Skip to main content
Erschienen in: Journal of Materials Science 19/2011

01.10.2011 | Abbaschian Festschrift

The description of morphologically stable regimes for steady state solidification based on the maximum entropy production rate postulate

verfasst von: J. A. Sekhar

Erschienen in: Journal of Materials Science | Ausgabe 19/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The maximum entropy production rate (MEPR) in the solid–liquid zone is developed and tested as a possible postulate for predicting the stable morphology for the special case of steady state directional solidification (DS). The principle of MEPR states that, if there are sufficient degrees of freedom within a system, it will adopt a stable state at which the entropy generation (production) rate is maximized. Where feasible, the system will also try and adopt a steady state. The MEPR postulate determines the most probable state and therefore allows pathway selections to occur in an open thermodynamic system. In the context of steady state solidification, pathway selections are reflected in the corresponding morphological selections made by the system in the solid–liquid (mushy) zone in order to cope with the required entropy production. Steady state solidification is feasible at both close to, and far from equilibrium conditions. Based on MEPR, a model is proposed for examining the stability of various morphologies that have been experimentally observed during steady state directional solidification. This model employs a control volume approach for entropy balance, including the entropy generation term (S gen), which depends on the diffuse zone and average temperature of the solid–liquid region within the control volume. In this manner, the model takes a different approach from the successful kinetic models that have been able to predict key features of stable morphological patterns. Unstable planar interfaces, faceted cellular arrays, cell–dendrite transitions, half cells both faceted and smooth, and other transitions such as the absolute stability transition at high solid/liquid velocities are examined with the model. Uncommon solidification morphological features such as non-crystallographic dendrites and discontinuous cell-tip splitting are also examined with the model. The preferred morphological change-direction for the emergence of the stable morphological feature is inferred with the MEPR postulate in a manner analogous to the free energy minimization principle(s) when used for predicting phase stability and metastable phase formation. Aspects of mixed-mode order transformation characteristics are also discussed for non-equilibrium solidification containing a diffuse interface, in contrast to classifying solidification as purely a first order transformation. The MEPR model predictions are shown to follow the experimental transitions observed to date in several historical studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The first four references cited as Refs [14] are the main textbooks with select primary articles for solidification that I use in my Introduction to Solidification course.
 
2
Note that capital letters are used for the extensive quantity and lower case letters for the extensive quantity per volume. Example, S gen (entropy generation rate) has units of J/K s and correspondingly s gen has units of J/K s m3. Molar entropy is š (J/mol K). In this article dS gen/dt is used as the symbol for entropy generation.
 
3
Although MEPR is a postulate, not yet completely verified in a universal sense, several authors consider the postulate to be tied to the second law of thermodynamics formulated by Gibbs–Claussius–Boltzman [6, 111, 125]. Martyushev et al. [6, 110] while crediting Ziegler [16] as being the first to propose a version of MEPR, also reason that if the entropy generation rate is at a maximum, then the second law statement by Claussius is necessarily closely related to MEPR.
 
4
Note that the entropy rate balance is normally written as https://static-content.springer.com/image/art%3A10.1007%2Fs10853-011-5688-0/MediaObjects/10853_2011_5688_Figa_HTML.gif where the Q/T is the entropy exchange at the boundaries. The symbols dS gen/dt and σ′ are both used in the literature for entropy production rate. In this article dS gen/dt is preferred for descibing entropy production rate for the moving control volume at steady state.
 
5
In the casting literature Δh sl is given the convention of being positive for freezing, whereas, in the thermodynamic literature it is given a negative sign for freezing. In this article, the convention chosen is from the casting literature, i.e. positive, Δh sl for freezing. Equilibrium entropy of freezing, therefore, follows the same convention. All other thermodynamic variables have the regular thermodynamic conventions.
 
6
One assumption that is made for the model is that the majority of the energy associated with defects is captured in area defects like high angle grain boundaries typically ~100 mJ/m2. Equation 2b reflects the part of the heat which has been converted to work of creating grain boundaries, within the limitations of the second law.
 
7
Very few reports with the detailed microstructural analysis of this kind made from cross sections obtained from quenched interfaces exist [106, 117, 118].
 
