, 3–10 (1971).
7.
Zurück zum Zitat I. V. Kirilin, “Classification of states of electric networks of industrial enterprises for reactive power compensation control,” Cand. Sci. (Tech. Sci.) Dissertation (Sib. Fed. Univ., Krasnoyarsk, 2011). I. V. Kirilin, “Classification of states of electric networks of industrial enterprises for reactive power compensation control,” Cand. Sci. (Tech. Sci.) Dissertation (Sib. Fed. Univ., Krasnoyarsk, 2011).
8.
Zurück zum Zitat T. Hiyama, W. Hubbi, and T. H. Ortmeyer, “Fuzzy logic control scheme with variable gain for static var compensator to enhance power system stability,” IEEE Trans. Power Syst. 4, 186–191 (1999).CrossRef T. Hiyama, W. Hubbi, and T. H. Ortmeyer, “Fuzzy logic control scheme with variable gain for static var compensator to enhance power system stability,” IEEE Trans. Power Syst. 4, 186–191 (1999).CrossRef
9.
Zurück zum Zitat Cascade-NT 2.0 Complex. http://www.cascadent.ru/cascade2016.pdf. Cascade-NT 2.0 Complex. http://​www.​cascadent.​ru/​cascade2016.​pdf.​
10.
Zurück zum Zitat Volt-VAr Management Solutions for Smart Grid Distribution Automation Applications. Product Brochure of the ABB Smart Grid Center of Excellence. https://library.e.abb.com/public/d9e73a8d3d91161bc1257b6a006cc340/VVMS%20brochure_final_v4.pdf. Volt-VAr Management Solutions for Smart Grid Distribution Automation Applications. Product Brochure of the ABB Smart Grid Center of Excellence. https://library.e.abb.com/public/d9e73a8d3d91161bc1257b6a006cc340/VVMS%20brochure_final_v4.pdf.
11.
Zurück zum Zitat S. P. Grigoryev, Automated Process Control System: Errors of the First and Second Kind, Deming Pro. www.deming.pro/spc-cases-apcs.html. S. P. Grigoryev, Automated Process Control System: Errors of the First and Second Kind, Deming Pro. www.deming.pro/spc-cases-apcs.html.
12.
Zurück zum Zitat M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 3rd ed. (Addison Wesley, Harlow, UK, 2011). M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 3rd ed. (Addison Wesley, Harlow, UK, 2011).
13.
Zurück zum Zitat A. Kaci, I. Kamwa, L. Dessaint, et al., “Synchrophasor data baselining and mining for online monitoring of dynamic security limits,” IEEE Trans. Power Syst. 29, 2681–2695 (2014).CrossRef A. Kaci, I. Kamwa, L. Dessaint, et al., “Synchrophasor data baselining and mining for online monitoring of dynamic security limits,” IEEE Trans. Power Syst. 29, 2681–2695 (2014).CrossRef
14.
Zurück zum Zitat C. Liu, C. L. Bak, Z. Chen, et al., “Dynamic security assessment of western Danish power system based on ensemble decision trees,” in Proceedings of the 12th IET International Conference on Developments in Power System Protection, Copenhagen, 2014. C. Liu, C. L. Bak, Z. Chen, et al., “Dynamic security assessment of western Danish power system based on ensemble decision trees,” in Proceedings of the 12th IET International Conference on Developments in Power System Protection, Copenhagen, 2014.
15.
Zurück zum Zitat N. V. Tomin, V. G. Kurbatsky, and I. S. Reutsky, “Hybrid intelligent technique for voltage/VAR control in power systems,” IET Generat. Transmiss. Distrib. 13, 4724–4732 (2019).CrossRef N. V. Tomin, V. G. Kurbatsky, and I. S. Reutsky, “Hybrid intelligent technique for voltage/VAR control in power systems,” IET Generat. Transmiss. Distrib. 13, 4724–4732 (2019).CrossRef
16.
