Skip to main content
Erschienen in: Experiments in Fluids 5/2019

01.05.2019 | Research Article

The response of surface buoyancy flux-driven convection to localized mechanical forcing

verfasst von: Katarzyna E. Matusik, Stefan G. Llewellyn Smith

Erschienen in: Experiments in Fluids | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present laboratory experiments in which both a buoyancy and mechanical forcing are imposed on the surface of a rectangular tank filled with freshwater. The buoyancy forcing is generated by a saltwater source at the surface that drives a sinking half-line plume along one endwall, and the mechanical forcing is generated by a continuous flow of freshwater across the surface of the tank. A steady-state circulation is achieved when the advection of salt by the plume is matched by the diffusion of salt through the upper boundary. The surface stress drives flow in the same direction as the plume, resulting in a convective cell whose depth is determined by the interplay of the two forcings. When the surface stress is relatively weak, the steady-state flow is described by a high-Rayleigh number ‘recycling box’ model for horizontal convection (Hughes et al. in J Fluid Mech 581:251–276, 2007). Once the stress is strong enough to overturn the stratified waters, a region of localized mixing develops. The immediate consequence of this regional turbulence is a net input of stabilizing buoyancy in the form of fresher water into the plume, which renders it too weak to penetrate to the bottom boundary. In general, the plume is unable to recover a full-depth circulation within the experiment time frame. The resulting flow can be described by the recycling box model with a spatially varying turbulent diffusivity parameterized by the characteristics of the turbulent eddy that develops in the mixing region. This work applies experimental techniques to show that, with adequate mechanical forcing, a buoyancy-driven circulation will develop localized mixing that significantly alters the overall structure and density distribution of the circulation for relatively long timescales. The experimental results corroborate the recycling box model as a valid descriptor of the flow structure in such systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baines WD, Turner JS (1969) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 37:51–80CrossRef Baines WD, Turner JS (1969) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 37:51–80CrossRef
Zurück zum Zitat Beardsley RC, Festa JF (1972) A numerical model of convection driven by a surface stress and non-uniform horizontal heating. J Phys Oceanogr 2:444–455CrossRef Beardsley RC, Festa JF (1972) A numerical model of convection driven by a surface stress and non-uniform horizontal heating. J Phys Oceanogr 2:444–455CrossRef
Zurück zum Zitat Benítez J (2009) Principles and modern applications of mass transfer operations, 2nd edn. Wiley, Hoboken Benítez J (2009) Principles and modern applications of mass transfer operations, 2nd edn. Wiley, Hoboken
Zurück zum Zitat Dalziel Research Partners (2008) DigiFlow user guide, version 3.0. Dalziel Research Partners, Cambridge, UK Dalziel Research Partners (2008) DigiFlow user guide, version 3.0. Dalziel Research Partners, Cambridge, UK
Zurück zum Zitat Dewar WK, Bingham RJ, Iverson RL, Nowacek DP, St Laurent LC, Wiebe PH (2006) Does the marine biosphere mix the ocean? J Mar Res 64:541–561CrossRef Dewar WK, Bingham RJ, Iverson RL, Nowacek DP, St Laurent LC, Wiebe PH (2006) Does the marine biosphere mix the ocean? J Mar Res 64:541–561CrossRef
Zurück zum Zitat Gayen B, Griffiths RW, Hughes GO, Saenz JA (2012) Energetics of horizontal convection. J Fluid Mech Rapids 716:R10-1–R10-11MATH Gayen B, Griffiths RW, Hughes GO, Saenz JA (2012) Energetics of horizontal convection. J Fluid Mech Rapids 716:R10-1–R10-11MATH
Zurück zum Zitat Gayen B, Griffiths RW, Hughes GO (2014) Stability transitions and turbulence in horizontal convection. J Fluid Mech 751:698–724CrossRef Gayen B, Griffiths RW, Hughes GO (2014) Stability transitions and turbulence in horizontal convection. J Fluid Mech 751:698–724CrossRef