8
There is the possibility that the Cahn [114] diffuseness parameter (g), i.e., the number of diffuse layers; the order parameter used in phase field models [1724]; and the term α22 could be connected where α is the lattice parameter. The possibility is left to be studied in the future. See also Tiller [131].
 
Literatur
1.
Zurück zum Zitat Kurz W, Fisher TJ (2003) Solidification. Trans Tech Publications, Switzerland Kurz W, Fisher TJ (2003) Solidification. Trans Tech Publications, Switzerland
2.
Zurück zum Zitat Chalmers B (1964) Principles of solidification. John Wiley & Sons, New York Chalmers B (1964) Principles of solidification. John Wiley & Sons, New York
3.
Zurück zum Zitat Flemings MC (1974) Solidification processing. McGraw Hill, New York Flemings MC (1974) Solidification processing. McGraw Hill, New York
4.
Zurück zum Zitat Solidification, ASM, Metals Park (1971) Solidification, ASM, Metals Park (1971)
5.
Zurück zum Zitat Kirkaldy JS (1992) Rep Prog Phys 55:723 Kirkaldy JS (1992) Rep Prog Phys 55:723
6.
Zurück zum Zitat Venugopalan D, Kirkaldy JS (1984) Acta Metall 32:893 Venugopalan D, Kirkaldy JS (1984) Acta Metall 32:893
7.
Zurück zum Zitat Martyushev LM, Seleznev VD (2006) Phys Rep 426:1 Martyushev LM, Seleznev VD (2006) Phys Rep 426:1
8.
Zurück zum Zitat Boettinger WJ, Coriell SR, Greer AL, Karma A, Kurz W, Rappaz M, Trivedi R (2000) Acta Mater 48:43 Boettinger WJ, Coriell SR, Greer AL, Karma A, Kurz W, Rappaz M, Trivedi R (2000) Acta Mater 48:43
9.
Zurück zum Zitat Sekhar JA, Trivedi RK (1989) J Mater Sci Eng A114:133 Sekhar JA, Trivedi RK (1989) J Mater Sci Eng A114:133
10.
Zurück zum Zitat Trivedi RK, Sekhar JA, Seetharaman V (1989) Metall Trans 20A:769 Trivedi RK, Sekhar JA, Seetharaman V (1989) Metall Trans 20A:769
11.
Zurück zum Zitat Trivedi RK, Kurz W (1994) Acta Metall Mater 42(1):15 Trivedi RK, Kurz W (1994) Acta Metall Mater 42(1):15
12.
Zurück zum Zitat Trivedi RK, Magnin P, Kurz W (1987) Acta Metall 35:971 Trivedi RK, Magnin P, Kurz W (1987) Acta Metall 35:971
13.
14.
15.
Zurück zum Zitat Wheeler AA, Boettinger WJ, McFadden GB (1993) Phys Rev E 47:1893 Wheeler AA, Boettinger WJ, McFadden GB (1993) Phys Rev E 47:1893
16.
Zurück zum Zitat Ben-Jacob E (1993) Contemp Phys 34:247 Ben-Jacob E (1993) Contemp Phys 34:247
17.
Zurück zum Zitat Ben-Jacob E, Garik P (1990) Nature 343:523 Ben-Jacob E, Garik P (1990) Nature 343:523
18.
Zurück zum Zitat Ziegler H (1963) In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol 4. North-Holland, Amsterdam Ziegler H (1963) In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol 4. North-Holland, Amsterdam
19.
Zurück zum Zitat Debierre JM, Karma A, Celestini F, Guerin R (2003) Phys Rev E 60:4160 Debierre JM, Karma A, Celestini F, Guerin R (2003) Phys Rev E 60:4160
20.
Zurück zum Zitat Suzuki T, Kim SG, Kim WT (2007) Mater Sci Eng A 449:99 Suzuki T, Kim SG, Kim WT (2007) Mater Sci Eng A 449:99
21.
Zurück zum Zitat Goss AJ, Benson KA, Pfann WG (1956) Acta Metall 4:332 Goss AJ, Benson KA, Pfann WG (1956) Acta Metall 4:332
22.
Zurück zum Zitat Boettinger WJ, Warren JA (1999) J Cryst Growth 200:583 Boettinger WJ, Warren JA (1999) J Cryst Growth 200:583
