Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning

verfasst von : Kalanit Grill-Spector, Kendrick Kay, Kevin S. Weiner

Erschienen in: Deep Learning for Biometrics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Face perception is critical for normal social functioning, and is mediated by a cortical network of regions in the ventral visual stream. Comparative analysis between present deep neural network architectures for biometrics and neural architectures in the human brain is necessary for developing artificial systems with human abilities. Neuroimaging research has advanced our understanding regarding the functional architecture of the human ventral face network. Here, we describe recent neuroimaging findings in three domains: (1) the macro- and microscopic anatomical features of the ventral face network in the human brain, (2) the characteristics of white matter connections, and (3) the basic computations performed by population receptive fields within face-selective regions composing this network. Then, we consider how empirical findings can inform the development of accurate computational deep neural networks for face recognition as well as shed light on computational benefits of specific neural implementational features.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
See Appendix for abbreviations and definitions.
 
Literatur
1.
Zurück zum Zitat T. Allison, H. Ginter, G. McCarthy, A.C. Nobre, A. Puce et al., Face recognition in human extrastriate cortex. J. Neurophysiol. 71, 821–825 (1994)CrossRef T. Allison, H. Ginter, G. McCarthy, A.C. Nobre, A. Puce et al., Face recognition in human extrastriate cortex. J. Neurophysiol. 71, 821–825 (1994)CrossRef
2.
Zurück zum Zitat T. Allison, G. McCarthy, A. Nobre, A. Puce, A. Belger, Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb. Cortex 4, 544–554 (1994)CrossRef T. Allison, G. McCarthy, A. Nobre, A. Puce, A. Belger, Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb. Cortex 4, 544–554 (1994)CrossRef
3.
Zurück zum Zitat T. Allison, A. Puce, D.D. Spencer, G. McCarthy, Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cortex 9, 415–430 (1999)CrossRef T. Allison, A. Puce, D.D. Spencer, G. McCarthy, Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cortex 9, 415–430 (1999)CrossRef
4.
Zurück zum Zitat T.J. Andrews, M.P. Ewbank, Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage 23, 905–913 (2004)CrossRef T.J. Andrews, M.P. Ewbank, Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage 23, 905–913 (2004)CrossRef
5.
Zurück zum Zitat S. Anzellotti, S.L. Fairhall, A. Caramazza, Decoding representations of face identity that are tolerant to rotation. Cereb. Cortex 24, 1988–1995 (2014)CrossRef S. Anzellotti, S.L. Fairhall, A. Caramazza, Decoding representations of face identity that are tolerant to rotation. Cereb. Cortex 24, 1988–1995 (2014)CrossRef
6.
Zurück zum Zitat G. Avidan, M. Behrmann, Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr. Biol. 19, 1146–1150 (2009)CrossRef G. Avidan, M. Behrmann, Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr. Biol. 19, 1146–1150 (2009)CrossRef
7.
Zurück zum Zitat G. Avidan, I. Levy, T. Hendler, E. Zohary, R. Malach, Spatial vs. object specific attention in high-order visual areas. Neuroimage 19, 308–318 (2003)CrossRef G. Avidan, I. Levy, T. Hendler, E. Zohary, R. Malach, Spatial vs. object specific attention in high-order visual areas. Neuroimage 19, 308–318 (2003)CrossRef
8.
Zurück zum Zitat G. Avidan, U. Hasson, R. Malach, M. Behrmann, Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J. Cogn. Neurosci. 17, 1150–1167 (2005)CrossRef G. Avidan, U. Hasson, R. Malach, M. Behrmann, Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J. Cogn. Neurosci. 17, 1150–1167 (2005)CrossRef
9.
Zurück zum Zitat V. Axelrod, G. Yovel, Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32, 2442–2452 (2012)CrossRef V. Axelrod, G. Yovel, Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32, 2442–2452 (2012)CrossRef
10.
Zurück zum Zitat V. Axelrod, G. Yovel, The challenge of localizing the anterior temporal face area: a possible solution. Neuroimage 2013(81), 371–380 (2013)CrossRef V. Axelrod, G. Yovel, The challenge of localizing the anterior temporal face area: a possible solution. Neuroimage 2013(81), 371–380 (2013)CrossRef
11.
Zurück zum Zitat M. Behrmann, G. Avidan, Congenital prosopagnosia: face-blind from birth. Trends Cogn. Sci. 9, 180–187 (2005)CrossRef M. Behrmann, G. Avidan, Congenital prosopagnosia: face-blind from birth. Trends Cogn. Sci. 9, 180–187 (2005)CrossRef
12.
Zurück zum Zitat M. Behrmann, D.C. Plaut, Distributed circuits, not circumscribed centers, mediate visual recognition. Trends Cogn. Sci. 17, 210–219 (2013)CrossRef M. Behrmann, D.C. Plaut, Distributed circuits, not circumscribed centers, mediate visual recognition. Trends Cogn. Sci. 17, 210–219 (2013)CrossRef
13.
Zurück zum Zitat M.G. Berman, J. Park, R. Gonzalez, T.A. Polk, A. Gehrke et al., Evaluating functional localizers: the case of the FFA. Neuroimage 50, 56–71 (2010)CrossRef M.G. Berman, J. Park, R. Gonzalez, T.A. Polk, A. Gehrke et al., Evaluating functional localizers: the case of the FFA. Neuroimage 50, 56–71 (2010)CrossRef
14.
Zurück zum Zitat V. Bruce, A. Young, Understanding face recognition. Br. J. Psychol. 77(Pt 3), 305–327 (1986)CrossRef V. Bruce, A. Young, Understanding face recognition. Br. J. Psychol. 77(Pt 3), 305–327 (1986)CrossRef
15.
Zurück zum Zitat L. Bugatus, K.S. Weiner, K. Grill-Spector, Task differentially modulates the spatial extent of category-selective regions across anatomical locations. Neuroimage (2017) (in press) L. Bugatus, K.S. Weiner, K. Grill-Spector, Task differentially modulates the spatial extent of category-selective regions across anatomical locations. Neuroimage (2017) (in press)
16.
Zurück zum Zitat C.F. Cadieu, H. Hong, D.L. Yamins, N. Pinto, D. Ardila et al., Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 10, e1003963 (2014)CrossRef C.F. Cadieu, H. Hong, D.L. Yamins, N. Pinto, D. Ardila et al., Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 10, e1003963 (2014)CrossRef
17.
Zurück zum Zitat A.J. Calder, A.W. Young, Understanding the recognition of facial identity and facial expression. Nat. Rev. Neurosci. 6, 641–651 (2005)CrossRef A.J. Calder, A.W. Young, Understanding the recognition of facial identity and facial expression. Nat. Rev. Neurosci. 6, 641–651 (2005)CrossRef
18.
Zurück zum Zitat A.J. Calder, J.D. Beaver, J.S. Winston, R.J. Dolan, R. Jenkins et al., Separate coding of different gaze directions in the superior temporal sulcus and inferior parietal lobule. Curr. Biol. 17, 20–25 (2007)CrossRef A.J. Calder, J.D. Beaver, J.S. Winston, R.J. Dolan, R. Jenkins et al., Separate coding of different gaze directions in the superior temporal sulcus and inferior parietal lobule. Curr. Biol. 17, 20–25 (2007)CrossRef
19.
Zurück zum Zitat T. Carlson, H. Hogendoorn, H. Fonteijn, F.A. Verstraten, Spatial coding and invariance in object-selective cortex. Cortex 47, 14–22 (2011)CrossRef T. Carlson, H. Hogendoorn, H. Fonteijn, F.A. Verstraten, Spatial coding and invariance in object-selective cortex. Cortex 47, 14–22 (2011)CrossRef
20.
Zurück zum Zitat J. Caspers, K. Zilles, S.B. Eickhoff, A. Schleicher, H. Mohlberg, K. Amunts, Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct. Funct. 218, 511–526 (2013)CrossRef J. Caspers, K. Zilles, S.B. Eickhoff, A. Schleicher, H. Mohlberg, K. Amunts, Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct. Funct. 218, 511–526 (2013)CrossRef
21.