Zurück zum Zitat Hazewinkel J, Paparella F, Young WR (2012) Stressed horizontal convection. J Fluid Mech 692:317–331CrossRef Hazewinkel J, Paparella F, Young WR (2012) Stressed horizontal convection. J Fluid Mech 692:317–331CrossRef
Zurück zum Zitat Hopfinger EJ, Linden PF (1982) Formation of thermoclines in zero-mean-shear turbulence subjected to a stabilizing buoyancy flux. J Fluid Mech 114:157–173CrossRef Hopfinger EJ, Linden PF (1982) Formation of thermoclines in zero-mean-shear turbulence subjected to a stabilizing buoyancy flux. J Fluid Mech 114:157–173CrossRef
Zurück zum Zitat Hughes GO, Griffiths RW (2006) A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model 12:46–79CrossRef Hughes GO, Griffiths RW (2006) A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model 12:46–79CrossRef
Zurück zum Zitat Hughes GO, Griffiths RW, Mullarney JC, Peterson WH (2007) A theoretical model for horizontal convection at high rayleigh number. J Fluid Mech 581:251–276MathSciNetCrossRef Hughes GO, Griffiths RW, Mullarney JC, Peterson WH (2007) A theoretical model for horizontal convection at high rayleigh number. J Fluid Mech 581:251–276MathSciNetCrossRef
Zurück zum Zitat Ilicak M, Vallis GK (2012) Simulations and scaling of horizontal convection. Tellus A 64(18):377 Ilicak M, Vallis GK (2012) Simulations and scaling of horizontal convection. Tellus A 64(18):377
Zurück zum Zitat Kanda I (2002) Conductivity measurement system. Cambridge, UK Kanda I (2002) Conductivity measurement system. Cambridge, UK
Zurück zum Zitat Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001CrossRef Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001CrossRef
Zurück zum Zitat Kundu PK, Cohen IM, Dowling DR (2012) Fluid mechanics, 5th edn. Elsevier Inc, AmsterdamMATH Kundu PK, Cohen IM, Dowling DR (2012) Fluid mechanics, 5th edn. Elsevier Inc, AmsterdamMATH
Zurück zum Zitat Ledwell JR (2017) Comment on “Abyssal upwelling and downwelling driven by near-boundary mixing”. J Phys Oceanogr 48:739–748CrossRef Ledwell JR (2017) Comment on “Abyssal upwelling and downwelling driven by near-boundary mixing”. J Phys Oceanogr 48:739–748CrossRef
Zurück zum Zitat Linden PF (1999) The fluid mechanics of natural ventilation. Annu Rev Fluid Mech 31:201–238CrossRef Linden PF (1999) The fluid mechanics of natural ventilation. Annu Rev Fluid Mech 31:201–238CrossRef
Zurück zum Zitat Manins PC (1979) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 91(4):765–781CrossRef Manins PC (1979) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 91(4):765–781CrossRef
Zurück zum Zitat McDougall TJ, Ferrari R (2018) Reply to “Comment on ‘Abyssal upwelling and downwelling driven by near-boundary mixing”’. J Phys Oceanogr 48:749–753CrossRef McDougall TJ, Ferrari R (2018) Reply to “Comment on ‘Abyssal upwelling and downwelling driven by near-boundary mixing”’. J Phys Oceanogr 48:749–753CrossRef
Zurück zum Zitat Mullarney JC, Griffiths RW, Hughes GO (2004) Convection driven by differential heating at a horizontal boundary. J Fluid Mech 516:181–209CrossRef Mullarney JC, Griffiths RW, Hughes GO (2004) Convection driven by differential heating at a horizontal boundary. J Fluid Mech 516:181–209CrossRef
Zurück zum Zitat Nayar K, Sharqawy M, Banchik L (2016) Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination 390:1–24CrossRef Nayar K, Sharqawy M, Banchik L (2016) Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination 390:1–24CrossRef
Zurück zum Zitat Pierce DW, Rhines PB (1996) Convective building of a pycnocline: laboratory experiments. J Phys Oceanogr 26:176–190CrossRef Pierce DW, Rhines PB (1996) Convective building of a pycnocline: laboratory experiments. J Phys Oceanogr 26:176–190CrossRef
Zurück zum Zitat Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRef Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Rossby T (1965) On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Res 12:9–16 Rossby T (1965) On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Res 12:9–16
Zurück zum Zitat Rossby T (1998) Numerical experiments with a fluid heated non-uniformly from below. Tellus 50A:242–257CrossRef Rossby T (1998) Numerical experiments with a fluid heated non-uniformly from below. Tellus 50A:242–257CrossRef