23.
Zurück zum Zitat Boettinger WJ, Warren JA (1995) Acta Metall Mater 43:689 Boettinger WJ, Warren JA (1995) Acta Metall Mater 43:689
24.
Zurück zum Zitat Mullins WW, Sekerka RF (1964) J Appl Phys 35:444 Mullins WW, Sekerka RF (1964) J Appl Phys 35:444
25.
Zurück zum Zitat Langer JS, Müller-Krumbhaar H (1978) Acta Metall 26:1681 Langer JS, Müller-Krumbhaar H (1978) Acta Metall 26:1681
26.
27.
Zurück zum Zitat Akamatsu S, Faivre G, Ihle T (1995) Phys Rev E 51:4751 Akamatsu S, Faivre G, Ihle T (1995) Phys Rev E 51:4751
28.
Zurück zum Zitat Xiao RZ, Wang ZP, Zhu CS, Li WS (2009) ISIJ Int 49:1156 Xiao RZ, Wang ZP, Zhu CS, Li WS (2009) ISIJ Int 49:1156
29.
Zurück zum Zitat Eggleston JJ, McFadden GB, Voorhees PW (2001) Physica D 150:91 Eggleston JJ, McFadden GB, Voorhees PW (2001) Physica D 150:91
30.
Zurück zum Zitat Zheng L, An Q, Xie Y, Sun Z, Luoa S (2007) J Chem Phys 127:164503 Zheng L, An Q, Xie Y, Sun Z, Luoa S (2007) J Chem Phys 127:164503
32.
33.
Zurück zum Zitat Cahn JW, Carter WC (1996) Metall Trans 27A:1431 Cahn JW, Carter WC (1996) Metall Trans 27A:1431
34.
Zurück zum Zitat Cahn JW, Fife P, Penrose O (1997) Acta Mater 45:4397 Cahn JW, Fife P, Penrose O (1997) Acta Mater 45:4397
35.
Zurück zum Zitat Allen SM, Cahn JW (1979) Acta Metall 27:1085 Allen SM, Cahn JW (1979) Acta Metall 27:1085
36.
Zurück zum Zitat Cahn JW, Hilliard JE (1959) J Chem Phys 31:688 Cahn JW, Hilliard JE (1959) J Chem Phys 31:688
37.
Zurück zum Zitat Sekhar JA, Rajasekharan TA (1986) Nature 320:153 Sekhar JA, Rajasekharan TA (1986) Nature 320:153
38.
Zurück zum Zitat Pellegrini PW, Hutta JJ (1977) J Cryst Growth 42(12):536 Pellegrini PW, Hutta JJ (1977) J Cryst Growth 42(12):536
39.
Zurück zum Zitat Rao KN, Sekhar JA (1987) Scripta Metall 21:805 Rao KN, Sekhar JA (1987) Scripta Metall 21:805
40.
Zurück zum Zitat Rajasekharan T, Sekhar JA (1986) Scripta Metall 20:235 Rajasekharan T, Sekhar JA (1986) Scripta Metall 20:235
41.
Zurück zum Zitat Dey N, Sekhar JA (1993) Acta Metall Mater 41(2):409 Dey N, Sekhar JA (1993) Acta Metall Mater 41(2):409
42.
Zurück zum Zitat Dey N, Sekhar JA (1993) Acta Metall Mater 41(2):425 Dey N, Sekhar JA (1993) Acta Metall Mater 41(2):425
44.
Zurück zum Zitat Sekhar JA (2001) Metall Trans 32B:1213 Sekhar JA (2001) Metall Trans 32B:1213
45.
Zurück zum Zitat Sekhar JA, Bharti A, Trivedi RK (1989) Metall Trans A 20A:2191 Sekhar JA, Bharti A, Trivedi RK (1989) Metall Trans A 20A:2191
46.
Zurück zum Zitat Basu B, Sekhar JA, Schaefer RJ, Mehrabian R (1991) Acta Metall Mater 39(5):725 Basu B, Sekhar JA, Schaefer RJ, Mehrabian R (1991) Acta Metall Mater 39(5):725
48.
49.
Zurück zum Zitat Roosz A, Rettenmayr WatringD (eds) (2000) Solidification and gravity 2000. Trans Tech Publications, Switzerland Roosz A, Rettenmayr WatringD (eds) (2000) Solidification and gravity 2000. Trans Tech Publications, Switzerland
50.
Zurück zum Zitat National Research Council (NRC), Space Studies Board, The National Academies Press, 2005/2006. www.nap.edu National Research Council (NRC), Space Studies Board, The National Academies Press, 2005/2006. www.​nap.​edu
51.