Zurück zum Zitat J.A. Collins, I.R. Olson, Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61, 65–79 (2014)CrossRef J.A. Collins, I.R. Olson, Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61, 65–79 (2014)CrossRef
22.
Zurück zum Zitat A.C. Connolly, J.S. Guntupalli, J. Gors, M. Hanke, Y.O. Halchenko et al., The representation of biological classes in the human brain. J. Neurosci. 32, 2608–2618 (2012)CrossRef A.C. Connolly, J.S. Guntupalli, J. Gors, M. Hanke, Y.O. Halchenko et al., The representation of biological classes in the human brain. J. Neurosci. 32, 2608–2618 (2012)CrossRef
23.
Zurück zum Zitat T. Cukur, A.G. Huth, S. Nishimoto, J.L. Gallant, Functional subdomains within human FFA. J. Neurosci. 33, 16748–16766 (2013)CrossRef T. Cukur, A.G. Huth, S. Nishimoto, J.L. Gallant, Functional subdomains within human FFA. J. Neurosci. 33, 16748–16766 (2013)CrossRef
24.
Zurück zum Zitat N. Davidenko, D.A. Remus, K. Grill-Spector, Face-likeness and image variability drive responses in human face-selective ventral regions. Hum. Brain Mapp. 33, 2234–2249 (2012)CrossRef N. Davidenko, D.A. Remus, K. Grill-Spector, Face-likeness and image variability drive responses in human face-selective ventral regions. Hum. Brain Mapp. 33, 2234–2249 (2012)CrossRef
25.
Zurück zum Zitat I. Davidesco, M. Harel, M. Ramot, U. Kramer, S. Kipervasser et al., Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy. J. Neurosci. 33, 1228–1240 (2013)CrossRef I. Davidesco, M. Harel, M. Ramot, U. Kramer, S. Kipervasser et al., Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy. J. Neurosci. 33, 1228–1240 (2013)CrossRef
26.
Zurück zum Zitat I. Davidesco, E. Zion-Golumbic, S. Bickel, M. Harel, D.M. Groppe et al., Exemplar selectivity reflects perceptual similarities in the human fusiform cortex. Cereb. Cortex 24, 1879–1893 (2014)CrossRef I. Davidesco, E. Zion-Golumbic, S. Bickel, M. Harel, D.M. Groppe et al., Exemplar selectivity reflects perceptual similarities in the human fusiform cortex. Cereb. Cortex 24, 1879–1893 (2014)CrossRef
27.
Zurück zum Zitat B. de Haas, D.S. Schwarzkopf, I. Alvarez, R.P. Lawson, L. Henriksson et al., Perception and processing of faces in the human brain is tuned to typical feature locations. J. Neurosci. 36, 9289–9302 (2016)CrossRef B. de Haas, D.S. Schwarzkopf, I. Alvarez, R.P. Lawson, L. Henriksson et al., Perception and processing of faces in the human brain is tuned to typical feature locations. J. Neurosci. 36, 9289–9302 (2016)CrossRef
28.
Zurück zum Zitat B. Duchaine, K. Nakayama, The Cambridge face memory test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia 44, 576–585 (2006)CrossRef B. Duchaine, K. Nakayama, The Cambridge face memory test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia 44, 576–585 (2006)CrossRef
29.
Zurück zum Zitat B. Duchaine, G. Yovel, A revised neural framework for face processing. Annu. Rev. Vis. Sci 1, 393–416 (2015)CrossRef B. Duchaine, G. Yovel, A revised neural framework for face processing. Annu. Rev. Vis. Sci 1, 393–416 (2015)CrossRef
30.
Zurück zum Zitat B.C. Duchaine, K. Nakayama, Developmental prosopagnosia: a window to content-specific face processing. Curr. Opin. Neurobiol. 16, 166–173 (2006)CrossRef B.C. Duchaine, K. Nakayama, Developmental prosopagnosia: a window to content-specific face processing. Curr. Opin. Neurobiol. 16, 166–173 (2006)CrossRef
31.
Zurück zum Zitat S.O. Dumoulin, B.A. Wandell, Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008)CrossRef S.O. Dumoulin, B.A. Wandell, Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008)CrossRef
32.
Zurück zum Zitat T. Egner, J.M. Monti, C. Summerfield, Expectation and surprise determine neural population responses in the ventral visual stream. J. Neurosci. 30, 16601–16608 (2010)CrossRef T. Egner, J.M. Monti, C. Summerfield, Expectation and surprise determine neural population responses in the ventral visual stream. J. Neurosci. 30, 16601–16608 (2010)CrossRef
33.
Zurück zum Zitat M. Eickenberg, A. Gramfort, G. Varoquaux, B. Thirion, Seeing it all: convolutional network layers map the function of the human visual system. Neuroimage (2016) M. Eickenberg, A. Gramfort, G. Varoquaux, B. Thirion, Seeing it all: convolutional network layers map the function of the human visual system. Neuroimage (2016)
34.
Zurück zum Zitat M.P. Ewbank, T.J. Andrews, Differential sensitivity for viewpoint between familiar and unfamiliar faces in human visual cortex. Neuroimage 40, 1857–1870 (2008)CrossRef M.P. Ewbank, T.J. Andrews, Differential sensitivity for viewpoint between familiar and unfamiliar faces in human visual cortex. Neuroimage 40, 1857–1870 (2008)CrossRef
35.
Zurück zum Zitat F. Fang, S. He, Cortical responses to invisible objects in the human dorsal and ventral pathways. Nat. Neurosci. 8, 1380–1385 (2005)CrossRef F. Fang, S. He, Cortical responses to invisible objects in the human dorsal and ventral pathways. Nat. Neurosci. 8, 1380–1385 (2005)CrossRef
36.
Zurück zum Zitat R. Farivar, O. Blanke, A. Chaudhuri, Dorsal-ventral integration in the recognition of motion-defined unfamiliar faces. J. Neurosci. 29, 5336–5342 (2009)CrossRef R. Farivar, O. Blanke, A. Chaudhuri, Dorsal-ventral integration in the recognition of motion-defined unfamiliar faces. J. Neurosci. 29, 5336–5342 (2009)CrossRef
37.
Zurück zum Zitat D.J. Felleman, D.C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)CrossRef D.J. Felleman, D.C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)CrossRef
38.
Zurück zum Zitat B. Fischl, M.I. Sereno, R.B. Tootell, A.M. Dale, High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999)CrossRef B. Fischl, M.I. Sereno, R.B. Tootell, A.M. Dale, High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999)CrossRef
39.
Zurück zum Zitat W. Freiwald, B. Duchaine, G. Yovel, Face processing systems: from neurons to real-world social perception. Annu. Rev. Neurosci. 39, 325–346 (2016)CrossRef W. Freiwald, B. Duchaine, G. Yovel, Face processing systems: from neurons to real-world social perception. Annu. Rev. Neurosci. 39, 325–346 (2016)CrossRef
40.
Zurück zum Zitat M.A. Frost, R. Goebel, Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 59, 1369–1381 (2012)CrossRef M.A. Frost, R. Goebel, Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 59, 1369–1381 (2012)CrossRef
41.
Zurück zum Zitat K. Fukushima, Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1, 119–130 (1982)CrossRef K. Fukushima, Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1, 119–130 (1982)CrossRef
42.
Zurück zum Zitat I. Gauthier, P. Skudlarski, J.C. Gore, A.W. Anderson, Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000)CrossRef I. Gauthier, P. Skudlarski, J.C. Gore, A.W. Anderson, Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000)CrossRef
43.
Zurück zum Zitat S. Gilaie-Dotan, R. Malach, Sub-exemplar shape tuning in human face-related areas. Cereb. Cortex 17, 325–338 (2007)CrossRef S. Gilaie-Dotan, R. Malach, Sub-exemplar shape tuning in human face-related areas. Cereb. Cortex 17, 325–338 (2007)CrossRef
44.