Zurück zum Zitat I. Kogan, K. Boehme, and H. J. Herrmann, “Introducing advanced machine learning technology in protection relays,” in Proceedings of the Conference and Exhibitions on Relay Protection and Automation of Power Systems 2017, St. Petersburg, 2017. I. Kogan, K. Boehme, and H. J. Herrmann, “Introducing advanced machine learning technology in protection relays,” in Proceedings of the Conference and Exhibitions on Relay Protection and Automation of Power Systems 2017, St. Petersburg, 2017.
17.
Zurück zum Zitat R. Busch, “The future of manufacturing. artificial intelligence: Optimizing industrial operations,” Siemens Web Page (2018). www.siemens.com/innovation/en/home/pictures-of-the-future/industry-and-automation/the-future-of-manufacturing-ai-in-industry.html. R. Busch, “The future of manufacturing. artificial intelligence: Optimizing industrial operations,” Siemens Web Page (2018). www.siemens.com/innovation/en/home/pictures-of-the-future/industry-and-automation/the-future-of-manufacturing-ai-in-industry.html.
18.
Zurück zum Zitat S. Webel, K. Nikolaus, and A. F. Pease, “Autonomous systems. getting machines to mimic intuition,” Siemens Web Page (2016). www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/autonomous-systems-machine-learning.html. S. Webel, K. Nikolaus, and A. F. Pease, “Autonomous systems. getting machines to mimic intuition,” Siemens Web Page (2016). www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/autonomous-systems-machine-learning.html.
19.
Zurück zum Zitat E. Mocanu, P. H. Nguyen, and M. Gibescu, “Deep learning for power system data analysis,” in Big Data Application in Power Systems, Ed. by R. Arghandeh and Y. Zhou (Elsevier, Amsterdam, 2018), pp. 125–158. E. Mocanu, P. H. Nguyen, and M. Gibescu, “Deep learning for power system data analysis,” in Big Data Application in Power Systems, Ed. by R. Arghandeh and Y. Zhou (Elsevier, Amsterdam, 2018), pp. 125–158.
20.
Zurück zum Zitat Y. Tang, H. He, J. Wen, and J. Liu, “Power system stability control for a wind farm based on adaptive dynamic programming,” IEEE Trans. Smart Grid 6, 166–177 (2015).CrossRef Y. Tang, H. He, J. Wen, and J. Liu, “Power system stability control for a wind farm based on adaptive dynamic programming,” IEEE Trans. Smart Grid 6, 166–177 (2015).CrossRef
21.
Zurück zum Zitat Y. Liu, “Machine learning for wind power prediction,” Master’s Thesis (Univ. New Brunswick, Canada, 2016). Y. Liu, “Machine learning for wind power prediction,” Master’s Thesis (Univ. New Brunswick, Canada, 2016).
22.
Zurück zum Zitat V. Francois-Lavet, D. Taralla, D. Ernst, et al., “Deep reinforcement learning solutions for energy microgrids management,” in Proceedings of the European Workshop on Reinforcement Learning, Barselona, 2016. V. Francois-Lavet, D. Taralla, D. Ernst, et al., “Deep reinforcement learning solutions for energy microgrids management,” in Proceedings of the European Workshop on Reinforcement Learning, Barselona, 2016.
23.
Zurück zum Zitat A. Zhukov, N. Tomin, D. Sidorov, V. Kurbatsky, and D. Panasetsky, “On-line power systems security assessment using data stream random forest algorithm,” in Innovative Computing, Optimization and Its Applications, Vol. 741 of Studies in Computational Intelligence, Ed. by I. Zelinka, P. Vasant, V. Duy, and T. Dao (Springer, New York, 2018). A. Zhukov, N. Tomin, D. Sidorov, V. Kurbatsky, and D. Panasetsky, “On-line power systems security assessment using data stream random forest algorithm,” in Innovative Computing, Optimization and Its Applications, Vol. 741 of Studies in Computational Intelligence, Ed. by I. Zelinka, P. Vasant, V. Duy, and T. Dao (Springer, New York, 2018).
24.