Zurück zum Zitat (2003) Assessment of Directions in Microgravity and Physical Research at NASA, National Research Council of the National Academies, Washington, DC (2003) Assessment of Directions in Microgravity and Physical Research at NASA, National Research Council of the National Academies, Washington, DC
52.
Zurück zum Zitat Watanabe T, Sugiyama Y (2004) J Jpn Inst Light Metals 54(7):293 Watanabe T, Sugiyama Y (2004) J Jpn Inst Light Metals 54(7):293
53.
Zurück zum Zitat Matsuura K, Kudoh M, Kinoshita H, Takahashi H (2002) Metall Mater Trans A 33A:2074 Matsuura K, Kudoh M, Kinoshita H, Takahashi H (2002) Metall Mater Trans A 33A:2074
54.
55.
Zurück zum Zitat Ginzburg VL, Landau LD (1950) J Exp Theor Phys 20:1064 Ginzburg VL, Landau LD (1950) J Exp Theor Phys 20:1064
56.
Zurück zum Zitat Hilliard JE (1970) Phase transformations. American Society of Metals, Metals Park, OH, p 497 Hilliard JE (1970) Phase transformations. American Society of Metals, Metals Park, OH, p 497
57.
Zurück zum Zitat Sekhar JA, Li HP, Dey GK (2010) Acta Mater 58:1056 Sekhar JA, Li HP, Dey GK (2010) Acta Mater 58:1056
58.
Zurück zum Zitat Knobloch E (1986) Phys Rev A 34(2):1538 Knobloch E (1986) Phys Rev A 34(2):1538
59.
Zurück zum Zitat Saito T, Furuta T, Hwang JH, Kuramoto S (2003) Science 300:464 Saito T, Furuta T, Hwang JH, Kuramoto S (2003) Science 300:464
60.
Zurück zum Zitat Köehler JM, Müeller SC (1995) J Phys Chem 99:980 Köehler JM, Müeller SC (1995) J Phys Chem 99:980
61.
Zurück zum Zitat Lakshmikantha MG, Bhattacharya A, Sekhar JA (1993) Metall Mater Trans A 23A:23 Lakshmikantha MG, Bhattacharya A, Sekhar JA (1993) Metall Mater Trans A 23A:23
62.
Zurück zum Zitat Beckermann C (2002) Inter Mater Rev 47(5):243 Beckermann C (2002) Inter Mater Rev 47(5):243
63.
Zurück zum Zitat Somboonsuk K, Trivedi R (1985) Acta Metall 33(6):1051 Somboonsuk K, Trivedi R (1985) Acta Metall 33(6):1051
64.
Zurück zum Zitat Losert W, Shi BQ, Cummins HJ (1998) Proc Natl Acad Sci USA 95(2):431 Losert W, Shi BQ, Cummins HJ (1998) Proc Natl Acad Sci USA 95(2):431
65.
66.
Zurück zum Zitat Jackson KA (1958) In: Doremus RH, Roberts BW, Turnbull D (eds) Growth and perfection of crystals. Wiley, New York, p 319 Jackson KA (1958) In: Doremus RH, Roberts BW, Turnbull D (eds) Growth and perfection of crystals. Wiley, New York, p 319
67.
Zurück zum Zitat Cahn JW, Hillig WR, Sears GW (1964) Acta Metall 12:1421 Cahn JW, Hillig WR, Sears GW (1964) Acta Metall 12:1421
68.
69.
Zurück zum Zitat Fabietti LM, Sekhar JA (1992) J Mater Res 7(8):1987 Fabietti LM, Sekhar JA (1992) J Mater Res 7(8):1987
71.
Zurück zum Zitat Fabietti LM, Sekhar JA (1993) Metall Trans 23A:3361 Fabietti LM, Sekhar JA (1993) Metall Trans 23A:3361
72.
Zurück zum Zitat Sekhar JA (1982) Ph.D. Thesis, University of Illinois Sekhar JA (1982) Ph.D. Thesis, University of Illinois
73.
Zurück zum Zitat Sekhar JA, Trivedi R (1991) Mater Sci Eng A 147(1):9 Sekhar JA, Trivedi R (1991) Mater Sci Eng A 147(1):9
74.
Zurück zum Zitat Sekhar JA, Trivedi R (1990) In: Rohatgi P (ed) Solidification of metal matrix composites. ASM, Materials Park, p 39 Sekhar JA, Trivedi R (1990) In: Rohatgi P (ed) Solidification of metal matrix composites. ASM, Materials Park, p 39