Zurück zum Zitat S. Gilaie-Dotan, H. Gelbard-Sagiv, R. Malach, Perceptual shape sensitivity to upright and inverted faces is reflected in neuronal adaptation. Neuroimage 50, 383–395 (2010)CrossRef S. Gilaie-Dotan, H. Gelbard-Sagiv, R. Malach, Perceptual shape sensitivity to upright and inverted faces is reflected in neuronal adaptation. Neuroimage 50, 383–395 (2010)CrossRef
45.
Zurück zum Zitat J. Gomez, F. Pestilli, N. Witthoft, G. Golarai, A. Liberman et al., Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85, 216–227 (2015)CrossRef J. Gomez, F. Pestilli, N. Witthoft, G. Golarai, A. Liberman et al., Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85, 216–227 (2015)CrossRef
46.
Zurück zum Zitat C. Gratton, K.K. Sreenivasan, M.A. Silver, M. D’Esposito, Attention selectively modifies the representation of individual faces in the human brain. J. Neurosci. 33, 6979–6989 (2013)CrossRef C. Gratton, K.K. Sreenivasan, M.A. Silver, M. D’Esposito, Attention selectively modifies the representation of individual faces in the human brain. J. Neurosci. 33, 6979–6989 (2013)CrossRef
47.
Zurück zum Zitat K. Grill-Spector, R. Malach, fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst) 107, 293–321 (2001)CrossRef K. Grill-Spector, R. Malach, fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst) 107, 293–321 (2001)CrossRef
48.
Zurück zum Zitat K. Grill-Spector, K.S. Weiner, The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014)CrossRef K. Grill-Spector, K.S. Weiner, The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014)CrossRef
49.
Zurück zum Zitat K. Grill-Spector, T. Kushnir, S. Edelman, G. Avidan, Y. Itzchak, R. Malach, Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999)CrossRef K. Grill-Spector, T. Kushnir, S. Edelman, G. Avidan, Y. Itzchak, R. Malach, Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999)CrossRef
50.
Zurück zum Zitat K. Grill-Spector, N. Knouf, N. Kanwisher, The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004)CrossRef K. Grill-Spector, N. Knouf, N. Kanwisher, The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004)CrossRef
51.
Zurück zum Zitat K. Grill-Spector, R. Henson, A. Martin, Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006)CrossRef K. Grill-Spector, R. Henson, A. Martin, Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006)CrossRef
52.
Zurück zum Zitat C.G. Gross, J. Sergent, Face recognition. Curr. Opin. Neurobiol. 2, 156–161 (1992)CrossRef C.G. Gross, J. Sergent, Face recognition. Curr. Opin. Neurobiol. 2, 156–161 (1992)CrossRef
53.
Zurück zum Zitat C.G. Gross, D.B. Bender, C.E. Rocha-Miranda, Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969)CrossRef C.G. Gross, D.B. Bender, C.E. Rocha-Miranda, Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969)CrossRef
54.
Zurück zum Zitat M. Gschwind, G. Pourtois, S. Schwartz, D. Van De Ville, P. Vuilleumier, White-matter connectivity between face-responsive regions in the human brain. Cereb. Cortex 22, 1564–1576 (2012)CrossRef M. Gschwind, G. Pourtois, S. Schwartz, D. Van De Ville, P. Vuilleumier, White-matter connectivity between face-responsive regions in the human brain. Cereb. Cortex 22, 1564–1576 (2012)CrossRef
55.
Zurück zum Zitat U. Guclu, M.A. van Gerven, Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015)CrossRef U. Guclu, M.A. van Gerven, Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015)CrossRef
56.
Zurück zum Zitat R.J. Harris, G.E. Rice, A.W. Young, T.J. Andrews, Distinct but overlapping patterns of response to words and faces in the fusiform gyrus. Cereb. Cortex 26, 3161–3168 (2016)CrossRef R.J. Harris, G.E. Rice, A.W. Young, T.J. Andrews, Distinct but overlapping patterns of response to words and faces in the fusiform gyrus. Cereb. Cortex 26, 3161–3168 (2016)CrossRef
57.
Zurück zum Zitat U. Hasson, I. Levy, M. Behrmann, T. Hendler, R. Malach, Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002)CrossRef U. Hasson, I. Levy, M. Behrmann, T. Hendler, R. Malach, Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002)CrossRef
58.
Zurück zum Zitat J.V. Haxby, E.A. Hoffman, M.I. Gobbini, The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000)CrossRef J.V. Haxby, E.A. Hoffman, M.I. Gobbini, The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000)CrossRef
59.
Zurück zum Zitat J.V. Haxby, M.I. Gobbini, M.L. Furey, A. Ishai, J.L. Schouten, P. Pietrini, Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)CrossRef J.V. Haxby, M.I. Gobbini, M.L. Furey, A. Ishai, J.L. Schouten, P. Pietrini, Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)CrossRef
60.
Zurück zum Zitat C.C. Hemond, N.G. Kanwisher, H.P. Op de Beeck, A preference for contralateral stimuli in human object- and face-selective cortex. PLoS One 2, e574 (2007)CrossRef C.C. Hemond, N.G. Kanwisher, H.P. Op de Beeck, A preference for contralateral stimuli in human object- and face-selective cortex. PLoS One 2, e574 (2007)CrossRef
61.
Zurück zum Zitat L. Henriksson, M. Mur, N. Kriegeskorte, Faciotopy-A face-feature map with face-like topology in the human occipital face area. Cortex 72, 156–167 (2015)CrossRef L. Henriksson, M. Mur, N. Kriegeskorte, Faciotopy-A face-feature map with face-like topology in the human occipital face area. Cortex 72, 156–167 (2015)CrossRef
62.
Zurück zum Zitat G. Holmes, Disturbances of vision by cerebral lesions. Br. J. Ophthalmol. 2, 353–384 (1918)CrossRef G. Holmes, Disturbances of vision by cerebral lesions. Br. J. Ophthalmol. 2, 353–384 (1918)CrossRef
63.
Zurück zum Zitat D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)CrossRef D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)CrossRef
64.
Zurück zum Zitat J.B. Hutchinson, M.R. Uncapher, K.S. Weiner, D.W. Bressler, M.A. Silver et al., Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb. Cortex 24, 49–66 (2012)CrossRef J.B. Hutchinson, M.R. Uncapher, K.S. Weiner, D.W. Bressler, M.A. Silver et al., Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb. Cortex 24, 49–66 (2012)CrossRef
65.
Zurück zum Zitat A. Ishai, L.G. Ungerleider, A. Martin, J.V. Haxby, The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12(Suppl 2), 35–51 (2000)CrossRef A. Ishai, L.G. Ungerleider, A. Martin, J.V. Haxby, The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12(Suppl 2), 35–51 (2000)CrossRef
66.
Zurück zum Zitat C. Jacques, N. Witthoft, K.S. Weiner, B.L. Foster, V. Rangarajan et al., Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 83, 14–28 (2016)CrossRef C. Jacques, N. Witthoft, K.S. Weiner, B.L. Foster, V. Rangarajan et al., Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 83, 14–28 (2016)CrossRef
67.
Zurück zum Zitat X. Jiang, E. Rosen, T. Zeffiro, J. Vanmeter, V. Blanz, M. Riesenhuber, Evaluation of a shape-based model of human face discrimination using FMRI and behavioral techniques. Neuron 50, 159–172 (2006)CrossRef X. Jiang, E. Rosen, T. Zeffiro, J. Vanmeter, V. Blanz, M. Riesenhuber, Evaluation of a shape-based model of human face discrimination using FMRI and behavioral techniques. Neuron 50, 159–172 (2006)CrossRef
68.
