Skip to main content

2001 | OriginalPaper | Buchkapitel

The Dirichlet Problem for Relative Harmonic Functions

verfasst von : Joseph L. Doob

Erschienen in: Classical Potential Theory and Its Probabilistic Counterpart

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

The class of relative harmonic functions is suggested by the following trivial remark. Let (D, OC (M, p)D) be a measurable space, and suppose that to each point ξ of D is assigned some set (perhaps empty) {μα (ξ, ·), α ∈ Iξ} of probability measures on D. Call a function generalized harmonic if it satisfies specified smoothness conditions and if 1.1$$ v(\zeta ) = \int_D {v(\eta ({\mu_{\alpha }}(} \zeta, d\eta ) = {\mu_{\alpha }}(\zeta, v) $$ for ξ in D and α in Iξ. For example, if D is an open subset of ℝN, if for each ξ the index α represents a ball B of center ξ with closure in D, if Iξ is the class of all such balls, and if μB(ξ, v) is the unweighted average of v on ∂B, then the class of continuous functions on D satisfying (1.1) is the class of harmonic functions on D. Going back to the general case, suppose that h is a strictly positive generalized harmonic function and define μhα(ξ, ·) by 1.2$$ \mu_{\alpha }^h(\zeta, A) = \int_A {h(\eta )\frac{{{\mu_{\alpha }}(\zeta, d\eta )}}{{h(\zeta )}}} $$

Metadaten
Titel
The Dirichlet Problem for Relative Harmonic Functions
verfasst von
Joseph L. Doob
Copyright-Jahr
2001
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-56573-1_8