Zurück zum Zitat Sandström JW (1908) Dynamische versuche mit meerwasser. Ann Hydrogr Marit Meteorol 36:6–23 Sandström JW (1908) Dynamische versuche mit meerwasser. Ann Hydrogr Marit Meteorol 36:6–23
Zurück zum Zitat Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the atlantic overturning circulation. Nature 434:628–633CrossRef Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the atlantic overturning circulation. Nature 434:628–633CrossRef
Zurück zum Zitat Sharqawy MH, JHL V, Zubair SM (2010) Thermophysical properties of seawater: a review of existing correlations and data. Desalin Water Treat 16:354–380CrossRef Sharqawy MH, JHL V, Zubair SM (2010) Thermophysical properties of seawater: a review of existing correlations and data. Desalin Water Treat 16:354–380CrossRef
Zurück zum Zitat Stewart KD, Hughes GO, Griffiths RW (2012) The role of turbulent mixing in an overturning circulation maintained by surface buoyancy forcing. J Phys Oceanogr 42:1907–1922CrossRef Stewart KD, Hughes GO, Griffiths RW (2012) The role of turbulent mixing in an overturning circulation maintained by surface buoyancy forcing. J Phys Oceanogr 42:1907–1922CrossRef
Zurück zum Zitat Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, DordrechtCrossRef Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, DordrechtCrossRef
Zurück zum Zitat Thielicke W (2014) The flapping flight of birds—analysis and application. PhD thesis, Rijksuniversiteit Groningen Thielicke W (2014) The flapping flight of birds—analysis and application. PhD thesis, Rijksuniversiteit Groningen
Zurück zum Zitat Toggweiler JR, Samuels B (1997) On the ocean’s large-scale circulation near the limit of no vertical mixing. J Phys Oceanogr 28:1832–1852CrossRef Toggweiler JR, Samuels B (1997) On the ocean’s large-scale circulation near the limit of no vertical mixing. J Phys Oceanogr 28:1832–1852CrossRef
Zurück zum Zitat Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim Change 54:251–267CrossRef Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim Change 54:251–267CrossRef
Zurück zum Zitat Vreugdenhil CA, Hogg AM, Griffiths RW, Hughes GO (2016) Adjustment of the meridional overturning circulation and its dependence on depth of mixing. J Phys Oceanogr 46:731–747CrossRef Vreugdenhil CA, Hogg AM, Griffiths RW, Hughes GO (2016) Adjustment of the meridional overturning circulation and its dependence on depth of mixing. J Phys Oceanogr 46:731–747CrossRef
Zurück zum Zitat Wang W, Huang RX (2005) An experimental study on thermal circulation driven by horizontal differential heating. J Fluid Mech 540:49–73CrossRef Wang W, Huang RX (2005) An experimental study on thermal circulation driven by horizontal differential heating. J Fluid Mech 540:49–73CrossRef
Zurück zum Zitat Westerweel J, Scarano F (2005) A universal detection criterion for the median test. Exp Fluids 39:1096–1100CrossRef Westerweel J, Scarano F (2005) A universal detection criterion for the median test. Exp Fluids 39:1096–1100CrossRef
Zurück zum Zitat Whitehead JA, Wang W (2008) A laboratory model of vertical ocean circulation driven by mixing. Am Meteorol Soc 38:1091–1106 Whitehead JA, Wang W (2008) A laboratory model of vertical ocean circulation driven by mixing. Am Meteorol Soc 38:1091–1106
Zurück zum Zitat Wunsch C (2005) The total meridional heat flux and its oceanic and atmospheric partition. J Clim 18:4374–4380CrossRef Wunsch C (2005) The total meridional heat flux and its oceanic and atmospheric partition. J Clim 18:4374–4380CrossRef
Zurück zum Zitat Wunsch C, Ferrari R (2004) Vertical mixing, energy, and the general circulation of the ocean. Annu Rev Fluid Mech 36:281–314MathSciNetCrossRef Wunsch C, Ferrari R (2004) Vertical mixing, energy, and the general circulation of the ocean. Annu Rev Fluid Mech 36:281–314MathSciNetCrossRef
Metadaten
Titel
The response of surface buoyancy flux-driven convection to localized mechanical forcing
verfasst von
Katarzyna E. Matusik
Stefan G. Llewellyn Smith
Publikationsdatum
01.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 5/2019
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2722-5

Weitere Artikel der Ausgabe 5/2019

Experiments in Fluids 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.