Zurück zum Zitat J. Jonas, S. Frismand, J.P. Vignal, S. Colnat-Coulbois, L. Koessler et al., Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum. Brain Mapp. 35, 3360–3371 (2014)CrossRef J. Jonas, S. Frismand, J.P. Vignal, S. Colnat-Coulbois, L. Koessler et al., Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum. Brain Mapp. 35, 3360–3371 (2014)CrossRef
69.
Zurück zum Zitat J. Jonas, B. Rossion, J. Krieg, L. Koessler, S. Colnat-Coulbois et al., Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. Neuroimage 99, 487–497 (2014)CrossRef J. Jonas, B. Rossion, J. Krieg, L. Koessler, S. Colnat-Coulbois et al., Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. Neuroimage 99, 487–497 (2014)CrossRef
70.
Zurück zum Zitat J. Jonas, C. Jacques, J. Liu-Shuang, H. Brissart, S. Colnat-Coulbois et al., A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc. Natl. Acad. Sci. USA 113, E4088–E4097 (2016)CrossRef J. Jonas, C. Jacques, J. Liu-Shuang, H. Brissart, S. Colnat-Coulbois et al., A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc. Natl. Acad. Sci. USA 113, E4088–E4097 (2016)CrossRef
71.
Zurück zum Zitat N. Kanwisher, Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000)CrossRef N. Kanwisher, Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000)CrossRef
72.
Zurück zum Zitat N. Kanwisher, J. McDermott, M.M. Chun, The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)CrossRef N. Kanwisher, J. McDermott, M.M. Chun, The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)CrossRef
73.
Zurück zum Zitat N. Kanwisher, F. Tong, K. Nakayama, The effect of face inversion on the human fusiform face area. Cognition 68, B1–B11 (1998)CrossRef N. Kanwisher, F. Tong, K. Nakayama, The effect of face inversion on the human fusiform face area. Cognition 68, B1–B11 (1998)CrossRef
74.
Zurück zum Zitat K.N. Kay, J.D. Yeatman, Bottom-up and top-down computations in high-level visual cortex. Elife. 2017 Feb 22;6. pii: e22341 (2017) K.N. Kay, J.D. Yeatman, Bottom-up and top-down computations in high-level visual cortex. Elife. 2017 Feb 22;6. pii: e22341 (2017)
75.
Zurück zum Zitat K.N. Kay, T. Naselaris, R.J. Prenger, J.L. Gallant, Identifying natural images from human brain activity. Nature 452, 352–355 (2008)CrossRef K.N. Kay, T. Naselaris, R.J. Prenger, J.L. Gallant, Identifying natural images from human brain activity. Nature 452, 352–355 (2008)CrossRef
76.
Zurück zum Zitat K.N. Kay, J. Winawer, A. Mezer, B.A. Wandell, Compressive spatial summation in human visual cortex. J. Neurophysiol. 110, 481–494 (2013)CrossRef K.N. Kay, J. Winawer, A. Mezer, B.A. Wandell, Compressive spatial summation in human visual cortex. J. Neurophysiol. 110, 481–494 (2013)CrossRef
77.
Zurück zum Zitat K.N. Kay, K.S. Weiner, K. Grill-Spector, Attention reduces spatial uncertainty in human ventral temporal cortex. Curr. Biol. 25, 595–600 (2015)CrossRef K.N. Kay, K.S. Weiner, K. Grill-Spector, Attention reduces spatial uncertainty in human ventral temporal cortex. Curr. Biol. 25, 595–600 (2015)CrossRef
78.
Zurück zum Zitat S.M. Khaligh-Razavi, N. Kriegeskorte, Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014)CrossRef S.M. Khaligh-Razavi, N. Kriegeskorte, Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014)CrossRef
79.
Zurück zum Zitat T.C. Kietzmann, J.D. Swisher, P. Konig, F. Tong, Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. J. Neurosci. 32, 11763–11772 (2012)CrossRef T.C. Kietzmann, J.D. Swisher, P. Konig, F. Tong, Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. J. Neurosci. 32, 11763–11772 (2012)CrossRef
80.
Zurück zum Zitat M. Kim, M. Ducros, T. Carlson, I. Ronen, S. He et al., Anatomical correlates of the functional organization in the human occipitotemporal cortex. Magn. Reson. Imaging 24, 583–590 (2006)CrossRef M. Kim, M. Ducros, T. Carlson, I. Ronen, S. He et al., Anatomical correlates of the functional organization in the human occipitotemporal cortex. Magn. Reson. Imaging 24, 583–590 (2006)CrossRef
81.
Zurück zum Zitat B.P. Klein, B.M. Harvey, S.O. Dumoulin, Attraction of position preference by spatial attention throughout human visual cortex. Neuron 84, 227–237 (2014)CrossRef B.P. Klein, B.M. Harvey, S.O. Dumoulin, Attraction of position preference by spatial attention throughout human visual cortex. Neuron 84, 227–237 (2014)CrossRef
82.
Zurück zum Zitat J. Konorski, Integrative Activity of the Brain. An Interdisciplinary Approach (The University of Chicago Press, Chicago, 1967) J. Konorski, Integrative Activity of the Brain. An Interdisciplinary Approach (The University of Chicago Press, Chicago, 1967)
83.
Zurück zum Zitat N. Kriegeskorte, Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015)CrossRef N. Kriegeskorte, Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015)CrossRef
84.
Zurück zum Zitat N. Kriegeskorte, E. Formisano, B. Sorger, R. Goebel, Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc. Natl. Acad. Sci. USA 104, 20600–20605 (2007)CrossRef N. Kriegeskorte, E. Formisano, B. Sorger, R. Goebel, Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc. Natl. Acad. Sci. USA 104, 20600–20605 (2007)CrossRef
85.
Zurück zum Zitat A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks. Presented at Neural Information Processing Systems (NIPS) (2012) A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks. Presented at Neural Information Processing Systems (NIPS) (2012)
86.
Zurück zum Zitat J. Kubilius, S. Bracci, H.P. Op de Beeck, Deep neural networks as a computational model for human shape sensitivity. PLoS Comput. Biol. 12, e1004896 (2016)CrossRef J. Kubilius, S. Bracci, H.P. Op de Beeck, Deep neural networks as a computational model for human shape sensitivity. PLoS Comput. Biol. 12, e1004896 (2016)CrossRef
87.
Zurück zum Zitat Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard et al., Neural Information Processing (1989) Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard et al., Neural Information Processing (1989)
88.
Zurück zum Zitat Y. Lee, B. Duchaine, H.R. Wilson, K. Nakayama, Three cases of developmental prosopagnosia from one family: detailed neuropsychological and psychophysical investigation of face processing. Cortex 46, 949–964 (2010)CrossRef Y. Lee, B. Duchaine, H.R. Wilson, K. Nakayama, Three cases of developmental prosopagnosia from one family: detailed neuropsychological and psychophysical investigation of face processing. Cortex 46, 949–964 (2010)CrossRef
89.
Zurück zum Zitat I. Levy, U. Hasson, G. Avidan, T. Hendler, R. Malach, Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001)CrossRef I. Levy, U. Hasson, G. Avidan, T. Hendler, R. Malach, Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001)CrossRef
90.
Zurück zum Zitat G. Loffler, G. Yourganov, F. Wilkinson, H.R. Wilson, fMRI evidence for the neural representation of faces. Nat. Neurosci. 8, 1386–1390 (2005)CrossRef G. Loffler, G. Yourganov, F. Wilkinson, H.R. Wilson, fMRI evidence for the neural representation of faces. Nat. Neurosci. 8, 1386–1390 (2005)CrossRef
91.
Zurück zum Zitat G.R. Loftus, E.M. Harley, Why is it easier to identify someone close than far away? Psychon. Bull. Rev. 12, 43–65 (2005)CrossRef G.R. Loftus, E.M. Harley, Why is it easier to identify someone close than far away? Psychon. Bull. Rev. 12, 43–65 (2005)CrossRef
92.
Zurück zum Zitat S. Lorenz, K.S. Weiner, J. Caspers, H. Mohlberg, A. Schleicher et al., Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb. Cortex (2015) S. Lorenz, K.S. Weiner, J. Caspers, H. Mohlberg, A. Schleicher et al., Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb. Cortex (2015)
93.