75.
Zurück zum Zitat Morris LR, Winegard WC (1969) J Cryst Growth 6:61 Morris LR, Winegard WC (1969) J Cryst Growth 6:61
76.
Zurück zum Zitat Barsdley W, Boultton JS, Hurle DTJ (1962) Solid State Electron 5:395 Barsdley W, Boultton JS, Hurle DTJ (1962) Solid State Electron 5:395
77.
Zurück zum Zitat Saratovikan DD (referenced from MC. Flemings Solidification Processing, McGraw Hill 1974) (original reference in Russian, Dendritic Solidification, translated by Bradley JES, Consultant Bureau, NY, 1959) Saratovikan DD (referenced from MC. Flemings Solidification Processing, McGraw Hill 1974) (original reference in Russian, Dendritic Solidification, translated by Bradley JES, Consultant Bureau, NY, 1959)
78.
Zurück zum Zitat Schaefer RJ, Glicksman M (1970) Metall Trans 1:1973 Schaefer RJ, Glicksman M (1970) Metall Trans 1:1973
79.
Zurück zum Zitat Li HP, Sekhar JA (2009) Acta Mater 57:5430 Li HP, Sekhar JA (2009) Acta Mater 57:5430
81.
Zurück zum Zitat Inatomi Y (2009) Journey to Kibo. Experiment on mechanism of faceted cellular array growth, chapter 10. Institute of Space and Astronautical Science/JAXA Inatomi Y (2009) Journey to Kibo. Experiment on mechanism of faceted cellular array growth, chapter 10. Institute of Space and Astronautical Science/JAXA
82.
Zurück zum Zitat Prigogine I, Nicolis G (1971) Q Rev Biophys 4:107 Prigogine I, Nicolis G (1971) Q Rev Biophys 4:107
83.
Zurück zum Zitat Prigogine I, Stengers I (1984) Order out of chaos: man’s new dialogue with nature. Bantam Books, New York Prigogine I, Stengers I (1984) Order out of chaos: man’s new dialogue with nature. Bantam Books, New York
84.
Zurück zum Zitat Turing AM (1952) Philos Trans R Soc Lond 237:37 Turing AM (1952) Philos Trans R Soc Lond 237:37
85.
Zurück zum Zitat Li HP, Sekhar JA (2009) Int J Selfpropag High Temp Synth 18(4):219 Li HP, Sekhar JA (2009) Int J Selfpropag High Temp Synth 18(4):219
86.
Zurück zum Zitat Kaukler WF, Rosenberger F, Curreri PA (1997) Metall Mater Trans A 28A:1705 Kaukler WF, Rosenberger F, Curreri PA (1997) Metall Mater Trans A 28A:1705
88.
89.
Zurück zum Zitat Papp Z, Beke DL, Catanona GL, Langer GA (2003) In: Beke DL, Szabo IA (eds) Defect and diffusion forum, vols 216–217. Trans Tech Publications, Zurich, Switzerland, p 1 Papp Z, Beke DL, Catanona GL, Langer GA (2003) In: Beke DL, Szabo IA (eds) Defect and diffusion forum, vols 216–217. Trans Tech Publications, Zurich, Switzerland, p 1
90.
Zurück zum Zitat Maselko J (1996) Mater Sci Eng C 4(3):199 Maselko J (1996) Mater Sci Eng C 4(3):199
91.
Zurück zum Zitat Glotzer SC, Di Marzio EA, Muthukmaran M (1995) Phys Rev Lett 74(11):2034 Glotzer SC, Di Marzio EA, Muthukmaran M (1995) Phys Rev Lett 74(11):2034
92.
93.
Zurück zum Zitat Lesoult G (2005) Mater Sci Eng A 413–414:19 Lesoult G (2005) Mater Sci Eng A 413–414:19
94.
Zurück zum Zitat Ohnaka I (1998) Microsegregation and macrosegregation, metals handbook: vol. 15 casting. ASM International, Materials Park, p 136 Ohnaka I (1998) Microsegregation and macrosegregation, metals handbook: vol. 15 casting. ASM International, Materials Park, p 136