Zurück zum Zitat N. Tomin, M. Negnevitsky, and Ch. Rehtanz, “Preventing large-scale emergencies in modern power systems: AI approach,” Adv. Comput. Intell. Intell. Inform. 18, 714–727 (2014).CrossRef N. Tomin, M. Negnevitsky, and Ch. Rehtanz, “Preventing large-scale emergencies in modern power systems: AI approach,” Adv. Comput. Intell. Intell. Inform. 18, 714–727 (2014).CrossRef
25.
Zurück zum Zitat Y. Xu, W. Zhang, W. Liu, and F. Ferrese, “Multiagent-based reinforcement learning for optimal reactive power dispatch,” IEEE Trans. Syst., Man, Cybern. 42, 1742–1751 (2012).CrossRef Y. Xu, W. Zhang, W. Liu, and F. Ferrese, “Multiagent-based reinforcement learning for optimal reactive power dispatch,” IEEE Trans. Syst., Man, Cybern. 42, 1742–1751 (2012).CrossRef
26.
Zurück zum Zitat R. Belkacemi, A. Abdulrasheed Babalola, and S. Zarrabian, “Real-time cascading failures prevention through MAS algorithm and immune system reinforcement learning,” Electric Power Compon. Syst. 45, 505–519 (2017).CrossRef R. Belkacemi, A. Abdulrasheed Babalola, and S. Zarrabian, “Real-time cascading failures prevention through MAS algorithm and immune system reinforcement learning,” Electric Power Compon. Syst. 45, 505–519 (2017).CrossRef
27.
Zurück zum Zitat D. Ye, M. Zhang, and D. Sutanto, “A hybrid multiagent framework with q-learning for power grid systems restoration,” IEEE Trans. Power Syst. 26, 2434–2441 (2011).CrossRef D. Ye, M. Zhang, and D. Sutanto, “A hybrid multiagent framework with q-learning for power grid systems restoration,” IEEE Trans. Power Syst. 26, 2434–2441 (2011).CrossRef
28.
Zurück zum Zitat S. Zarabbian, R. Belkacemi, and A. A. Babalola, “Reinforcement learning approach for congestion management and cascading failure prevention with experimental application,” Electr. Power Syst. Res. 141, 179–190 (2016).CrossRef S. Zarabbian, R. Belkacemi, and A. A. Babalola, “Reinforcement learning approach for congestion management and cascading failure prevention with experimental application,” Electr. Power Syst. Res. 141, 179–190 (2016).CrossRef
29.
Zurück zum Zitat M. Glavic, D. Ernst, and L. Wehenkel, “A reinforcement learning based discrete supplementary control for power system transient stability enhancement,” Eng. Intell. Syst. Electr. Eng. Commun. 13, 81–88 (2005). M. Glavic, D. Ernst, and L. Wehenkel, “A reinforcement learning based discrete supplementary control for power system transient stability enhancement,” Eng. Intell. Syst. Electr. Eng. Commun. 13, 81–88 (2005).
30.
Zurück zum Zitat R. S. Sutton and E. G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, MA, 2014).MATH R. S. Sutton and E. G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, MA, 2014).MATH
31.
Zurück zum Zitat M. El Chamie and B. Acikmese, “Finite-horizon Markov decision processes with state constraints,” arXiv:1507.01585 [math.OC] (2015). M. El Chamie and B. Acikmese, “Finite-horizon  Markov decision processes with state constraints,” arXiv:1507.01585 [math.OC] (2015).
32.
Zurück zum Zitat M. Glavic, R. Fonteneau, and D. Ernst, “Reinforcement learning for electric power system decision and control: Past considerations and perspectives,” IFAC-PapersOnLine 50, 6918–6927 (2017).CrossRef M. Glavic, R. Fonteneau, and D. Ernst, “Reinforcement learning for electric power system decision and control: Past considerations and perspectives,” IFAC-PapersOnLine 50, 6918–6927 (2017).CrossRef
33.
Zurück zum Zitat R. Yousefian and K. Kamalasadan, “Design and real-time implementation of optimal power system wide-area system-centric controller based on temporal difference learning,” IEEE Trans. Industry Appl. 1, 395–401 (2015). R. Yousefian and K. Kamalasadan, “Design and real-time implementation of optimal power system wide-area system-centric controller based on temporal difference learning,” IEEE Trans. Industry Appl. 1, 395–401 (2015).