Zurück zum Zitat A. Martin, C.L. Wiggs, L.G. Ungerleider, J.V. Haxby, Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996)CrossRef A. Martin, C.L. Wiggs, L.G. Ungerleider, J.V. Haxby, Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996)CrossRef
94.
Zurück zum Zitat G. McCarthy, A. Puce, J.C. Gore, T. Allison, Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997)CrossRef G. McCarthy, A. Puce, J.C. Gore, T. Allison, Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997)CrossRef
95.
Zurück zum Zitat G. McCarthy, A. Puce, A. Belger, T. Allison, Electrophysiological studies of human face perception. II: response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444 (1999)CrossRef G. McCarthy, A. Puce, A. Belger, T. Allison, Electrophysiological studies of human face perception. II: response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444 (1999)CrossRef
96.
Zurück zum Zitat E. McKone, Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vis. Res. 49, 268–283 (2009)CrossRef E. McKone, Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vis. Res. 49, 268–283 (2009)CrossRef
97.
Zurück zum Zitat K. Moutoussis, S. Zeki, The relationship between cortical activation and perception investigated with invisible stimuli. Proc. Natl. Acad. Sci. USA 99, 9527–9532 (2002)CrossRef K. Moutoussis, S. Zeki, The relationship between cortical activation and perception investigated with invisible stimuli. Proc. Natl. Acad. Sci. USA 99, 9527–9532 (2002)CrossRef
98.
Zurück zum Zitat M. Mur, D.A. Ruff, J. Bodurka, P. De Weerd, P.A. Bandettini, N. Kriegeskorte, Categorical, yet graded-single-image activation profiles of human category-selective cortical regions. J. Neurosci. 32, 8649–8662 (2012)CrossRef M. Mur, D.A. Ruff, J. Bodurka, P. De Weerd, P.A. Bandettini, N. Kriegeskorte, Categorical, yet graded-single-image activation profiles of human category-selective cortical regions. J. Neurosci. 32, 8649–8662 (2012)CrossRef
99.
Zurück zum Zitat S. Nasr, N. Liu, K.J. Devaney, X. Yue, R. Rajimehr et al., Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31, 13771–13785 (2011)CrossRef S. Nasr, N. Liu, K.J. Devaney, X. Yue, R. Rajimehr et al., Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31, 13771–13785 (2011)CrossRef
100.
Zurück zum Zitat V. Natu, M.A. Barnett, T. Hartley, J. Gomez, A. Stigliani, K. Grill-Spector, Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36, 10893–10907 (2016)CrossRef V. Natu, M.A. Barnett, T. Hartley, J. Gomez, A. Stigliani, K. Grill-Spector, Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36, 10893–10907 (2016)CrossRef
101.
Zurück zum Zitat V.S. Natu, A.J. O’Toole, Spatiotemporal changes in neural response patterns to faces varying in visual familiarity. Neuroimage 108, 151–159 (2015)CrossRef V.S. Natu, A.J. O’Toole, Spatiotemporal changes in neural response patterns to faces varying in visual familiarity. Neuroimage 108, 151–159 (2015)CrossRef
102.
Zurück zum Zitat V.S. Natu, F. Jiang, A. Narvekar, S. Keshvari, V. Blanz, A.J. O’Toole, Dissociable neural patterns of facial identity across changes in viewpoint. J. Cogn. Neurosci. 22, 1570–1582 (2010)CrossRef V.S. Natu, F. Jiang, A. Narvekar, S. Keshvari, V. Blanz, A.J. O’Toole, Dissociable neural patterns of facial identity across changes in viewpoint. J. Cogn. Neurosci. 22, 1570–1582 (2010)CrossRef
103.
Zurück zum Zitat A. Nestor, D.C. Plaut, M. Behrmann, Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proc. Natl. Acad. Sci. USA 108, 9998–10003 (2011)CrossRef A. Nestor, D.C. Plaut, M. Behrmann, Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proc. Natl. Acad. Sci. USA 108, 9998–10003 (2011)CrossRef
104.
Zurück zum Zitat K.M. O’Craven, P.E. Downing, N. Kanwisher, fMRI evidence for objects as the units of attentional selection. Nature 401, 584–587 (1999)CrossRef K.M. O’Craven, P.E. Downing, N. Kanwisher, fMRI evidence for objects as the units of attentional selection. Nature 401, 584–587 (1999)CrossRef
105.
Zurück zum Zitat J. Parvizi, C. Jacques, B.L. Foster, N. Withoft, V. Rangarajan et al., Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012)CrossRef J. Parvizi, C. Jacques, B.L. Foster, N. Withoft, V. Rangarajan et al., Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012)CrossRef
106.
Zurück zum Zitat M.V. Peelen, P.E. Downing, Within-subject reproducibility of category-specific visual activation with functional MRI. Hum. Brain Mapp. 25, 402–408 (2005)CrossRef M.V. Peelen, P.E. Downing, Within-subject reproducibility of category-specific visual activation with functional MRI. Hum. Brain Mapp. 25, 402–408 (2005)CrossRef
107.
Zurück zum Zitat K.A. Pelphrey, N.J. Sasson, J.S. Reznick, G. Paul, B.D. Goldman, J. Piven, Visual scanning of faces in autism. J Autism Dev. Disord. 32, 249–261 (2002)CrossRef K.A. Pelphrey, N.J. Sasson, J.S. Reznick, G. Paul, B.D. Goldman, J. Piven, Visual scanning of faces in autism. J Autism Dev. Disord. 32, 249–261 (2002)CrossRef
108.
Zurück zum Zitat M.A. Pinsk, M. Arcaro, K.S. Weiner, J.F. Kalkus, S.J. Inati et al., Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J. Neurophysiol. 101, 2581–2600 (2009)CrossRef M.A. Pinsk, M. Arcaro, K.S. Weiner, J.F. Kalkus, S.J. Inati et al., Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J. Neurophysiol. 101, 2581–2600 (2009)CrossRef
109.
Zurück zum Zitat D. Pitcher, V. Walsh, G. Yovel, B. Duchaine, TMS evidence for the involvement of the right occipital face area in early face processing. Curr. Biol. 17, 1568–1573 (2007)CrossRef D. Pitcher, V. Walsh, G. Yovel, B. Duchaine, TMS evidence for the involvement of the right occipital face area in early face processing. Curr. Biol. 17, 1568–1573 (2007)CrossRef
110.
Zurück zum Zitat D. Pitcher, D.D. Dilks, R.R. Saxe, C. Triantafyllou, N. Kanwisher, Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56, 2356–2363 (2011)CrossRef D. Pitcher, D.D. Dilks, R.R. Saxe, C. Triantafyllou, N. Kanwisher, Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56, 2356–2363 (2011)CrossRef
111.
Zurück zum Zitat D. Pitcher, V. Walsh, B. Duchaine, The role of the occipital face area in the cortical face perception network. Exp. Brain Res. 209, 481–493 (2011)CrossRef D. Pitcher, V. Walsh, B. Duchaine, The role of the occipital face area in the cortical face perception network. Exp. Brain Res. 209, 481–493 (2011)CrossRef
112.
Zurück zum Zitat D. Pitcher, T. Goldhaber, B. Duchaine, V. Walsh, N. Kanwisher, Two critical and functionally distinct stages of face and body perception. J. Neurosci. 32, 15877–15885 (2012)CrossRef D. Pitcher, T. Goldhaber, B. Duchaine, V. Walsh, N. Kanwisher, Two critical and functionally distinct stages of face and body perception. J. Neurosci. 32, 15877–15885 (2012)CrossRef
113.
Zurück zum Zitat E. Privman, Y. Nir, U. Kramer, S. Kipervasser, F. Andelman et al., Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J. Neurosci. 27, 6234–6242 (2007)CrossRef E. Privman, Y. Nir, U. Kramer, S. Kipervasser, F. Andelman et al., Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J. Neurosci. 27, 6234–6242 (2007)CrossRef
114.