95.
96.
Zurück zum Zitat Anathakrishna G (2007) Phys Rep 440:113 Anathakrishna G (2007) Phys Rep 440:113
97.
Zurück zum Zitat Civitonovic P (ed) (1984) Universality in Chaos, Adam Hilger Ltd, Bristol Civitonovic P (ed) (1984) Universality in Chaos, Adam Hilger Ltd, Bristol
99.
Zurück zum Zitat Kirkaldy JS (1997) Scripta Metall 37(2):125 Kirkaldy JS (1997) Scripta Metall 37(2):125
100.
Zurück zum Zitat Cahn JW, Novick-Cohen A (2000) Acta Mater 48(13):3425 Cahn JW, Novick-Cohen A (2000) Acta Mater 48(13):3425
101.
Zurück zum Zitat Sekhar JA, Risbud SA (1982) J Non Cryst Solids 47(3):363 Sekhar JA, Risbud SA (1982) J Non Cryst Solids 47(3):363
102.
Zurück zum Zitat Reguera D, Schmid G, Burada PS, Rubi JM, Hanggi P (2006) Phys Rev Lett 96:130603 Reguera D, Schmid G, Burada PS, Rubi JM, Hanggi P (2006) Phys Rev Lett 96:130603
103.
Zurück zum Zitat Rivier N, Duffy DM (1982) J Phys C 15(3):2867 Rivier N, Duffy DM (1982) J Phys C 15(3):2867
104.
Zurück zum Zitat Maraşl N, Keşlioğlu, Arslan B, Kaya H, Çadırlı E (2008) J Mater Process Technol 202(1–3, 20):145 Maraşl N, Keşlioğlu, Arslan B, Kaya H, Çadırlı E (2008) J Mater Process Technol 202(1–3, 20):145
105.
Zurück zum Zitat Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) J Miner Met Mater Soc 58(4):33 Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) J Miner Met Mater Soc 58(4):33
106.
Zurück zum Zitat Ho CT, Cheng CJ, Sekhar JA (1991) Metall Mater Trans A 22:225 Ho CT, Cheng CJ, Sekhar JA (1991) Metall Mater Trans A 22:225
107.
Zurück zum Zitat Sato K, Tagawa K, Inoue Y (1991) Metall Trans 21A:5 Sato K, Tagawa K, Inoue Y (1991) Metall Trans 21A:5
108.
Zurück zum Zitat Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, Clarendon, Oxford Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, Clarendon, Oxford
109.
Zurück zum Zitat Jaynes ET (1980) Annu Rev Phys Chem 31:579 Jaynes ET (1980) Annu Rev Phys Chem 31:579
110.
Zurück zum Zitat Salamon P, Hoffmann KH, Schubert S, Stephen Berry R, Andresen B (2001) Non Equilib Thermodyn 26:73 Salamon P, Hoffmann KH, Schubert S, Stephen Berry R, Andresen B (2001) Non Equilib Thermodyn 26:73
111.
Zurück zum Zitat Martyushev LM, Nazarova AS, Seleznev VD (2007) J Phys A 40:371 Martyushev LM, Nazarova AS, Seleznev VD (2007) J Phys A 40:371
112.
Zurück zum Zitat Klaidon Axel (2009) Naturwissenschaften 96:653 Klaidon Axel (2009) Naturwissenschaften 96:653
113.
Zurück zum Zitat Peteves SD, Abbaschian GJ (1986) J Cryst Growth 79(1–3):775 Peteves SD, Abbaschian GJ (1986) J Cryst Growth 79(1–3):775
114.
Zurück zum Zitat Tyokodi RJ (1967) Thermodynamics of steady state. MacMillan, New York Tyokodi RJ (1967) Thermodynamics of steady state. MacMillan, New York
115.
Zurück zum Zitat Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, New York Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, New York
116.
Zurück zum Zitat Jiao YN, Takanori S, Ohsawa Y, Arakane G, Sato A (2000) Mater Res Soc Symp Proc 580:333 Jiao YN, Takanori S, Ohsawa Y, Arakane G, Sato A (2000) Mater Res Soc Symp Proc 580:333
117.
Zurück zum Zitat Tiwari SN, Shah R, Song H (1994) Mater Metall Trans A 25A:535 Tiwari SN, Shah R, Song H (1994) Mater Metall Trans A 25A:535