34.
Zurück zum Zitat D. Ernst, L. Wehenkel, and M. Glavic, “Power systems stability control: Reinforcement learning framework,” IEEE Trans. Power Syst. 19, 427–435 (2004).CrossRef D. Ernst, L. Wehenkel, and M. Glavic, “Power systems stability control: Reinforcement learning framework,” IEEE Trans. Power Syst. 19, 427–435 (2004).CrossRef
35.
Zurück zum Zitat D. Ernst, M. Glavic, F. Capitanescu, et al., “Reinforcement learning versus model predictive control: A comparison on a power system problem,” IEEE Trans. Syst., Man, Cybern. 39, 517–529 (2009).CrossRef D. Ernst, M. Glavic, F. Capitanescu, et al., “Reinforcement learning versus model predictive control: A comparison on a power system problem,” IEEE Trans. Syst., Man, Cybern. 39, 517–529 (2009).CrossRef
36.
Zurück zum Zitat S. Vandael, B. Claessens, D. Ernst, et al., “Reinforcement learning of heuristic EV fleet charging in a day-ahead electricity market,” IEEE Trans. Smart Grid 6, 1795–1805 (2015).CrossRef S. Vandael, B. Claessens, D. Ernst, et al., “Reinforcement learning of heuristic EV fleet charging in a day-ahead electricity market,” IEEE Trans. Smart Grid 6, 1795–1805 (2015).CrossRef
37.
Zurück zum Zitat D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of go without human knowledge,” Nature (London, U.K.) 550, 354–359 (2017).CrossRef D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of go without human knowledge,” Nature (London, U.K.) 550, 354–359 (2017).CrossRef
38.
Zurück zum Zitat V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement learning,” arXiv:1312.5602. V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement learning,” arXiv:1312.5602.
39.
Zurück zum Zitat A. Irpan, “Deep reinforcement learning doesn’t work yet,” Sorta Insightful (2018). www.alexirpan.com/2018/02/14/rl-hard.html. A. Irpan, “Deep reinforcement learning doesn’t work yet,” Sorta Insightful (2018). www.alexirpan.com/2018/02/14/rl-hard.html.
40.
Zurück zum Zitat D. Silver, A. Huang, Ch. Maddison, et al., “Mastering the game of go with deep neural networks and tree search,” Nature (London, U.K.) 529 (7587), 484–489 (2016).CrossRef D. Silver, A. Huang, Ch. Maddison, et al., “Mastering the game of go with deep neural networks and tree search,” Nature (London, U.K.) 529 (7587), 484–489 (2016).CrossRef
41.
Zurück zum Zitat Software Package for Creating Automated Systems for Operational-Technological Management in Network Companies SK-11. http://www.monitel.ru/files/downloads/products/Broshyura%20-%20CK-11.pdf?201711. Software Package for Creating Automated Systems for Operational-Technological Management in Network Companies SK-11. http://​www.​monitel.​ru/​files/​downloads/​products/​Broshyura%20-%20CK-11.pdf?201711.
42.
Zurück zum Zitat N. V. Tomin, V. G. Kurbatsky, and M. Negnevitsky, “The concept of the deep learning-based system artificial dispatcher to power system control and dispatch,” arXiv:1805.05408 [cs.CY] (2018). N. V. Tomin, V. G. Kurbatsky, and M. Negnevitsky, “The concept of the deep learning-based system artificial dispatcher to power system control and dispatch,” arXiv:1805.05408 [cs.CY] (2018).
43.
Zurück zum Zitat F. Milano, Power System Modelling and Scripting (Springer, London, 2010).CrossRef F. Milano, Power System Modelling and Scripting (Springer, London, 2010).CrossRef
44.
Zurück zum Zitat ANARES Software and Computer Complex. http://anares.ru. ANARES Software and Computer Complex. http://​anares.​ru.​
45.