Zurück zum Zitat A. Puce, T. Allison, J.C. Gore, G. McCarthy, Face-sensitive regions in human extrastriate cortex studied by functional MRI. J. Neurophysiol. 74, 1192–1199 (1995)CrossRef A. Puce, T. Allison, J.C. Gore, G. McCarthy, Face-sensitive regions in human extrastriate cortex studied by functional MRI. J. Neurophysiol. 74, 1192–1199 (1995)CrossRef
115.
Zurück zum Zitat A. Puce, T. Allison, S. Bentin, J.C. Gore, G. McCarthy, Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998)CrossRef A. Puce, T. Allison, S. Bentin, J.C. Gore, G. McCarthy, Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998)CrossRef
116.
Zurück zum Zitat A. Puce, T. Allison, G. McCarthy, Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb. Cortex 9, 445–458 (1999)CrossRef A. Puce, T. Allison, G. McCarthy, Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb. Cortex 9, 445–458 (1999)CrossRef
117.
Zurück zum Zitat J.A. Pyles, T.D. Verstynen, W. Schneider, M.J. Tarr, Explicating the face perception network with white matter connectivity. PLoS One 8, e61611 (2013)CrossRef J.A. Pyles, T.D. Verstynen, W. Schneider, M.J. Tarr, Explicating the face perception network with white matter connectivity. PLoS One 8, e61611 (2013)CrossRef
118.
Zurück zum Zitat R. Rajimehr, J.C. Young, R.B. Tootell, An anterior temporal face patch in human cortex, predicted by macaque maps. Proc. Natl. Acad. Sci. USA 106, 1995–2000 (2009)CrossRef R. Rajimehr, J.C. Young, R.B. Tootell, An anterior temporal face patch in human cortex, predicted by macaque maps. Proc. Natl. Acad. Sci. USA 106, 1995–2000 (2009)CrossRef
119.
Zurück zum Zitat V. Rangarajan, D. Hermes, B.L. Foster, K.S. Weiner, C. Jacques et al., Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836 (2014)CrossRef V. Rangarajan, D. Hermes, B.L. Foster, K.S. Weiner, C. Jacques et al., Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836 (2014)CrossRef
120.
Zurück zum Zitat J.H. Reynolds, D.J. Heeger, The normalization model of attention. Neuron 61, 168–185 (2009)CrossRef J.H. Reynolds, D.J. Heeger, The normalization model of attention. Neuron 61, 168–185 (2009)CrossRef
121.
Zurück zum Zitat M. Riesenhuber, T. Poggio, Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRef M. Riesenhuber, T. Poggio, Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRef
122.
Zurück zum Zitat M. Rosenke, K.S. Weiner, M.A. Barnett, K. Zilles, K. Amunts, R. Goebel, K. Grill-Spector, A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage pii: S1053–8119(17), 30151–30159 (2017) M. Rosenke, K.S. Weiner, M.A. Barnett, K. Zilles, K. Amunts, R. Goebel, K. Grill-Spector, A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage pii: S1053–8119(17), 30151–30159 (2017)
123.
Zurück zum Zitat B. Rossion, Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage 40, 423–426 (2008)CrossRef B. Rossion, Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage 40, 423–426 (2008)CrossRef
124.
Zurück zum Zitat B. Rossion, A. Boremanse, Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J. Vis. 11, 1–18 (2011)CrossRef B. Rossion, A. Boremanse, Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J. Vis. 11, 1–18 (2011)CrossRef
125.
Zurück zum Zitat B. Rossion, R. Caldara, M. Seghier, A.M. Schuller, F. Lazeyras, E. Mayer, A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126, 2381–2395 (2003)CrossRef B. Rossion, R. Caldara, M. Seghier, A.M. Schuller, F. Lazeyras, E. Mayer, A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126, 2381–2395 (2003)CrossRef
126.
Zurück zum Zitat P. Rotshtein, R.N. Henson, A. Treves, J. Driver, R.J. Dolan, Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8, 107–113 (2005)CrossRef P. Rotshtein, R.N. Henson, A. Treves, J. Driver, R.J. Dolan, Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8, 107–113 (2005)CrossRef
127.
Zurück zum Zitat D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Cognitive Modeling (1988) D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Cognitive Modeling (1988)
128.
Zurück zum Zitat Z.M. Saygin, D.E. Osher, K. Koldewyn, G. Reynolds, J.D. Gabrieli, R.R. Saxe, Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327 (2012)CrossRef Z.M. Saygin, D.E. Osher, K. Koldewyn, G. Reynolds, J.D. Gabrieli, R.R. Saxe, Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327 (2012)CrossRef
129.
Zurück zum Zitat C. Schiltz, B. Sorger, R. Caldara, F. Ahmed, E. Mayer et al., Impaired face discrimination in acquired prosopagnosia is associated with abnormal response to individual faces in the right middle fusiform gyrus. Cereb. Cortex 16, 574–586 (2006)CrossRef C. Schiltz, B. Sorger, R. Caldara, F. Ahmed, E. Mayer et al., Impaired face discrimination in acquired prosopagnosia is associated with abnormal response to individual faces in the right middle fusiform gyrus. Cereb. Cortex 16, 574–586 (2006)CrossRef
130.
Zurück zum Zitat C. Schiltz, L. Dricot, R. Goebel, B. Rossion, Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the composite face illusion. J. Vis. 10(25), 1–16 (2010)CrossRef C. Schiltz, L. Dricot, R. Goebel, B. Rossion, Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the composite face illusion. J. Vis. 10(25), 1–16 (2010)CrossRef
131.
Zurück zum Zitat F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition and clustering. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2015) (2015), pp. 815–823 F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition and clustering. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2015) (2015), pp. 815–823
132.
Zurück zum Zitat R.F. Schwarzlose, J.D. Swisher, S. Dang, N. Kanwisher, The distribution of category and location information across object-selective regions in human visual cortex. Proc. Natl. Acad. Sci. USA 105, 4447–4452 (2008)CrossRef R.F. Schwarzlose, J.D. Swisher, S. Dang, N. Kanwisher, The distribution of category and location information across object-selective regions in human visual cortex. Proc. Natl. Acad. Sci. USA 105, 4447–4452 (2008)CrossRef
133.
Zurück zum Zitat M.I. Sereno, A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau et al., Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995)CrossRef M.I. Sereno, A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau et al., Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995)CrossRef
134.
Zurück zum Zitat J. Sergent, J.L. Signoret, Functional and anatomical decomposition of face processing: evidence from prosopagnosia and PET study of normal subjects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 335, 55–61; discussion 61-2 J. Sergent, J.L. Signoret, Functional and anatomical decomposition of face processing: evidence from prosopagnosia and PET study of normal subjects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 335, 55–61; discussion 61-2
135.
Zurück zum Zitat J. Sergent, S. Ohta, B. MacDonald, Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115(Pt 1), 15–36 (1992)CrossRef J. Sergent, S. Ohta, B. MacDonald, Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115(Pt 1), 15–36 (1992)CrossRef
136.
Zurück zum Zitat T. Serre, A. Oliva, T. Poggio, A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104, 6424–6429 (2007)CrossRef T. Serre, A. Oliva, T. Poggio, A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104, 6424–6429 (2007)CrossRef
137.
Zurück zum Zitat M.A. Silver, S. Kastner, Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13, 488–495 (2009)CrossRef M.A. Silver, S. Kastner, Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13, 488–495 (2009)CrossRef
138.
Zurück zum Zitat M.A. Silver, D. Ress, D.J. Heeger, Topographic maps of visual spatial attention in human parietal cortex. J. Neurophysiol. 94, 1358–1371 (2005)CrossRef M.A. Silver, D. Ress, D.J. Heeger, Topographic maps of visual spatial attention in human parietal cortex. J. Neurophysiol. 94, 1358–1371 (2005)CrossRef
139.