118.
Zurück zum Zitat Ojha SN, Tewari SN (2004) Trans IIM 57(5):475 Ojha SN, Tewari SN (2004) Trans IIM 57(5):475
119.
Zurück zum Zitat Chadwick GA (1967) In: Zeif M, Wilcox WR (eds) Fractional solidification. Marcel Dekker Inc, New York, p 113 Chadwick GA (1967) In: Zeif M, Wilcox WR (eds) Fractional solidification. Marcel Dekker Inc, New York, p 113
120.
Zurück zum Zitat Ramakrishnan TV (1985) Liquid to solid transformation, materials science forum, vol 3. Trans Tech Publications Ltd, Switzerland, p 7 Ramakrishnan TV (1985) Liquid to solid transformation, materials science forum, vol 3. Trans Tech Publications Ltd, Switzerland, p 7
121.
Zurück zum Zitat Langer JS, Müller-Krumbhaar H (1978) Acta Metall 26(11):1681 Langer JS, Müller-Krumbhaar H (1978) Acta Metall 26(11):1681
122.
Zurück zum Zitat Ballufi RW, Allen MA, Carter WC (2005) Kinetics of materials. Wiley, New York Ballufi RW, Allen MA, Carter WC (2005) Kinetics of materials. Wiley, New York
123.
Zurück zum Zitat Glicksman M (1971) In: Solidification. ASM, Metals Park, p 111 Glicksman M (1971) In: Solidification. ASM, Metals Park, p 111
124.
Zurück zum Zitat Baker JC, Cahn JW (1971) In: Solidification. ASM, Metals Park, p 21 Baker JC, Cahn JW (1971) In: Solidification. ASM, Metals Park, p 21
125.
Zurück zum Zitat Brener EA, Melnikov VI (1991) Adv Phys 40:53 Brener EA, Melnikov VI (1991) Adv Phys 40:53
126.
Zurück zum Zitat Emmerich H (2003) The diffuse interface approach in materials science. Springer-Verlag, Berlin, Heidelberg, New York ISBN 3-540-00416-5 Emmerich H (2003) The diffuse interface approach in materials science. Springer-Verlag, Berlin, Heidelberg, New York ISBN 3-540-00416-5
127.
Zurück zum Zitat Kuppa V, Manias E (2003) J Chem Phys 118(7):2423 Kuppa V, Manias E (2003) J Chem Phys 118(7):2423
128.
Zurück zum Zitat Kuppa V, Menakanit S, Krishnamuty R, Manias E (2003) J Polym Sci B 41:3285 Kuppa V, Menakanit S, Krishnamuty R, Manias E (2003) J Polym Sci B 41:3285
129.
Zurück zum Zitat Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, New York Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, New York
130.
131.
Zurück zum Zitat Tiller WA (1971) In: Solidification. ASM, Metals Park, OH Tiller WA (1971) In: Solidification. ASM, Metals Park, OH
132.
Zurück zum Zitat Onsager L (1996) In: Hemmer PC, Holden H, Kjelstrup Ratkje S (eds) With commentary, World Scientific Series in 20th Century Physics, vol 17. World Scientific Publishing, Singapore, New Jersey Onsager L (1996) In: Hemmer PC, Holden H, Kjelstrup Ratkje S (eds) With commentary, World Scientific Series in 20th Century Physics, vol 17. World Scientific Publishing, Singapore, New Jersey
Metadaten
Titel
The description of morphologically stable regimes for steady state solidification based on the maximum entropy production rate postulate
verfasst von
J. A. Sekhar
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2011
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-011-5688-0

Weitere Artikel der Ausgabe 19/2011

Journal of Materials Science 19/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.