Zurück zum Zitat N. I. Voropai, N. V. Tomin, V. G. Kurbatskii, et al., A Set of Intelligent Tools to Prevent Major Accidents in Power Systems (Nauka, Novosibirsk, 2016) [in Russian]. N. I. Voropai, N. V. Tomin, V. G. Kurbatskii, et al., A Set of Intelligent Tools to Prevent Major Accidents in Power Systems (Nauka, Novosibirsk, 2016) [in Russian].
46.
Zurück zum Zitat F. Li and Yan Du, “From AlphaGo to power system AI: What engineers can learn from solving the most complex board game,” IEEE Power Energy Mag. 16 (2), 76–84 (2018).CrossRef F. Li and Yan Du, “From AlphaGo to power system AI: What engineers can learn from solving the most complex board game,” IEEE Power Energy Mag. 16 (2), 76–84 (2018).CrossRef
47.
Zurück zum Zitat M. Egorov, Z. H. Sunberg, E. Balaban, et al., “POMDPs.Jl: A framework for sequential decision making under uncertainty,” Machine Learning Res. 18 (26), 1–5 (2017).MathSciNet M. Egorov, Z. H. Sunberg, E. Balaban, et al., “POMDPs.Jl: A framework for sequential decision making under uncertainty,” Machine Learning Res. 18 (26), 1–5 (2017).MathSciNet
48.
Zurück zum Zitat M. Patacchiola, Dissecting Reinforcement Learning, Github. https://github.com/mpatacchiola/dissecting-reinforcement-learning. M. Patacchiola, Dissecting Reinforcement Learning, Github. https://​github.​com/​mpatacchiola/​dissecting-reinforcement-learning.​
49.
Zurück zum Zitat L. Sheng, “Strategy research of substation voltage reactive control basing on the ninth region plot,” Qinghai Electr. Power 24, 1–4 (2005). L. Sheng, “Strategy research of substation voltage reactive control basing on the ninth region plot,” Qinghai Electr. Power 24, 1–4 (2005).
50.
Zurück zum Zitat X. Wu, J.-Ch. Wang, P. Yang, et al., “Fuzzy control on voltage/reactive power in electric power substation,” in Fuzzy Information and Engineering, Proceedings of the 3rd International Conference on Fuzzy Information and Engineering (ICFIE 2009), Chongqing, China, September 26–29, 2009, Ed. by B. Cao, T.-F. Li, and C.-Y. Zhang, Vol. 2, pp. 1083–1091. X. Wu, J.-Ch. Wang, P. Yang, et al., “Fuzzy control on voltage/reactive power in electric power substation,” in Fuzzy Information and Engineering, Proceedings of the 3rd International Conference on Fuzzy Information and Engineering (ICFIE 2009), Chongqing, China, September 26–29, 2009, Ed. by B. Cao, T.-F. Li, and C.-Y. Zhang, Vol. 2, pp. 1083–1091.
51.
Zurück zum Zitat R. Manikandan and R. Arulmozhiyal, “Position control of DC servo drive using fuzzy logic controller,” in Proceedings of the International Conference on Advances in Electrical Engineering (ICAEE), India, 2014. R. Manikandan and R. Arulmozhiyal, “Position control of DC servo drive using fuzzy logic controller,” in Proceedings of the International Conference on Advances in Electrical Engineering (ICAEE), India, 2014.
52.
Zurück zum Zitat H. Yunhai, X. Bingfeng, and L. Gen Ping, “A power control method for inverted pendulum based on fuzzy control,” in Proceedings of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, China, 2010. H. Yunhai, X. Bingfeng, and L. Gen Ping, “A power control method for inverted pendulum based on fuzzy control,” in Proceedings of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, China, 2010.
Metadaten
Titel
The Concept of Constructing an Artificial Dispatcher Intelligent System Based on Deep Reinforcement Learning for the Automatic Control System of Electric Networks
verfasst von
N. V. Tomin
Publikationsdatum
01.11.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 6/2020
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230720050111

Weitere Artikel der Ausgabe 6/2020

Journal of Computer and Systems Sciences International 6/2020 Zur Ausgabe

Premium Partner