Zurück zum Zitat H.P. Snippe, J.J. Koenderink, Information in channel-coded systems: correlated receivers. Biol. Cybern. 67, 183–190 (1992)MATHCrossRef H.P. Snippe, J.J. Koenderink, Information in channel-coded systems: correlated receivers. Biol. Cybern. 67, 183–190 (1992)MATHCrossRef
140.
Zurück zum Zitat B. Sorger, R. Goebel, C. Schiltz, B. Rossion, Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35, 836–852 (2007)CrossRef B. Sorger, R. Goebel, C. Schiltz, B. Rossion, Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35, 836–852 (2007)CrossRef
141.
Zurück zum Zitat T.C. Sprague, J.T. Serences, Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat. Neurosci. 16, 1879–1887 (2013)CrossRef T.C. Sprague, J.T. Serences, Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat. Neurosci. 16, 1879–1887 (2013)CrossRef
142.
Zurück zum Zitat J.K. Steeves, J.C. Culham, B.C. Duchaine, C.C. Pratesi, K.F. Valyear et al., The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia 44, 594–609 (2006)CrossRef J.K. Steeves, J.C. Culham, B.C. Duchaine, C.C. Pratesi, K.F. Valyear et al., The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia 44, 594–609 (2006)CrossRef
143.
Zurück zum Zitat C. Summerfield, E.H. Trittschuh, J.M. Monti, M.M. Mesulam, T. Egner, Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. (2008) C. Summerfield, E.H. Trittschuh, J.M. Monti, M.M. Mesulam, T. Egner, Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. (2008)
144.
Zurück zum Zitat J.D. Swisher, M.A. Halko, L.B. Merabet, S.A. McMains, D.C. Somers, Visual topography of human intraparietal sulcus. J. Neurosci. 27, 5326–5337 (2007)CrossRef J.D. Swisher, M.A. Halko, L.B. Merabet, S.A. McMains, D.C. Somers, Visual topography of human intraparietal sulcus. J. Neurosci. 27, 5326–5337 (2007)CrossRef
145.
Zurück zum Zitat Y. Taigman, M. Yang, M. Ranzato, L. Wolf, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2014), pp. 1701–1708 Y. Taigman, M. Yang, M. Ranzato, L. Wolf, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2014), pp. 1701–1708
146.
Zurück zum Zitat H. Takemura, A. Rokem, J. Winawer, J.D. Yeatman, B.A. Wandell, F. Pestilli, A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26, 2205–2214 (2016)CrossRef H. Takemura, A. Rokem, J. Winawer, J.D. Yeatman, B.A. Wandell, F. Pestilli, A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26, 2205–2214 (2016)CrossRef
147.
Zurück zum Zitat T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. USA 111, 12667–12672 (2014)CrossRef T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. USA 111, 12667–12672 (2014)CrossRef
148.
Zurück zum Zitat J.W. Tanaka, M.J. Farah, Parts and wholes in face recognition. Q. J. Exp. Psychol. A Hum. Exp. Psychol. 46, 225–245 (1993)CrossRef J.W. Tanaka, M.J. Farah, Parts and wholes in face recognition. Q. J. Exp. Psychol. A Hum. Exp. Psychol. 46, 225–245 (1993)CrossRef
149.
Zurück zum Zitat I. Tavor, M. Yablonski, A. Mezer, S. Rom, Y. Assaf, G. Yovel, Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. Neuroimage (2013) I. Tavor, M. Yablonski, A. Mezer, S. Rom, Y. Assaf, G. Yovel, Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. Neuroimage (2013)
150.
Zurück zum Zitat F. Tong, K. Nakayama, J.T. Vaughan, N. Kanwisher, Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998)CrossRef F. Tong, K. Nakayama, J.T. Vaughan, N. Kanwisher, Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998)CrossRef
151.
Zurück zum Zitat F. Tong, K. Nakayama, M. Moscovitch, O. Weinrib, N. Kanwisher, Response properties of the human fusiform face area. Cogn. Neuropsychol. 17, 257–280 (2000)CrossRef F. Tong, K. Nakayama, M. Moscovitch, O. Weinrib, N. Kanwisher, Response properties of the human fusiform face area. Cogn. Neuropsychol. 17, 257–280 (2000)CrossRef
152.
Zurück zum Zitat D. Tsao, M. Livingstone, Mechanisms of face perception. Annu. Rev. Neurosci. 31, 411–437 (2008)CrossRef D. Tsao, M. Livingstone, Mechanisms of face perception. Annu. Rev. Neurosci. 31, 411–437 (2008)CrossRef
153.
Zurück zum Zitat D.Y. Tsao, S. Moeller, W.A. Freiwald, Comparing face patch systems in macaques and humans. Proc. Natl. Acad. Sci. USA 105, 19514–19519 (2008)CrossRef D.Y. Tsao, S. Moeller, W.A. Freiwald, Comparing face patch systems in macaques and humans. Proc. Natl. Acad. Sci. USA 105, 19514–19519 (2008)CrossRef
154.
Zurück zum Zitat T. Valentine, Face-space models of face recognition, in Computational, Geometric, and Process Perspectives on Facial Cognition: Contexts and Challenges, ed. by M.J. Wenger, J.T. Townsend (Lawrence Erlbaum Associates Inc, Hillsdale, 2001) T. Valentine, Face-space models of face recognition, in Computational, Geometric, and Process Perspectives on Facial Cognition: Contexts and Challenges, ed. by M.J. Wenger, J.T. Townsend (Lawrence Erlbaum Associates Inc, Hillsdale, 2001)
155.
Zurück zum Zitat G. Van Belle, P. De Graef, K. Verfaillie, T. Busigny, B. Rossion, Whole not hole: expert face recognition requires holistic perception. Neuropsychologia 48, 2620–2629 (2010)CrossRef G. Van Belle, P. De Graef, K. Verfaillie, T. Busigny, B. Rossion, Whole not hole: expert face recognition requires holistic perception. Neuropsychologia 48, 2620–2629 (2010)CrossRef
156.
Zurück zum Zitat G. Van Belle, T. Busigny, P. Lefevre, S. Joubert, O. Felician et al., Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contingency. Neuropsychologia 49, 3145–3150 (2011)CrossRef G. Van Belle, T. Busigny, P. Lefevre, S. Joubert, O. Felician et al., Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contingency. Neuropsychologia 49, 3145–3150 (2011)CrossRef
157.
Zurück zum Zitat D.C. Van Essen, J.L. Gallant, Neural mechanisms of form and motion processing in the primate visual system. Neuron 13, 1–10 (1994)CrossRef D.C. Van Essen, J.L. Gallant, Neural mechanisms of form and motion processing in the primate visual system. Neuron 13, 1–10 (1994)CrossRef
158.
Zurück zum Zitat D.C. Van Essen, C.H. Anderson, D.J. Felleman, Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992)CrossRef D.C. Van Essen, C.H. Anderson, D.J. Felleman, Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992)CrossRef
159.
Zurück zum Zitat P. Vuilleumier, R.N. Henson, J. Driver, R.J. Dolan, Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat. Neurosci. 5, 491–499 (2002)CrossRef P. Vuilleumier, R.N. Henson, J. Driver, R.J. Dolan, Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat. Neurosci. 5, 491–499 (2002)CrossRef
160.
Zurück zum Zitat P. Vuilleumier, J.L. Armony, J. Driver, R.J. Dolan, Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6, 624–631 (2003)CrossRef P. Vuilleumier, J.L. Armony, J. Driver, R.J. Dolan, Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6, 624–631 (2003)CrossRef
161.
Zurück zum Zitat B.A. Wandell, J. Winawer, Imaging retinotopic maps in the human brain. Vis. Res. 51, 718–737 (2011)CrossRef B.A. Wandell, J. Winawer, Imaging retinotopic maps in the human brain. Vis. Res. 51, 718–737 (2011)CrossRef
162.
Zurück zum Zitat B.A. Wandell, J. Winawer, Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19, 349–357 (2015)CrossRef B.A. Wandell, J. Winawer, Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19, 349–357 (2015)CrossRef
163.
Zurück zum Zitat B.A. Wandell, S.O. Dumoulin, A.A. Brewer, Visual field maps in human cortex. Neuron 56, 366–383 (2007)CrossRef B.A. Wandell, S.O. Dumoulin, A.A. Brewer, Visual field maps in human cortex. Neuron 56, 366–383 (2007)CrossRef
164.
Zurück zum Zitat K. Weibert, T.J. Andrews, Activity in the right fusiform face area predicts the behavioural advantage for the perception of familiar faces. Neuropsychologia 75, 588–596 (2015)CrossRef K. Weibert, T.J. Andrews, Activity in the right fusiform face area predicts the behavioural advantage for the perception of familiar faces. Neuropsychologia 75, 588–596 (2015)CrossRef
165.
Zurück zum Zitat K.S. Weiner, K. Grill-Spector, Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52, 1559–1573 (2010)CrossRef K.S. Weiner, K. Grill-Spector, Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52, 1559–1573 (2010)CrossRef
166.
Zurück zum Zitat K.S. Weiner, K. Grill-Spector, The improbable simplicity of the fusiform face area. Trends Cogn. Sci. 16(5), 251–4 (2012)CrossRef K.S. Weiner, K. Grill-Spector, The improbable simplicity of the fusiform face area. Trends Cogn. Sci. 16(5), 251–4 (2012)CrossRef
167.
Zurück zum Zitat K.S. Weiner, K. Grill-Spector, The evolution of face processing networks. Trends Cogn. Sci. 19, 240–241 (2015)CrossRef K.S. Weiner, K. Grill-Spector, The evolution of face processing networks. Trends Cogn. Sci. 19, 240–241 (2015)CrossRef
168.
Zurück zum Zitat K.S. Weiner, K. Zilles, The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83, 48–62 (2016)CrossRef K.S. Weiner, K. Zilles, The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83, 48–62 (2016)CrossRef
169.
Zurück zum Zitat K.S. Weiner, R. Sayres, J. Vinberg, K. Grill-Spector, fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. J. Neurophysiol. 103, 3349–3365 (2010)CrossRef K.S. Weiner, R. Sayres, J. Vinberg, K. Grill-Spector, fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. J. Neurophysiol. 103, 3349–3365 (2010)CrossRef
170.
Zurück zum Zitat K.S. Weiner, G. Golarai, J. Caspers, M.R. Chuapoco, H. Mohlberg et al., The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage 84, 453–465 (2014)CrossRef K.S. Weiner, G. Golarai, J. Caspers, M.R. Chuapoco, H. Mohlberg et al., The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage 84, 453–465 (2014)CrossRef
171.
Zurück zum Zitat K.S. Weiner, J. Jonas, J. Gomez, L. Maillard, H. Brissart et al., The face-processing network is resilient to focal resection of human visual cortex. J. Neurosci. 36, 8425–8440 (2016)CrossRef K.S. Weiner, J. Jonas, J. Gomez, L. Maillard, H. Brissart et al., The face-processing network is resilient to focal resection of human visual cortex. J. Neurosci. 36, 8425–8440 (2016)CrossRef
172.
Zurück zum Zitat K.S. Weiner, J.D. Yeatman, B.A. Wandell, The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex. 31 Mar 2016. pii: (16)30050-8 (2016). doi:10.1016/S0010-9452 K.S. Weiner, J.D. Yeatman, B.A. Wandell, The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex. 31 Mar 2016. pii: (16)30050-8 (2016). doi:10.​1016/​S0010-9452
173.
Zurück zum Zitat K.S. Weiner, B.A. Barnett, S. Lorenz, J. Caspers, A. Stigliani et al., The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex (2017) K.S. Weiner, B.A. Barnett, S. Lorenz, J. Caspers, A. Stigliani et al., The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex (2017)
174.
Zurück zum Zitat Y. Weiss, S. Edelman, M. Fahle, Models of perceptual learning in vernier hyperacuity. Neural Comput. 5, 695–718 (1993)CrossRef Y. Weiss, S. Edelman, M. Fahle, Models of perceptual learning in vernier hyperacuity. Neural Comput. 5, 695–718 (1993)CrossRef
175.
Zurück zum Zitat J.S. Winston, R.N. Henson, M.R. Fine-Goulden, R.J. Dolan, fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92, 1830–1839 (2004)CrossRef J.S. Winston, R.N. Henson, M.R. Fine-Goulden, R.J. Dolan, fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92, 1830–1839 (2004)CrossRef
176.
Zurück zum Zitat N. Witthoft, S. Poltoratski, M. Nguyen, G. Golarai, A. Liberman et al., Developmental prosopagnosia is associated with reduced spatial integration in the ventral visual cortex, in bioRxiv (2016) N. Witthoft, S. Poltoratski, M. Nguyen, G. Golarai, A. Liberman et al., Developmental prosopagnosia is associated with reduced spatial integration in the ventral visual cortex, in bioRxiv (2016)
177.
Zurück zum Zitat D.L. Yamins, J.J. DiCarlo, Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016)CrossRef D.L. Yamins, J.J. DiCarlo, Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016)CrossRef
178.
Zurück zum Zitat D.L. Yamins, H. Hong, C.F. Cadieu, E.A. Solomon, D. Seibert, J.J. DiCarlo, Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. USA 111, 8619–8624 (2014)CrossRef D.L. Yamins, H. Hong, C.F. Cadieu, E.A. Solomon, D. Seibert, J.J. DiCarlo, Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. USA 111, 8619–8624 (2014)CrossRef
179.
Zurück zum Zitat J.D. Yeatman, K.S. Weiner, F. Pestilli, A. Rokem, A. Mezer, B.A. Wandell, The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc. Natl. Acad. Sci. USA 111, E5214–E5223 (2014)CrossRef J.D. Yeatman, K.S. Weiner, F. Pestilli, A. Rokem, A. Mezer, B.A. Wandell, The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc. Natl. Acad. Sci. USA 111, E5214–E5223 (2014)CrossRef
180.
Zurück zum Zitat D.J. Yi, T.A. Kelley, R. Marois, M.M. Chun, Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Res. 1080, 53–62 (2006)CrossRef D.J. Yi, T.A. Kelley, R. Marois, M.M. Chun, Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Res. 1080, 53–62 (2006)CrossRef
181.
Zurück zum Zitat G. Yovel, N. Kanwisher, Face perception: domain specific, not process specific. Neuron 44, 889–898 (2004) G. Yovel, N. Kanwisher, Face perception: domain specific, not process specific. Neuron 44, 889–898 (2004)
182.
Zurück zum Zitat G. Yovel, N. Kanwisher, The neural basis of the behavioral face-inversion effect. Curr. Biol. 15, 2256–2262 (2005)CrossRef G. Yovel, N. Kanwisher, The neural basis of the behavioral face-inversion effect. Curr. Biol. 15, 2256–2262 (2005)CrossRef
183.
Zurück zum Zitat X. Yue, B.S. Cassidy, K.J. Devaney, D.J. Holt, R.B. Tootell, Lower-level stimulus features strongly influence responses in the fusiform face area. Cereb. Cortex 21, 35–47 (2011)CrossRef X. Yue, B.S. Cassidy, K.J. Devaney, D.J. Holt, R.B. Tootell, Lower-level stimulus features strongly influence responses in the fusiform face area. Cereb. Cortex 21, 35–47 (2011)CrossRef
184.
Zurück zum Zitat S. Zeki, S. Shipp, The functional logic of cortical connections. Nature 335, 311–317 (1988)CrossRef S. Zeki, S. Shipp, The functional logic of cortical connections. Nature 335, 311–317 (1988)CrossRef
Metadaten
Titel
The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning
verfasst von
Kalanit Grill-Spector
Kendrick Kay
Kevin S. Weiner
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-61657-5_1

Premium Partner